
HAL Id: ujm-00109696
https://ujm.hal.science/ujm-00109696

Submitted on 16 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Stochastic Tree Edit Distance
Marc Bernard, Amaury Habrard, Marc Sebban

To cite this version:
Marc Bernard, Amaury Habrard, Marc Sebban. Learning Stochastic Tree Edit Distance. 17th Euro-
pean Conference on Machine Learning, Sep 2006, Berlin, Germany. pp.42-53. �ujm-00109696�

https://ujm.hal.science/ujm-00109696
https://hal.archives-ouvertes.fr


Learning Stochastic Tree Edit Distance?

Marc Bernard1, Amaury Habrard2, Marc Sebban1

1 EURISE – Université Jean Monnet de Saint-Etienne
23, rue Paul Michelon – 42023 Saint-Etienne cedex 2 – France

{marc.bernard,marc.sebban}@univ-st-etienne.fr
2 LIF – Université de Provence

39, rue Frédéric Joliot Curie – 13453 Marseille cedex 13 – France
{amaury.habrard}@lif.univ-mrs.fr

Abstract. Trees provide a suited structural representation to deal with
complex tasks such as web information extraction, RNA secondary struc-
ture prediction, or conversion of tree structured documents. In this con-
text, many applications require the calculation of similarities between
tree pairs. The most studied distance is likely the tree edit distance
(ED) for which improvements in terms of complexity have been achieved
during the last decade. However, this classic ED usually uses a priori

fixed edit costs which are often difficult to tune, that leaves little room
for tackling complex problems. In this paper, we focus on the learn-
ing of a stochastic tree ED. We use an adaptation of the Expectation-
Maximization algorithm for learning the primitive edit costs. We carried
out series of experiments that confirm the interest to learn a tree ED
rather than a priori imposing edit costs.
Keywords. Stochastic tree edit distance, EM algorithm, generative
models, discriminative models.

1 Introduction

Nowadays, there is a growing interest for tree-structured data due to the poten-
tial applications in information extraction from the web, computational biology
or phylogeny. Indeed, the hierarchical structure of trees is more suited for mod-
eling web pages (XML, HTML), the RNA secondary structure of a molecule or
phylogenetic trees than a flat representation such as strings. In applications, one
often needs similarity measures to compare two different instances. This is, for
example, useful for defining conversion models for dealing with heterogeneous
XML data. In this context, many approaches have extended the well known
string edit distance (ED) to trees [1].

The tree ED is usually defined as the less costly set of basic operations
to change one tree to another. These primitive operations are constituted of the
substitution, the deletion and the insertion of a node. The tree ED-based methods
use, in general, a priori fixed costs for these so-called primitive edit operations.
However, in many domains, an edit cost can highly depend on the nature of the

? This work is part of the ongoing ARA Marmota research project



2 M. Bernard, A. Habrard, and M. Sebban

<P> <UL> <P>

<BODY>

<HTML>

<LI> <LI>

<BODY>

<HTML>

<P><P>

(a) (b) (c)

<P> <P>

<BODY>

<HTML>

<LI> <LI>

Fig. 1. Strategies to delete of a node within a tree.

symbols handled in a given operation. For example, the probability of changing
a given symbol in a RNA structure depends on the probability that a genetic
mutation occurs on this symbol. Thus, the similarity of two trees can strongly
vary according to the specific domain in consideration. A solution could consist
in assigning costs according to an expert valuation. However, this strategy may
not be efficiently done in domains where the expertise is low. Moreover, even if
the expertise level is sufficient, assigning a relevant cost to each edit operation
can become a tricky task. Another way to overcome this drawback is to learn
the edit costs from a sample of tree pairs. This can be achieved by modeling an
ED as a stochastic process and using probabilistic methods to learn the model.

Note that in the context of strings, several approaches have been proposed
during the last decade to learn a stochastic ED in the form of stochastic trans-
ducers [2, 3], conditional random fields [4], or pair-Hidden-Markov-Models (pair-
HMM) [5]. A parametric approach has been presented in [6] in the context of
graph ED, where each edit operation is modeled by a Gaussian Mixture Density.
Nevertheless, as far as we know, no method was proposed to directly learn edit
costs for a stochastic tree edit distance. The aim of this paper is to fill this gap
by a stochastic method specifically adapted to trees.

As we said before, the primitive edit operations for the standard tree ED are
the substitution, insertion and deletion of a node. The most efficient procedures
proposed notably by Shasha et al. [7] and Klein [8] have a polynomial complexity
of order 4. In these approaches, when a node r is deleted within a tree, all its
children are then connected to the father of r. This may be not relevant in
some cases, for example in an HTML document: considering a set of items in an
unordered list (see Fig. 1.a), it seems clearly irrelevant to delete the <UL> node
without deleting the <LI> items (Fig. 1.b). Thus, to overcome this drawback
and to also reduce the algorithmic complexity, we decided to use the less costly
(with a quadratic complexity) tree ED, initially proposed by Selkow [9], as a base
of our stochastic approach3. In this case, only a deletion of an entire (sub)tree
can occur, and its removal implies the deletion of all its nodes from the leaves
(Fig. 1.c). Note that the insertion of a (sub)tree follows the same principle, i.e.

requires the iterative insertion of its nodes.

3 Note that our learning method can be adapted to any other tree ED.



Learning Stochastic Tree Edit Distance 3

We propose in this paper two approaches for learning, from a sample of (in-

put,output) pairs of trees, the costs used for computing a stochastic tree ED.
First, we learn a generative model in the form of a joint distribution over tree
pairs inspired by [2] in the case of strings. The advantage of such generative
models is to provide an estimate of the unknown joint density with a small vari-
ance. However, it has an important drawback: the estimate is biased because it
depends on the distribution of the input trees. In other words, this generative
model will work if the distribution over the learning input trees follows the un-
known underlying density of the input trees. This constraint justifies our second
approach based on the learning of a discriminative model in the form of a con-
ditional distribution. This type of models is known [10] to provide an unbiased
estimate (despite a higher variance). We will show that such a strategy will work
whatever the input distribution we use.

The rest of the paper is organized as follows: After some notations and def-
initions about the classic tree ED in Section 2, our two learning methods are
presented in Section 3. They are based on an adaptation of the well-known
Expectation-Maximization algorithm (EM) [11]. In Section 4, we carry out sev-
eral series of experiments before concluding.

2 Tree ED

After some notations and definitions about trees, we present the main edit oper-
ations allowing us to change a tree into another one. Then, we describe a usual
breadth-first-scanning-based approach for computing the ED.

2.1 Notations and definitions

We assume we handle ordered labeled trees of arbitrary arity. There is a left-to-
right order among siblings of a tree and trees are labeled with elements of a set
L of labels. We denote T (L) the set of all labeled trees buildable from L.

Definition 1. Let V be a set of nodes. We inductively define trees as follows: a

node is a tree, and given T trees a1, . . . , aT and a node v ∈ V , v(a1, . . . , aT ) is

a tree. v is the root of v(a1, . . . , aT ), and a1, . . . , aT are subtrees.

Definition 2. Let L be a set of labels, and let λ 6∈ L be the empty label. Let

φ : V → L be a labeling function. v(a1, . . . , aT ) is a labeled tree if its nodes are

labeled according to φ. Assuming that φ(v) is equal to a given label l ∈ L, for

convenience, we will also denote the labeled tree v(a1, . . . , aT ) by l(a1, . . . , aT ).

2.2 Edit operations and edit cost functions

We are only concerned by three possible edit operations on trees: deletion of
a subtree ai (denoted (ai, λ)), insertion of a subtree aj (denoted (λ, aj)), and
substitution of the label l of a tree root by l′ (denoted (l, l′)) (see Fig. 2). Let



4 M. Bernard, A. Habrard, and M. Sebban

(b)

(c)

(a) a1a1

a1 a1

a1a1

aTaT

aT aT

aTaT

aj

l l

ll

l l′

ai ai

ai ai−1ai−1

ai+1 ai+1

ai+1ai+1

Fig. 2. (a) Substitution of l by l′ (b) Deletion of ai (c) Insertion of aj

us define a cost function δt over these previous edit operations. Since a deletion
or an insertion of a tree are respectively achieved by iteratively removing or
inserting a set of nodes, δt can be directly defined from a cost function δ of edit
operations on labels of the nodes. More formally, δ is a function defined from
(L ∪ {λ}) × (L ∪ {λ})\{(λ, λ)} to [0, 1].

The cost of the deletion of a tree can then be recursively computed as follows:
δt(l(a1, . . . , aT ), λ) = δ(l, λ)+

∑T
i=1 δt(ai, λ). As we said in introduction, the cost

matrix δ is usually a priori fixed. For example, consider the cost matrix δ of Fig. 3
and a given tree b(c, d), then δt(b(c, d), λ) = δ(b, λ)+δt(c, λ)+δt(d, λ) = δ(b, λ)+
δ(c, λ)+δ(d, λ) = 1.5. Based on the same principle, the insertion of a tree requires

successive insertions of its nodes: δt(λ, l′(b1, . . . , bV )) = δ(λ, l′) +
∑V

j=1 δt(λ, bj).
Finally, the substitution of two labels is defined as follows: δt(l, l

′) = δ(l, l′).

2.3 Classic tree ED algorithms

Once the cost function δt is established, it is possible to define a tree ED based
on the following notion of edit script.

Definition 3. Let a1 and a2 be two trees, an edit script on a1 and a2 is a

sequence of edit operations changing a1 into a2. The cost of an edit script is the

sum of the costs of its edit operations.

Note that several scripts can exist (as shown in Fig. 3).

Definition 4. The tree ED between two trees is the cost of the minimum cost

edit script.



Learning Stochastic Tree Edit Distance 5

δ λ a b c d

λ − 0.5 0.5 0.5 0.5
a 0.5 0 1 1 1
b 0.5 1 0 1 1
c 0.5 1 1 0 1
d 0.5 1 1 1 0 a1

a2

aa aa

aa a

a

a

a

a a

aa

aa

a

a

a

a

aa

a

b b

b

b b
b

b
b

b

b
bbb

b

b

b

b

b

b

c

cc

c

c

d

d

d

δt(c(a, b(c)), λ) = 2 δt(d, b) = 1
δt(λ, c) = 0.5

δt(c, λ) = 0.5

δt(d(a, b), λ) = 1.5
δt(c, b) = 1

δt(c, λ) = 2

Fig. 3. A matrix δ and two possible edit scripts on two given trees a1 and a2.

The tree ED d(l(a1, . . . , aT ), l′(b1, . . . , bV )) between two trees l(a1, . . . , aT )
and l′(b1, . . . , bV ) as described in [9] can be recursively computed as follows:

d(λ, λ) = 0

d(l(a1, . . . , aT ), λ) = δt(l(a1, . . . , aT ), λ)

d(λ, l
′(b1, . . . , bV )) = δt(λ, l

′(b1, . . . , bV ))

d(l(a1, . . . , aT ), l′(b1, . . . , bV )) = δ(l, l′) + d
′(a1, . . . , aT : b1, . . . , bV )

where d′ is defined as follows:

d
′(λ : λ) = 0

d
′(a1, . . . , aT : λ) = d

′(a1, . . . , aT−1 : λ) + δt(aT , λ)

d
′(λ : b1, . . . , bV ) = d

′(λ : b1, . . . , bV −1) + δt(λ, bV )

d
′(a1, . . . , aT : b1, . . . , bV ) = min

8

<

:

d′(a1, . . . , aT−1 : b1, . . . , bV ) + δt(aT , λ)
d′(a1, . . . , aT : b1, . . . , bV −1) + δt(λ, bV )
d′(a1, . . . , aT−1 : b1, . . . , bV −1) + d(aT , bV )

This distance can be efficiently computed using dynamic programming. In
the next section, we show how it is possible to automatically learn the matrix δ

from a corpus of tree pairs. Our stochastic approach is based on an adaptation of
the well known EM algorithm [11]. EM aims at estimating the hidden parameters
of a probabilistic model from a learning sample. In our case, these parameters
are the costs of the matrix δ. In the following, the densities (joint or conditional)
will be denoted with a subscript δ when they will be estimated from δ.

3 Learning tree ED

We propose in the following two ways of learning a stochastic edit distance be-
tween two trees l(a1, . . . , aT ) and l′(b1, . . . , bV ). The first one concerns a gener-

ative model based on the estimation pδ(l(a1, . . . , aT ), l′(b1, . . . , bV )) of the un-
known joint probability p(l(a1, . . . , aT ), l′(b1, . . . , bV )). The second proposition,
a so-called discriminative approach, aims at learning a stochastic ED from the
estimated conditional distribution pδ(l

′(b1, . . . , bV )|l(a1, . . . , aT )). The main dif-
ference between the two approaches occurs during the maximization step of EM.



6 M. Bernard, A. Habrard, and M. Sebban

Input: Two trees l(a1, . . . , ai) and l′(b1, . . . , bj), 1 ≤ i ≤ T and 1 ≤ j ≤ V

Output: Probability of pair (l(a1, . . . , ai), l′(b1, . . . , bj))

α[0..T, 0..V ] a (T + 1)× (V + 1) matrix; α[0, 0]← δ(l, l′)
for t = 0 to i do

for v = 0 to j do

if (t > 0) or (v > 0) then α[t, v]← 0
if (t > 0) then α[t, v]← α[t, v] + α(at, λ)× α[t − 1, v]
if (v > 0) then α[t, v]← α[t, v] + α(λ, bv)× α[t, v − 1]
if (t > 0) and (v > 0) then α[t, v]← α[t, v] + α(at, bv)× α[t− 1, v− 1]

return α[i][j]

Algorithm 1: α(l(a1, . . . , ai), l
′(b1, . . . , bj))

3.1 Joint tree ED

A stochastic ED supposes that edit operations occur according to an unknown
random process. We aim at learning the underlying probability distribution
δ(l, l′) of these edit operations in order to estimate a joint probability distribu-
tion pδ(l(a1, . . . , aT ), l′(b1, . . . , bV )) over tree pairs. We can show that this joint
density will be valid if the following condition is fulfilled over the edit costs:

∑

(l,l′)∈(L∪{λ})2

δ(l, l′) = 1 and δ(l, l′) ≥ 0 (1)

The joint probability represents the contribution of all ways to generate the two
trees. pδ(l(a1, . . . , aT ), l′(b1, . . . , bV )) is sufficient to model the stochastic ED de-
fined as ds(l(a1, . . . , aT ), l′(b1, . . . , bV )) = − log pδ(l(a1, . . . , aT ), l′(b1, . . . , bV )).

To learn the matrix δ and then compute this joint probability pδ(l(a1, . . . , aT ),
l′(b1, . . . , bV )), we use an adaptation of the EM algorithm. Let us recall that EM
achieves an expectation step followed by a maximization stage. During the first
step, EM accumulates the expectation of each hidden event (edit operation) on
the training corpus. In the maximization step, EM sets the parameter values
(edit costs) to their relative expectations on the learning sample. To compute
the joint probability, EM uses two auxiliary functions, so-called forward (α) and
backward (β).

To learn a stochastic tree ED, we adapted EM in the context of trees. The
new forward function α is described in Algorithm 1, whereas the new backward
function β is presented in Algorithm 2.

These two functions are composed of two recursions: a breadth-first recursion
on the children of the considered node and a depth-first one on the subtrees of this
node. These two functions are symmetric. Although they process differently, they
provide the same estimate pδ(l(a1, . . . , aT ), l′(b1, . . . , bV )). Actually, the forward

function visits the roots first and then scans the children from left to right, while
the backward function processes from right to left and finally visits the roots of
the tree pair. Fig. 4 illustrates these two algorithms.



Learning Stochastic Tree Edit Distance 7

Input: Two trees l(ai, . . . , aT ) and l′(bj , . . . , bV ), 1 ≤ i ≤ T and 1 ≤ j ≤ V

Output: Probability of pair (l(ai, . . . , aT ),l′(bj , . . . , bV ))

β[0..T, 0..V ] a (T + 1) × (V + 1) matrix; β[T, V ]← 1
for t = T down to i− 1 do

for v = V down to j − 1 do

if (t < T ) or (v < V ) then β[t, v]← 0
if (t < T ) then β[t, v]← β[t, v] + β(at+1, λ)× β[t + 1, v]
if (v < V ) then β[t, v]← β[t, v] + β(λ, bv+1)× β[t, v + 1]
if (t < T ) and (v <)V then β[t, v] ← β[t, v] + β(at+1, bv+1) × β[t +
1, v + 1]

if i = 1 and j = 1 then return β[0][0] × δ(l, l′) else return β[i− 1][j − 1]

Algorithm 2: β(l(a1, . . . , ai), l
′(b1, . . . , bj))

(a) (b)

a1a1 at ataT aTb1 b1bv bvbV bV

ll l′l′

Fig. 4. (a) Evaluation of α(l(a1, . . . , at), l
′(b1, . . . , bv)) by the forward algorithm. (b)

Evaluation of β(l(at, . . . , aT ), l′(bv, . . . , bV )) by the backward algorithm.

Both functions can be computed with a quadratic complexity using dynamic
programming techniques and allow us to define a probability distribution over
pairs of trees:

∑

(ai,bj)∈(T (L))2

pδ(ai, bj) =
∑

(ai,bj)∈(T (L))2

α(ai, bj) =
∑

(ai,bj)∈(T (L))2

β(ai, bj) = 1

Let us present now the expectation and maximization steps for learning the
edit costs. During the expectation step, we store in an auxiliary matrix γ (|L|+
1)×(|L|+1) the expected number of times each edit operation was used to trans-
form a tree in another one from a learning tree pairs LS. We apply for each tree
pair (l(a1, . . . , aT ), l′(b1, . . . , bV )) ∈ LS the procedure expectation(l(a1, . . . , aT ),
l′(b1, . . . , bV )) described in Algorithm 3 (where lr(ai) denotes the label of the
root of ai). Note that this function uses the previously mentioned backward and
forward functions. Fig. 5 gives an illustration for evaluating a substitution.

The maximization step is crucial in the EM algorithm because it describes
the normalization of the expectations ensuring a convergence of the process
under constraints. The constraint to fulfill for learning a joint tree ED has been
described in Eq.1. Thus, the normalization step is here very simple and only
consists in dividing each expectation γ(l, l′) by the total accumulator TA =∑

l∈L∪{λ}

∑
l′∈L∪{λ} γ(l, l′). The resulting maximization algorithm is described



8 M. Bernard, A. Habrard, and M. Sebban

Input: Two trees l(a1, . . . , aT ) and l′(b1, . . . , bV )

for t from 0 to T do

for v from 0 to V do

if (t > 0) then

γ(lr(at), λ)← γ(lr(at), λ)+
α(l(a1,...,at−1),l′(b1,...,bv))α(at,λ)β(l(at+1,...,aT ),l′(bv+1,...,bV ))

α(l(a1,...,aT ),l′(b1,...,bV ))

expectation(at, λ)

if (v > 0) then

γ(λ, lr(bv))← γ(λ, lr(bv))+
α(l(a1,...,at),l

′(b1,...,bv−1))α(λ,bv)β(l(at+1,...,aT ),l′(bv+1,...,bV ))

α(l(a1,...,aT ),l′(b1,...,bV ))

expectation(λ, bv)

if (t > 0) and (v > 0) then

γ(lr(at), lr(bv))← γ(lr(at), lr(bv))+
α(l(a1,...,at−1),l′(b1,...,bv−1))α(at,bv)β(l(at+1,...,aT ),l′(bv+1,bV ))

α(l(a1,...,aT ),l′(b1,...,bV ))

expectation (at, bv)

Algorithm 3: expectation(l(a1, . . . , aT ), l′(b1, . . . , bV ))

a1 at−1

at+1at aT

b1 bv−1

bv+1bv bV

l l′

α(l(a1, . . . , at−1), l
′(b1, . . . , bv−1)) β(l(at+1, . . . , aT ), l′(bv+1, . . . , bV ))

α(at, bv)

Fig. 5. Use of the forward and backward functions to evaluate a substitution cost.

in Algorithm 4. By combining Algorithms 1,2,3,4, we can now draw the general
learning algorithm of a joint stochastic tree ED (see Algorithm 5). Note that
the process is repeated until convergence. This is reached when the probability
of each edit operation does not significantly change between two iterations.

Note that it is the normalization achieved in the maximization step that
allows us to learn a joint distribution pδ(l(a1, . . . , aT ), l′(b1, . . . , bV )). However,
in order to use such a model in a classification task (for example for converting
a structured document ai into another one bj), we would need a conditional
distribution pδ(bj |ai) rather than a joint one. Actually, in such a context, the
input tree is known and we are looking for the optimal corresponding output. A
simple solution would consist in computing pδ(bj |ai) from the joint distribution

such that pδ(bj |ai) =
pδ(ai,bj)

p(ai)
. However, this implies a dependence on the input

distribution p(ai), and thus can generate a bias.



Learning Stochastic Tree Edit Distance 9

Input: A matrix of accumulators γ

Output: A matrix of joint stochastic edit costs δ

TA← 0
foreach (l, l′) ∈ (L ∪ {λ})2 do TA← TA + γ(l, l′)

foreach (l, l′) ∈ (L ∪ {λ})2 do δ(l, l′)← γ(l,l′)
TA

Algorithm 4: maximization (for joint distribution)

Input: LS a learning set of tree pairs

repeat

foreach (l, l′) ∈ (L ∪ {λ})2 do γ(l, l′)← 0
foreach (l(a1, . . . , aT ), l′(b1, . . . , bV )) ∈ LS do

expectation(l(a1, . . . , aT ), l′(b1, . . . , bV ))

maximization(γ)

until convergence

Algorithm 5: expectation − maximization

One solution to overcome this drawback consists in directly learning a condi-
tional distribution, usually called a discriminative model. The advantage of this
approach is to remove the statistical bias of generative models. This is the goal
of the next section. We propose a new maximization step aiming at normalizing
the accumulators obtained after the expectation step such as to directly obtain
a conditional distribution pδ(bj |ai) at each stage of EM.

3.2 Learning conditional tree ED

To achieve this task, we have to draw the new constraints corresponding to
this conditional context pδ(bj |ai). In fact, it is possible to model the output
distribution conditionally to an input tree ai in the form of a non deterministic
probabilistic finite state automaton. Let us take a simple example to explain
the principle. We assume that the input tree a(b(b), a) is the one described in
Fig. 6(a). Since we use a breadth-first scanning for computing the ED, a(b(b), a)
can be rewritten in the form of the string “abab”. Thus, it is possible to model the
output distribution conditionally to the input tree in the form of the probabilistic
automaton of Fig. 6(b).

The cycles of each state correspond to the possible insertions before and
after the reading of an input symbol. The state with a double circle is a final
state and corresponds to the end of the reading of the input tree (which will
be characterized by the termination symbol #). In order to learn a statistical
distribution over the pairs of trees, it is easy to show that this automaton must
satisfy the following two conditions:



10 M. Bernard, A. Habrard, and M. Sebban

a

a

b

b

abab

(a)

0 1 2 3 #

a|λ

b|λ

λ|a
a|a

b|a

a|λ

b|λ

λ|b
a|b

b|b

a|λ

b|λ

λ|a
a|a

b|a

a|λ

b|λ

λ|b
a|b

b|b

a|λ

b|λ

(b)

Fig. 6. Output distribution conditionally to an input tree

1. First, probabilities of the outgoing transitions of each state must sum to 1:

∀l ∈ L,
∑

l′∈L∪{λ}

δ(l′|l) +
∑

l′∈L∪{λ}

δ(l′|λ) = 1 (2)

where δ(l′|l) is now the probability to generate the output symbol l′ condi-
tionally to the input symbol l.

2. Second, probabilities from the final state must also describe a distribution:

∑

l′∈L

δ(l′|λ) + δ(#) = 1. (3)

The optimal normalization under these new constraints is the solution of
an optimization problem as that of presented in Dempster et al. [11]. In the
following, we only provide in Algorithm 6 the normalization that fulfills these
constraints 2 and 3. Due to the lack of space, we do not provide here the proof
justifying this optimal solution, but the interested reader can find in [3] the
principle of this proof in the case of string pairs.

Input: A matrix of accumulators γ

Output: A matrix of conditional stochastic edit costs δ

N ←
P

l∈L∪{λ}

P

l′∈L∪{λ} γ(l, l′) ; N(λ)←
P

l′∈L γ(λ, l′)

foreach l ∈ L do N(l)←
P

l∈L∪{λ} γ(l, l′)

δ(λ|λ)← N−N(λ)
N

foreach (l, l′) ∈ (L ∪ {λ})2 do δ(l′|l)← γ(l,l′)
N(l)

N−N(λ)
N

foreach l ∈ L do δ(λ|l)← γ(l,λ)
N(l)

N−N(λ)
N

foreach l′ ∈ L do δ(l′|λ)← γ(λ,l′)
N

Algorithm 6: maximization (for conditional distribution)



Learning Stochastic Tree Edit Distance 11

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  100  200  300  400  500  600  700  800  900  1000

D
is

ta
nc

e

# tree pairs

marginal distribution
non marginal distribution

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

# tree pairs

marginal distribution
non marginal distribution 1
non marginal distribution 2

(b)

Fig. 7. Results of our experiments.

4 Experiments

We carried out experiments to assess the relevance of our two models of stochastic
ED to correctly estimate the parameters of a target model. If we are able to learn
this target, this will mean that a learned tree ED will always outperform a classic
tree ED with a priori hand-tuned costs. Actually, in the best case, the latters will
be those of the learned matrix δ. In other words, this means that our learning
algorithm will be efficient to deal with real-world applications.

The experimental setup is the following: First, we generate a target distribu-
tion defined by a theoretical matrix δ∗ (describing either a joint or a conditional
distribution). Then, we generate a sample of input trees according to a given
input distribution. To build a learning set LS of tree pairs, we assign to each
input instance an output tree. This one is generated using the input tree and
the edit operations described by the target distribution δ∗. Note that in real
world applications, such pairs would represent couples of similar instances (for
example, pairs of (noisy, unnoisy) trees).

The aim is to learn δ∗ from LS (constituted of a growing number of tree
pairs) using both of our generative and discriminative models. To assess the
effect of the input distribution on the learned model, we use different densities
to generate the input trees. The performance criterion we use is the normalized
distance between the target and the learned distributions.

In a first series of experiments, we focus on the generative model (i.e. a joint
one). In this case, we build two sets of input trees. The first one is obtained using
the marginal distribution of δ∗ which is defined as follows: ∀l ∈ L∪ {λ}, δ∗(l) =∑

l′∈L∪{λ} δ∗(l, l′). The second one is generated using a random distribution.

The chart of Fig.7(a) shows the results. As expected, the only one way to learn
the target requires to use its marginal distribution to generate the input trees.
The use of another (random) density leads to a bias, i.e. a large distance between
the target and the learned model.



12 M. Bernard, A. Habrard, and M. Sebban

We use the same experimental setup during the second series of experiments
aiming at learning a conditional target model. In this case, we tested three
different input distributions (among them one is the marginal one). The chart of
Fig.7(b) confirms that whatever the input distribution we use, our discriminative
model is able to learn the target model.

5 Conclusion

In this paper, we proposed two original approaches for learning a stochastic

tree ED. This is, as far as we know, the first attempt to learn such a distance
specifically adapted to trees. In the first method, we modeled this distance as a
joint distribution on tree pairs. This model has the advantage of having a small
variance but is biased. Thus, it is suited for dealing with real applications where
the instances are not numerous but describe well the underlying distribution. We
also proposed to learn a stochastic edit distance from a conditional distribution
that allows us to remove this bias. Such a way to proceed is interesting overall
when the size of the learning set is sufficiently large, reducing then the variance of
such a model. The experimental results confirm the interest of both approaches.

We plan to extend our work to stochastic models able to take into account edit
costs varying according to the tree context. Actually, the cost of an edit operation
can depend on the location where it occurs in the tree, that is not taken into
account with our current structures. This implies to learn more complex models,
such as stochastic tree transducers.

References

1. Bille, P.: A survey on tree edit distance and related problem. Theoretical Computer
Science 337(1-3) (2005) 217–239

2. Ristad, S., Yianilos, P.: Learning string-edit distance. IEEE Transactions on
Pattern Analysis and Machine Intelligence 20(5) (1998) 522–532

3. Oncina, J., Sebban, M.: Learning stochastic edit distance: application in hand-
written character recognition. Journal of Pattern Recognition (2006) to appear.

4. McCallum, A., Bellare, K., Pereira, P.: A conditional random field for
disciminatively-trained finite-state sting edit distance. In: UAI2005. (2005)

5. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis.
Cambridge University Press (1998)

6. Neuhaus, M., Bunke, H.: A probabilistic approach to learning costs for graph edit
distance. In: 17th Int. Conf. on Pattern Recognition, IEEE (2004) 389–393

7. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal of Computing (1989) 1245–1262

8. Klein, P.: Computing the edit-distance between unrooted ordered trees. In: Proc.
of the 6th European Symposium on Algorithms (ESA), Springer (1998) 91–102

9. Selkow, S.: The tree-to-tree editing problem. Information Processing Letters 6(6)
(1977) 184–186

10. Bouchard, G., Triggs, B.: The trade-off between generative and discrminative
classifiers. In: COMPSTAT’2004, Springer (2004)

11. Dempster, A., Laird, M., Rubin, D.: Maximum likelihood from incomplete data
via the EM algorithm. J. R. Stat. Soc B(39) (1977) 1–38


