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Abstract. A common activity in many pattern recognition tasks, im-
age processing or clustering techniques involves searching a labeled data
set looking for the nearest point to a given unlabelled sample. To re-
duce the computational overhead when the naive exhaustive search is
applied, some fast nearest neighbor search (NNS) algorithms have ap-
peared in the last years. Depending on the structure used to store the
training set (usually a tree), different strategies to speed up the search
have been defined. In this paper, a new algorithm based on the combina-
tion of different pruning rules is proposed. An experimental evaluation
and comparison of its behavior with respect to other techniques has been
performed, using both real and artificial data.

1 Introduction

Nearest Neighbor Search (NNS) is an important technique in a variety of appli-
cations including pattern recognition [6], vision [13], or data mining [1,5]. These
techniques aim at finding the object of a set nearest to a given test object, using
a distance function [6]. The use of a simple brute-force method is sometimes a
bottleneck due to the large number of distances that should be computed and/or
their computational effort. In this work we have considered the computational
problem of finding nearest neighbors in general metric spaces. Spaces that may
not be conveniently embedded or approximated in an Euclidean space are of par-
ticular interest. Many techniques have been proposed for using different types of
structures (vp-tree [16], GNAT [3], sa-tree [10], AESA [14], M-tree [4]): the tree-
based techniques are nevertheless more popular. The Fukunaga and Narendra
algorithm (FNA [7]) is one of the first known tree-based example of this type
of techniques. It prunes the traversal of the tree by taking advantage, as the
aforementioned methods, of the triangular inequality of the distance between
the prototypes. This sets up a general framework for designing and evaluating
new pruning rules, as stated in [9].



In this paper we study the combination of different pruning rules: recent
table rule [12], a rule that is based on information stored in the sibling node (the
sibling rule [9]), the original rule from the FNA (Fukunaga and Narendra rule,
FNR), and a generalization of both the sibling rule and the FNR one [9]. We
end up with a new algorithm for combining the rules that significantly reduces
the number of distance computations.

The algorithm is evaluated on both artificial and real world data and com-
pared with state-of-the-art methods.

The paper is organized as follows: we will first recall the FNA algorithm and
define the general framework of the new algorithm (in particular how the tree is
built). We then review the different rules we aim at combining (section 3). We
then propose our new algorithm (section 4). Sections 5 presents the experimental
comparison.

2  The basic algorithm

The FNA is a fast tree-based search method that can work in general metric
spaces. In the original FNA the c-means algorithm was used to define the parti-
tion of the data. In the work by Gomez-Ballester et al [8] many strategies were
explored: the best one, namely the Most Distant from the Father tree (MDF),
in which the representative of the left node is the same as the representative of
its father, is the strategy used in the experiments presented in this work. Thus,
each time when an expansion of the node is necessary, only one new distance
needs to be computed (instead of two), hence reducing the number of distances
computed. This strategy was also successfully used by Noltomeier et al [11] in
the context of bisector trees.

In the MDF tree each leaf stores a point of the search space. The information
stored in each node ¢ is Sy, the set of points stored in the leaves of ¢ sub-tree, M,
(the representative of S;) and the radius of S, R; = argmax, g d(M;, z). Figure
1 shows a partition of the data in a 2-dimensional unit hypercube. The root node
will be associated with all the points of the set. The left node will represent all
the points that belong to the hyperplane under the segment [(0, 0.95) ; (0.65,0)];
the right node will be associated with the other points. According to the MDF
strategy, the representative of the right node (M,.) is the same as the father, and
the representative of the left node (M) is the most distant point to M,. The
space is then recursively partitioned.

3 A review of pruning rules

Fukunaga and Narendra Rule (FNR)

The pruning rule defined by Fukunaga and Narendra for internal nodes makes
use of the information in the node t to be pruned (with representative M; and
radius R;) and the hyperspherical surface centered in the sample point x with
radius d(z,nn), where nn is current nearest prototype. To apply this rule it is



Fig. 1: Partition of the data using the MDF strategy. Representatives of each node in
different levels are drawn as rings.

necesary to compute the distance from the test sample to the representative of
candidate node that aim to be eliminated. Figure 2a presents a graphical view
of the Fukunaga and Narendra rule.

Rule: No y € S; can be the nearest neighbor to z if d(z, nn) + R; < d(z, My)

The Sibling Based Rule (SBR)

Given two sibling nodes r and ¢, this rule requires that each node r stores the
distance d(M.,, e;), that is the distance between the representative of the node,
M,, and the nearest point, e, in the sibling node ¢ (Sy). Figure 2b presents a
graphical view of the Sibling based rule.

Rule: No y € Sy can be the nearest neighbor to z if d(M,.,z) + d(z,nn) <
d(MT, 6@).

Unlike the FNR, SBR can be applied to eliminate node ¢ without computing
d(My, z), avoiding some extra distance computations at search time.

Generalized rule (GR)

This rule is an iterated combination of the FNR and the SBR (due to space
constraints we refer the reader to [9] for details on the generalized rule). In GR,
the distance to the representative of a given node is needed to know if the node
can be pruned or not.



(a) Geometrical view of FNR rule. (b) Geometrical view of SBR. rule.

The table rule (TR)

This recent rule [12] prunes the tree by taking the current nearest neighbor as a
reference. In order to do so, a new distance should be defined:

Definition. Given a prototype or sample point p, the distance between p to
a set of prototypes S is defined as

d(p, ) = min d(p, y)

At pre-process time, the distances from each prototype to each prototype set
of each node ¢, S, in the tree are computed and stored in a table, allowing a
constant time pruning. Note that the size of this table is quadratic in the number
of prototypes since, as the tree is binary, the number of nodes is two times the
number of prototypes.

Fig. 2: Table rule and node S;: situation where it can be pruned (up) and where it
cannot (down)

Rule: No y € S; can be the nearest neighbor to z if 2d(nn,z) < d(nn, S).
Figure 2 presents a graphical view of the table rule. Note that this rule can
be used before computing the distance to the node that will be explored.



4 CPR: Combining Pruning Rules algorithm

In Algorithm 1 an efficient combination of pruning rules is proposed. Note that,
as the GR generalizes both the FNR and the SBR, these two rules are not applied
while the generalized one is activated (lines 11-19). When the MDF method is
used to build the tree, it is important to note that each time a node is expanded,
only one of the representatives is new (the left node), while the other (right)
is the same as the father node (in this case, only the radius of the node can
change). For this reason, in this case the distance d, = d(z, M,) in line 9 is
never computed (as it is already known). Then, when a node is examined during
the search, every pruning that can be applied without computing a new distance
is applied (lines 3 to 8). If none of these rules is able to prune, the distance to the
current node is computed (line 9). The pruning rules that use the new distance
are then applied (lines 11 to 28).

5 Experiments

We have performed some experiments in order to compare our algorithm with
some state of the art methods. The first method, the multi-vantage-point tree
(mup), is a balanced tree requiring linear space where the arity can be extended
and multiple pivots per node can be applied [2]. The second method is the Spa-
tial Approximation Tree (sat), whose structure uses a graph based on Delaunay
triangulation and it does not depend on any parameter [10]. The code of these
algorithms comes from the SISAP library (www.sisap.org). We applied the mup
with only one pivot by node, a bucket size of 1 and an arity of 2 as this setting
leads to better performances according to preliminary experiments on these data
sets. All the experiments were performed on a Linux box with 16GB of memory.

From now and only for the graphs, the FNR rule (and respectively the SBR,
GR and TR rules) will be abbreviated by "f"" (respectively "s", "g" and "t");
consequently, combining the FBR, and SBR, will be referred as "fs". The combi-
nations of rule "g" with "s" or "f" are not present as "g" generalizes these rules:
every branch pruned by one of them is also pruned by "g".

In order to evaluate the performance of different combined rules, we present in
this section the experiments on both artificial and real world data using different

settings of our algorithm.

5.1 Artificial data with uniform distributions

We consider here points drawn in a space of dimension n ranging from 5 to 30.
The algorithms are compared with a growing number of prototypes. The size
of the prototype sets ranged from 2,000 prototypes to 30,000 in steps of 4, 000.
Each experiment measures the average distance computations of 10, 000 searches
(1,000 searches over 10 different prototype sets). The samples are drawn from
the same distribution.



Algorithm 1: CPR(t,x)

Data: t: a node tree; x: a sample point;

Result: nn: the nearest neighbor prototype; dmin: the distance to nn;
1 if ¢ is not a leaf then

2 r =right_child(t); £ = left child(t);

3 if (SBR() || TR(¢) ) then

4 if (no FNR(r)) €6 (no TR(r)) then

5 CPR(r,z) /* left (sibling) node has been pruned */;
6 end

7 Return /* ie prune both */ ;

8 end

o  dp=d(x,M);  do=d(z, M);

10 update dmin and nn;

11 if Activated(GR) then

12 if d; < d, then

13 if (no GR(¢) ) then CPR({, x);

14 if (no GR(r) ) then CPR(r,z);

15 else

16 if (no GR(r)) then CPR(r,z);

17 if (no GR(¢)) then CPR({,z);

18 end

19 else

20 if d;, < d, then

21 if (no FNR(C)) &6 (no SBR(f)) then CPR(/, z);
22 if (no FNR(r)) €6 (no SBR(r)) then CPR(r,z);
23 else

24 if (no FNR(r)) €6 (no SBR(r)) then CPR(r,z);
25 if (no FNR(C)) &€ (no SBR(f)) then CPR(/, z);
26 end

27 end

28 end

Figure 3a shows the average number of distance computations in a 10-dimensional
space following a uniform distribution. Standard deviation of measures is not
included as it is almost negligible. As it can be seen, both sat and muvp are out-
performed by the other pruning rules. Although the table rule also outperforms
the FNR and GR ones, it is worth mentioning that these methods have a space
consumption smaller than the table rule. In the case of small space capabilities,
these methods should be preferred. Considering the classic FNA algorithm as a
reference, we observe that GR and TR rules outperform the original rule, namely
FNR. Moreover, it appears that combining the table rule, with either the sibling
or generalized rule, does not perform better than combining the FNR and the
table rule. This is important as the FNR rule has an effective computational
cost smaller than the generalized rule. Furthermore, since the "g" rule also gen-
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Fig. 3: Comparison of different pruning rules combinations with sat and muvp algorithms

eralizes the sibling rule, the combination of "fst" does not perform better than
"fg"' as expected.

Another classic problem to address is the curse of dimensionality®. It ex-
presses the fact that the volume of the unit hypercube increases exponentially
with the dimension of the space. In other words, the points tend to be at the
same distance one to each other in great dimensions. In our setting, this will
obviously prevent a large number of prunings: the algorithm will tend to behave
like the brute force algorithm as the dimension increases. This algorithmic limi-
tation is not a real problem since looking for a nearest neighbor does not make
sense in a space where the distances between each pair of points are similar.

Figure 3b addresses a comparative analysis of the behavior of the methods
as the dimension increases. The number of prototype is set to 11,000 points and
the dimensionality ranges from 2 to 30. It can be observed here that the TR
rule is less sensible to the dimensionality than the other methods. Moreover, as
before, combining the TR rule with the FNR one still performs better than the
other combinations: at dimension 25, the "ft" combination is able to save 20%
of distance computations while the other methods compute all the distances, as
the exhaustive search.

Two more experiments were performed: first, in order to show the differences
when a best-first strategy is used instead of a depth-first strategy. In Figure 4a
one can see that similar results are obtained, for this reason, only depth-first
strategy is used in this work. Second, as well as the distance computations, the
percentage of the database examined is analyzed for all the methods. Results can
be seen in Figure 4b. As in the case of distance computations, the CPR method
also reduces the overhead of the search visiting on average less nodes (or points
in the data set).

% The curse of dimensionality is usually considered in Euclidean spaces.
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5.2 Real world data

To show the performance of the algorithms with real data, some tests were con-
ducted on a spelling task. For these experiments, a database of 69,069 words of
an English dictionary was used %. The input test of the speller was simulated
distorting the words by means of random insertion, deletion and substitution op-
erations over the words in the original dictionary. The Levenshtein distance [15]
was used to compare the words. Dictionaries of increasing size (from 2,000 to
30,000) were obtained by extracting randomly words of the whole dictionary.
Test points were obtained distorting the words in the training set. For each ex-
periment, 1000 distorted words were generated and used as test set. To obtain
reliable results, the experiments were repeated 10 times. The averages are showed
on the plots.

The experiment performed in Figure 3a for artificial data (average number
of distance computations using increasing size prototype sets) was repeated in
the spelling task. Results are shown in Figure 5. The experiments show a reduc-
tion in the number of distance computations around 20% when the SBR rule is
combined with the FNR, and around 40% for generalized rule with respect to
the reference FNR rule. Moreover, when combining both the “f” and “t” rules
(with or without the “g” rule), the resulting combination clearly outperforms the
other combinations, as it happens with other kinds of data, saving 60% of the
average number of distance computations.

6 Conclusions and further works

A new algorithm has been defined to optimize the combination of several pruning
rules using the FNA tree-based search algorithm. When the rules are applied

% here again the databases are taken from the SISAP repository
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alone, reductions between 20% and 60% are obtained for low dimensions and
this reduction decreases with the dimensionality (a normal behavior since the
problem is getting harder with increasing dimensionalities) when comparing with
the baseline FNR rule. When the rules are combined, more reductions in the
average number of distance computations and in the overhead of the methods
(measured as the average number of visited nodes or points), in particular can be
observed (e.g. roughly 80% reduction in a 10-dimensional space). Similar results
are also obtained on a real world task (namely a spelling task).

We are currently studying new pruning rules and combinations, and also how
to use them in dynamic tree structures. We think also that this algorithm can
be adapted with minor changes to other tree-based search methods not explored
in this work.
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