Fully commutative elements in finite and affine Coxeter groups - Université Jean-Monnet-Saint-Étienne
Article Dans Une Revue Monatshefte für Mathematik Année : 2015

Fully commutative elements in finite and affine Coxeter groups

Résumé

An element of a Coxeter group $W$ is fully commutative if any two of its reduced decompositions are related by a series of transpositions of adjacent commuting generators. These elements were extensively studied by Stembridge, in particular in the finite case. They index naturally a basis of the generalized Temperley--Lieb algebra. In this work we deal with any finite or affine Coxeter group $W$, and we give explicit descriptions of fully commutative elements. Using our characterizations we then enumerate these elements according to their Coxeter length, and find in particular that the corrresponding growth sequence is ultimately periodic in each type. When the sequence is infinite, this implies that the associated Temperley--Lieb algebra has linear growth.
Fichier principal
Vignette du fichier
1402.2166v1.pdf (809.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00944929 , version 1 (06-01-2025)

Identifiants

Citer

Riccardo Biagioli, Frédéric Jouhet, Philippe Nadeau. Fully commutative elements in finite and affine Coxeter groups. Monatshefte für Mathematik, 2015, 178 (1), pp.1-37. ⟨10.1007/s00605-014-0674-7⟩. ⟨hal-00944929⟩
161 Consultations
0 Téléchargements

Altmetric

Partager

More