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t. A 
ommon a
tivity in many pattern re
ognition tasks, im-age pro
essing or 
lustering te
hniques involves sear
hing a labeled dataset looking for the nearest point to a given unlabelled sample. To re-du
e the 
omputational overhead when the naive exhaustive sear
h isapplied, some fast nearest neighbor sear
h (NNS) algorithms have ap-peared in the last years. Depending on the stru
ture used to store thetraining set (usually a tree), di�erent strategies to speed up the sear
hhave been de�ned. In this paper, a new algorithm based on the 
ombina-tion of di�erent pruning rules is proposed. An experimental evaluationand 
omparison of its behavior with respe
t to other te
hniques has beenperformed, using both real and arti�
ial data.1 Introdu
tionNearest Neighbor Sear
h (NNS) is an important te
hnique in a variety of appli-
ations in
luding pattern re
ognition [6℄, vision [13℄, or data mining [1, 5℄. Thesete
hniques aim at �nding the obje
t of a set nearest to a given test obje
t, usinga distan
e fun
tion [6℄. The use of a simple brute-for
e method is sometimes abottlene
k due to the large number of distan
es that should be 
omputed and/ortheir 
omputational e�ort. In this work we have 
onsidered the 
omputationalproblem of �nding nearest neighbors in general metri
 spa
es. Spa
es that maynot be 
onveniently embedded or approximated in an Eu
lidean spa
e are of par-ti
ular interest. Many te
hniques have been proposed for using di�erent types ofstru
tures (vp-tree [16℄, GNAT [3℄, sa-tree [10℄, AESA [14℄, M-tree [4℄): the tree-based te
hniques are nevertheless more popular. The Fukunaga and Narendraalgorithm (FNA [7℄) is one of the �rst known tree-based example of this typeof te
hniques. It prunes the traversal of the tree by taking advantage, as theaforementioned methods, of the triangular inequality of the distan
e betweenthe prototypes. This sets up a general framework for designing and evaluatingnew pruning rules, as stated in [9℄.



In this paper we study the 
ombination of di�erent pruning rules: re
enttable rule [12℄, a rule that is based on information stored in the sibling node (thesibling rule [9℄), the original rule from the FNA (Fukunaga and Narendra rule,FNR), and a generalization of both the sibling rule and the FNR one [9℄. Weend up with a new algorithm for 
ombining the rules that signi�
antly redu
esthe number of distan
e 
omputations.The algorithm is evaluated on both arti�
ial and real world data and 
om-pared with state-of-the-art methods.The paper is organized as follows: we will �rst re
all the FNA algorithm andde�ne the general framework of the new algorithm (in parti
ular how the tree isbuilt). We then review the di�erent rules we aim at 
ombining (se
tion 3). Wethen propose our new algorithm (se
tion 4). Se
tions 5 presents the experimental
omparison.2 The basi
 algorithmThe FNA is a fast tree-based sear
h method that 
an work in general metri
spa
es. In the original FNA the c-means algorithm was used to de�ne the parti-tion of the data. In the work by Gómez-Ballester et al [8℄ many strategies wereexplored: the best one, namely the Most Distant from the Father tree (MDF),in whi
h the representative of the left node is the same as the representative ofits father, is the strategy used in the experiments presented in this work. Thus,ea
h time when an expansion of the node is ne
essary, only one new distan
eneeds to be 
omputed (instead of two), hen
e redu
ing the number of distan
es
omputed. This strategy was also su

essfully used by Noltomeier et al [11℄ inthe 
ontext of bise
tor trees.In the MDF tree ea
h leaf stores a point of the sear
h spa
e. The informationstored in ea
h node t is St, the set of points stored in the leaves of t sub-tree, Mt(the representative of St) and the radius of St, Rt = argmaxx∈St
d(Mt, x). Figure1 shows a partition of the data in a 2-dimensional unit hyper
ube. The root nodewill be asso
iated with all the points of the set. The left node will represent allthe points that belong to the hyperplane under the segment [(0, 0.95) ; (0.65,0)℄;the right node will be asso
iated with the other points. A

ording to the MDFstrategy, the representative of the right node (Mr) is the same as the father, andthe representative of the left node (Mℓ) is the most distant point to Mr. Thespa
e is then re
ursively partitioned.3 A review of pruning rulesFukunaga and Narendra Rule (FNR)The pruning rule de�ned by Fukunaga and Narendra for internal nodes makesuse of the information in the node t to be pruned (with representative Mt andradius Rt) and the hyperspheri
al surfa
e 
entered in the sample point x withradius d(x, nn), where nn is 
urrent nearest prototype. To apply this rule it is
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h node indi�erent levels are drawn as rings.ne
esary to 
ompute the distan
e from the test sample to the representative of
andidate node that aim to be eliminated. Figure 2a presents a graphi
al viewof the Fukunaga and Narendra rule.Rule: No y ∈ St 
an be the nearest neighbor to x if d(x, nn)+Rt < d(x, Mt)The Sibling Based Rule (SBR)Given two sibling nodes r and ℓ, this rule requires that ea
h node r stores thedistan
e d(Mr, eℓ), that is the distan
e between the representative of the node,
Mr, and the nearest point, eℓ, in the sibling node ℓ (Sℓ). Figure 2b presents agraphi
al view of the Sibling based rule.Rule: No y ∈ Sℓ 
an be the nearest neighbor to x if d(Mr, x) + d(x, nn) <

d(Mr, eℓ).Unlike the FNR, SBR 
an be applied to eliminate node ℓ without 
omputing
d(Mℓ, x), avoiding some extra distan
e 
omputations at sear
h time.Generalized rule (GR)This rule is an iterated 
ombination of the FNR and the SBR (due to spa
e
onstraints we refer the reader to [9℄ for details on the generalized rule). In GR,the distan
e to the representative of a given node is needed to know if the node
an be pruned or not.
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al view of SBR rule.The table rule (TR)This re
ent rule [12℄ prunes the tree by taking the 
urrent nearest neighbor as areferen
e. In order to do so, a new distan
e should be de�ned:De�nition. Given a prototype or sample point p, the distan
e between p toa set of prototypes S is de�ned as
d(p, S) = min

y∈S
d(p, y)At pre-pro
ess time, the distan
es from ea
h prototype to ea
h prototype setof ea
h node t, St, in the tree are 
omputed and stored in a table, allowing a
onstant time pruning. Note that the size of this table is quadrati
 in the numberof prototypes sin
e, as the tree is binary, the number of nodes is two times thenumber of prototypes.
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Fig. 2: Table rule and node St: situation where it 
an be pruned (up) and where it
annot (down)Rule: No y ∈ St 
an be the nearest neighbor to x if 2d(nn, x) < d(nn, St).Figure 2 presents a graphi
al view of the table rule. Note that this rule 
anbe used before 
omputing the distan
e to the node that will be explored.



4 CPR: Combining Pruning Rules algorithmIn Algorithm 1 an e�
ient 
ombination of pruning rules is proposed. Note that,as the GR generalizes both the FNR and the SBR, these two rules are not appliedwhile the generalized one is a
tivated (lines 11-19). When the MDF method isused to build the tree, it is important to note that ea
h time a node is expanded,only one of the representatives is new (the left node), while the other (right)is the same as the father node (in this 
ase, only the radius of the node 
an
hange). For this reason, in this 
ase the distan
e dr = d(x, Mr) in line 9 isnever 
omputed (as it is already known). Then, when a node is examined duringthe sear
h, every pruning that 
an be applied without 
omputing a new distan
eis applied (lines 3 to 8). If none of these rules is able to prune, the distan
e to the
urrent node is 
omputed (line 9). The pruning rules that use the new distan
eare then applied (lines 11 to 28).5 ExperimentsWe have performed some experiments in order to 
ompare our algorithm withsome state of the art methods. The �rst method, the multi-vantage-point tree(mvp), is a balan
ed tree requiring linear spa
e where the arity 
an be extendedand multiple pivots per node 
an be applied [2℄. The se
ond method is the Spa-tial Approximation Tree (sat), whose stru
ture uses a graph based on Delaunaytriangulation and it does not depend on any parameter [10℄. The 
ode of thesealgorithms 
omes from the SISAP library (www.sisap.org). We applied the mvpwith only one pivot by node, a bu
ket size of 1 and an arity of 2 as this settingleads to better performan
es a

ording to preliminary experiments on these datasets. All the experiments were performed on a Linux box with 16GB of memory.From now and only for the graphs, the FNR rule (and respe
tively the SBR,GR and TR rules) will be abbreviated by "f" (respe
tively "s", "g" and "t");
onsequently, 
ombining the FBR and SBR will be referred as "fs". The 
ombi-nations of rule "g" with "s" or "f" are not present as "g" generalizes these rules:every bran
h pruned by one of them is also pruned by "g".In order to evaluate the performan
e of di�erent 
ombined rules, we present inthis se
tion the experiments on both arti�
ial and real world data using di�erentsettings of our algorithm.5.1 Arti�
ial data with uniform distributionsWe 
onsider here points drawn in a spa
e of dimension n ranging from 5 to 30.The algorithms are 
ompared with a growing number of prototypes. The sizeof the prototype sets ranged from 2, 000 prototypes to 30, 000 in steps of 4, 000.Ea
h experiment measures the average distan
e 
omputations of 10, 000 sear
hes(1, 000 sear
hes over 10 di�erent prototype sets). The samples are drawn fromthe same distribution.



Algorithm 1: CPR(t,x)Data: t: a node tree; x: a sample point;Result: nn: the nearest neighbor prototype; dmin: the distan
e to nn;if t is not a leaf then1
r = right_child(t); ℓ = left_child(t);2 if ( SBR(ℓ) || TR(ℓ) ) then3 if (no FNR(r)) && (no TR(r)) then4 CPR(r, x) /* left (sibling) node has been pruned */;5 end6 Return /* ie prune both */ ;7 end8
dr = d(x,Mr) ; dℓ = d(x,Mℓ);9 update dmin and nn;10 if A
tivated(GR) then11 if dℓ < dr then12 if ( no GR(ℓ) ) then CPR(ℓ, x);13 if ( no GR(r) ) then CPR(r, x);14 else15 if (no GR(r)) then CPR(r, x);16 if (no GR(ℓ)) then CPR(ℓ, x);17 end18 else19 if dℓ < dr then20 if (no FNR(ℓ)) && (no SBR(ℓ)) then CPR(ℓ, x);21 if (no FNR(r)) && (no SBR(r)) then CPR(r, x);22 else23 if (no FNR(r)) && (no SBR(r)) then CPR(r, x);24 if (no FNR(ℓ)) && (no SBR(ℓ)) then CPR(ℓ, x);25 end26 end27 end28

Figure 3a shows the average number of distan
e 
omputations in a 10-dimensionalspa
e following a uniform distribution. Standard deviation of measures is notin
luded as it is almost negligible. As it 
an be seen, both sat and mvp are out-performed by the other pruning rules. Although the table rule also outperformsthe FNR and GR ones, it is worth mentioning that these methods have a spa
e
onsumption smaller than the table rule. In the 
ase of small spa
e 
apabilities,these methods should be preferred. Considering the 
lassi
 FNA algorithm as areferen
e, we observe that GR and TR rules outperform the original rule, namelyFNR. Moreover, it appears that 
ombining the table rule, with either the siblingor generalized rule, does not perform better than 
ombining the FNR and thetable rule. This is important as the FNR rule has an e�e
tive 
omputational
ost smaller than the generalized rule. Furthermore, sin
e the "g" rule also gen-
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e 
omputations w.r.t dimen-sionality.Fig. 3: Comparison of di�erent pruning rules 
ombinations with sat andmvp algorithmseralizes the sibling rule, the 
ombination of "fst" does not perform better than"fg", as expe
ted.Another 
lassi
 problem to address is the 
urse of dimensionality3 . It ex-presses the fa
t that the volume of the unit hyper
ube in
reases exponentiallywith the dimension of the spa
e. In other words, the points tend to be at thesame distan
e one to ea
h other in great dimensions. In our setting, this willobviously prevent a large number of prunings: the algorithm will tend to behavelike the brute for
e algorithm as the dimension in
reases. This algorithmi
 limi-tation is not a real problem sin
e looking for a nearest neighbor does not makesense in a spa
e where the distan
es between ea
h pair of points are similar.Figure 3b addresses a 
omparative analysis of the behavior of the methodsas the dimension in
reases. The number of prototype is set to 11, 000 points andthe dimensionality ranges from 2 to 30. It 
an be observed here that the TRrule is less sensible to the dimensionality than the other methods. Moreover, asbefore, 
ombining the TR rule with the FNR one still performs better than theother 
ombinations: at dimension 25, the "ft" 
ombination is able to save 20%of distan
e 
omputations while the other methods 
ompute all the distan
es, asthe exhaustive sear
h.Two more experiments were performed: �rst, in order to show the di�eren
eswhen a best-�rst strategy is used instead of a depth-�rst strategy. In Figure 4aone 
an see that similar results are obtained, for this reason, only depth-�rststrategy is used in this work. Se
ond, as well as the distan
e 
omputations, theper
entage of the database examined is analyzed for all the methods. Results 
anbe seen in Figure 4b. As in the 
ase of distan
e 
omputations, the CPR methodalso redu
es the overhead of the sear
h visiting on average less nodes (or pointsin the data set).3 The 
urse of dimensionality is usually 
onsidered in Eu
lidean spa
es.



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2000  4000  6000  8000  10000

V
i
s
i
t
e
d
 
n
o
d
e
s

Training set

dim 10

dim 20

dfd10
bfd10
dfd20
bfd20

(a) Best-�rst (bf) versus depth-�rst (df)strategies in 10 and 20 dimensional spa
es.  0

 1000

 2000

 3000

 4000

 5000

 2000  4000  6000  8000  10000

Training set

dim 10

sat

mvp

ft(b) Visited nodes w.r.t. training set size.Fig. 4: Average number of visited nodes during the sear
h for the best pruning rule
ombination, di�erent sear
h strategies and sat and mvp algorithms.5.2 Real world dataTo show the performan
e of the algorithms with real data, some tests were 
on-du
ted on a spelling task. For these experiments, a database of 69, 069 words ofan English di
tionary was used 4. The input test of the speller was simulateddistorting the words by means of random insertion, deletion and substitution op-erations over the words in the original di
tionary. The Levenshtein distan
e [15℄was used to 
ompare the words. Di
tionaries of in
reasing size (from 2, 000 to
30, 000) were obtained by extra
ting randomly words of the whole di
tionary.Test points were obtained distorting the words in the training set. For ea
h ex-periment, 1000 distorted words were generated and used as test set. To obtainreliable results, the experiments were repeated 10 times. The averages are showedon the plots.The experiment performed in Figure 3a for arti�
ial data (average numberof distan
e 
omputations using in
reasing size prototype sets) was repeated inthe spelling task. Results are shown in Figure 5. The experiments show a redu
-tion in the number of distan
e 
omputations around 20% when the SBR rule is
ombined with the FNR, and around 40% for generalized rule with respe
t tothe referen
e FNR rule. Moreover, when 
ombining both the �f� and �t� rules(with or without the �g� rule), the resulting 
ombination 
learly outperforms theother 
ombinations, as it happens with other kinds of data, saving 60% of theaverage number of distan
e 
omputations.6 Con
lusions and further worksA new algorithm has been de�ned to optimize the 
ombination of several pruningrules using the FNA tree-based sear
h algorithm. When the rules are applied4 here again the databases are taken from the SISAP repository
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Fig. 5: Pruning rules 
ombined in a spelling task in relation to others methods.alone, redu
tions between 20% and 60% are obtained for low dimensions andthis redu
tion de
reases with the dimensionality (a normal behavior sin
e theproblem is getting harder with in
reasing dimensionalities) when 
omparing withthe baseline FNR rule. When the rules are 
ombined, more redu
tions in theaverage number of distan
e 
omputations and in the overhead of the methods(measured as the average number of visited nodes or points), in parti
ular 
an beobserved (e.g. roughly 80% redu
tion in a 10-dimensional spa
e). Similar resultsare also obtained on a real world task (namely a spelling task).We are 
urrently studying new pruning rules and 
ombinations, and also howto use them in dynami
 tree stru
tures. We think also that this algorithm 
anbe adapted with minor 
hanges to other tree-based sear
h methods not exploredin this work.7 A
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