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Twin-image noise reduction by phase retrieval

in in-line digital holography

Löıc Denis, Corinne Fournier, Thierry Fournel, Christophe Ducottet

Laboratoire Traitement du Signal et Instrumentation, UMR CNRS 5516, Bâtiment F,

10 rue Barrouin, 42000 Saint-Etienne, France

ABSTRACT

In-line digital holography conciles the applicative interest of a simple optical set-up with the speed, low cost and
potential of digital reconstruction.

We address the twin-image problem that arises in holography due to the lack of phase information in intensity
measurements. This problem is of great importance in in-line holography where spatial elimination of the twin-
image cannot be carried out as in off-axis holography. Applications in digital holography of particle fields greatly
depend on its suppression to reach greater particle concentrations, keeping a sufficient signal to noise ratio in
reconstructed images. We describe in this paper methods to improve numerically the reconstructed images by
twin-image reduction.
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1. INTRODUCTION

Since the development of high resolution cameras, digital holography is applied to many different fields such as
microscopy, particle image velocimetry and deformation analysis. The numerical reconstruction offers a wide
range of possibilities for information recovery over the traditional optical reconstruction. The hologram recording
as well as the optical reconstruction can be described with the Fresnel Transform. The phase retrieval problem
in in-line holography has already been described in litterature.1–8 We describe and extend to three dimensional
objects both iterative and non-iterative approaches. A new iterative method inspired from non-linear filtering
operations based on continuous wavelet transform is introduced. This approach does not require a second
hologram.

Let us recall the mathematical framework used in digital holography.

Modeling the diffraction

The complex amplitude expression of a plane wave after the crossing of a given (complex) transmittance
plane t(x, y) is given by the Rayleigh-Sommerfeld diffraction formula, valid within the hypotheses of scalar
diffraction theory9. Using Fresnel paraxial approximation, the reconstructed complex amplitude at dis-
tance z from the hologram can be connected with the transmittance function through Fresnel function10

hz = 1/(jλz) exp
(
jπ(x2 + y2)/(λz)

)
(with j the unitary imaginary number, λ the wavelength and x and y

the spatial variables):
Az(x, y) = t(x, y) ∗ hz(x, y), (1)

where ∗ stands for the two-dimensional spatial convolution operator.

The complex amplitude az is called the Fresnel Transform of transmittance function t with parameter λz
(scale parameter).

Fresnel Transform has many interesting properties11. The most fundamental one is duality property:

hz ∗ hz
∗ = hz ∗ h−z = δ (2)
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Figure 1. Hologram of opaque spheres computer generated as described in the text

which can be seen as an expression of the principle of ray reversibility (δ denotes Dirac’s distribution).

Another usefull property is that of additivity:

hz1
∗ hz2

= hz1+z2
(3)

directly connected with wave propagation.

Fresnel transform is a totally redundant scaling transform.12 It does not fulfill wavelets admissibility condi-
tions. A gaussian windowing can be applied to the kernel to limit both its spatial and frequency supports and
therefore verify the location condition13. The introduction of such a function however appears poorly adapted
to the high frequency content of holograms.

Nonredundant multiresolution analysis well-suited for Fresnel holograms were introduced in Ref. 11 in order
to perform discrete algorithms dedicated to their reconstruction and image processing (filtering, focusing).14 For
reconstructing such an hologram from a sum of narrow Gaussian-like functions at a fine scale, the equivalent basis
functions on the hologram have to be optimal in the sense of the uncertainty relation.11 These last functions, the
Frenelets, are the Fresnel transform of B-spline wavelets which asymptotically converge to Gabor functions.15

A particular class of three-dimensional objects of applicative interest in fluid mechanics leads to a simple
expression of the complex amplitude in the hologram plane: the case of opaque spheres spread in a volume.
Under some conditions of low concentration the hologram can be described as the sum of the Fresnel Transforms
of the particle apertures.13 Figure 1 shows a simulated hologram of particles based on this sum.

Reconstructing the diffractive object

In optical holography, the information contained in the hologram is recovered after wet chemical processing of
the holographic plate by illuminating the revealed hologram with the same light source as used for the recording
step. This reconstruction which consists in the diffraction of an incident plane wave on the hologram can be
numerically mimicked by taking the intensity of Fresnel Transform at different scales of the hologram.
Pan and Meng16 underlined that the use of part of the complex amplitude available via the digital reconstruction
facilitated the objects location. It is possible to go further into the numerical treatments of the hologram to
recover the information of the object(s).

2. THE “TWIN-IMAGE” PROBLEM IN IN-LINE HOLOGRAPHY

2.1. Experimental setups

The in-line holography recording setup, also named “Gabor holography” after its inventor, involves no imaging
lens. The intensity of the incident coherent beam, diffracted when crossing the object and free propagated
beyond is recorded on the sensor (a digital camera) (see figure 2). The reference wave and the object wave
are not separate beams but a unique one, this gives a good stability to the setup in adequation with industrial
application constraints. The drawbacks of this experimental setup however is the restriction to small opaque or
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Figure 2. In-line digital holography setup

bigger but transparent objects. The in-line geometry leads to a superposition of both the real and virtual images
in the reconstruction step.

Since off-axis geometry description,17 this two beams setup has been widely used in optical wavelengths
holography. This setup allows for spatial separation of the real and virtual (i.e. twin) images.

Other setups such as phase-shifting holography18 were proposed to get rid of the twin image.

Although in-line holography does not record the phase, it is still used today for two major reasons. The first
one is that it is hardly possible to realize the off-axis setup for short wavelengths such as that used in soft X-ray
holography.1 The second reason is the higher resolution available for the study of small objects as in digital
holography particle image velocimetry (DHPIV, see Ref. 19 for example). Therefore for such applications, a
numerical suppression of the twin-image is wished.

2.2. Hologram recording: origin of the twin image

In practice, the complex amplitude of the incident field cannot be directly recorded and only its squared modulus
is stored in the sensor: Iz = |Az|2. If we introduce the opacity function of the object a = 1 − t, the intensity
expression can be expanded using equation 1 as:

I = 1 − a ∗ hz − a∗ ∗ hz
∗ + |a ∗ hz|2. (4)

For the recorded hologram to be workable the last (non linear) term has to be negligible compared with the
others. This is a classical condition in in-line holography required for good quality reconstructions. Translucent
and low concentration clouds of small opaque objects fulfill this condition. For this class of objects equation 4
can be rewritten as:

Ĩ ≈ −a ∗ hz − a∗ ∗ hz
∗ (5)

with Ĩ denoting the centered image (the hologram minus its mean). The measured intensity in this last expression
can be physically interpreted as the recording of both the object diffracting in the positive direction and its
symmetric (i.e. conjuguate) diffracting towards the opposite direction. The reconstruction process described in
section 1 applied to the measured intensity therefore leads to the superposition of the in-focus image and the
out-of-focus twin image: Ĩ ∗h−z ≈ −a−a∗ ∗h−2z The lack of phase information in the hologram plane therefore
produces a twin image in either optical or numerical reconstructions.

2.3. Twin image characteristics

Figure 3 illustrates the twin-image phenomenon. Small diffracting objects where used to simulate the complex
amplitude in a recording plane. The intensity of the field has been stored and two reconstructions have been
performed. Image (a) has been computed from the simulated complex amplitude. It is therefore free of the
twin-image phenomenon. Only two of the three objects are in focus. The third one is slightly out-of-focus.
Image (b) is the result of the simulated hologram reconstruction. The lack of phase information results in the
presence of the twin-image. Low frequency fringes appear in image (b) that could not be seen in image (a): this
is the so-called “twin-image”.

Let us describe the amplitude and spatial localization of the twin image and their dependance with the
recording distance z. The in-focus image amplitude to out-of-focus twin image amplitude ratio is proportional
to the inverse of the recording distance z. The twin image is centered on the real image and its value increases
radially from zero to its maximum at r =

√
λz (i.e. r verifying πr2/2λz = π/2). At small recording distances,

the contrast between the image and its twin is low and both images merge.
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Figure 3. Twin-image appearing at the reconstruction step: (a) “twin-image free” reconstruction using the phase;
(b) classical reconstruction from the hologram, showing the twin-image
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Figure 4. 2D linear system representations of: (a) the recording step2, (b) the reconstruction step by use of real part of
complex amplitude, (c) the complete system: recording + numerical reconstruction

When reconstructing a hologram of a large collection of small objects (such as particle assemblies), the twin-
image becomes a superimposition of many interference fringe systems. The resulting interference pattern is a
speckle whose grain size is to be confused with in-focus object images.20

3. TWIN-IMAGE NOISE REDUCTION TECHNIQUES
BASED ON A PAIR OF HOLOGRAMS

The twin-image noise reduction problem can be formulated as a phase-retrieval problem in the hologram’s plane.
Both problems are equivalent (see section 2.2). We will write and compare the two classes of approaches (de-
convolution or iterative) that have been addressed to the twin-image problem in a “phase-retrieval” formulation.
Both approaches require to record a pair of holograms of the same object at different values of the product λz.
The holograms can either be located at different distances or recorded at different wavelengths.

3.1. Linear approach: inverse filtering

The twin-image can be filtered using a physical approach equivalent to deconvolution.

3.1.1. Formulating the twin-image suppression as a deconvolution problem

Onural and Scott have reinterpreted the recording and reconstruction steps classically used in digital inline
holography in terms of linear systems2. The recording step in presence of mostly transparent real objects can
be linearly approximated (figure 4(a)). The digital reconstruction step as described in section 1 has the same
impulse response (figure 4(b)) (see Ref. 2). The global system therefore is equivalent to that given in figure 4(c)
leading to the superposition of the object and its twin image.
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Figure 5. Physical interpretation of the deconvolution filter

Onural and Scott then proposed a new reconstruction system chosen in order to inverse the recording system.
The exact inverse does not exist as the transfer function associated with the recording step has many zeros.
Pseudo-inverses however can be searched. The one introduced by Onural and Scott2 has an interesting physical
interpretation.

The strength of digital holography compared to other imaging techniques lies in the three dimensional infor-
mation recording capability. Although the inverse filtering approach has been applied to plane objects2–4 (real
or complex valued), the extension to volume objects will have a practical importance. As soon as we study
objects that are either volumic or complex valued, two holograms are necessary to suppress the twin-image in
an inverse filtering approach. Contrary to previous work, we suggest to express the deconvolution problem as a
phase retrieval problem. The searched complex amplitude therefore is that in the hologram plane.

Let us formulate here the deconvolution problem from the two holograms I1 and I2 recorded respectively at
distances z and z + d, using equation 5 and properties 2 and 3:

−Ĩ1 + Ĩ2 ∗ hd
︸ ︷︷ ︸

(a)

= a ∗ hz
︸ ︷︷ ︸

(b)

∗
(
δ − h2d

)

︸ ︷︷ ︸

(c)

. (6)

Term (a) is computed from the recorded holograms I1 and I2, term (b) is the desired complex amplitude and
term (c) expresses the influence of both the object and its opposite located at a distance 2d upstream (figure
5, line (i) to (iv)). Equation 6 can not be analytically inversed as term (c) has many zeros in Fourier plane. A
pseudo-inverse using an appropriate regularization can however by searched. Both modulus and phase of term
(b) are obtained through deconvolution of equation 6 although only the phase is unknown. The error on the
modulus can therefore be exploited as a parameter to adapt the inversion regularization.

3.1.2. Physical approach: inverse filter inspired by Fresnel diffraction

Term (a) (fig. 5, line (iv)) contains the searched complex amplitude that is created by the object located in −z.
This complex amplitude however is polluted by a negative contribution of a virtual object located in −z − 2d.
An approximation of this latter contribution can be computed through the propagation of term (a). The virtual
object can then be pushed back to −z − 4d: (a) + (a) ∗ h2d = (b) ∗ (δ − h4d) (see figure 5). This operation can
be reiterated in order to reject the virtual object to any position −z − 2Nd:

(a) ∗
N−1∑

n=0

h2nd = (b) ∗
(
δ − h2Nd

)
. (7)
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Figure 7. Twin-image reduction using inverse filtering: (a) without reduction; (b) using the described inverse filter
(N = 22); (c) perfect reduction (simulation).

The amplitude of the wave an object diffracts is proportional to the inverse of the recording distance. The
amplitude of the remaining term (b) ∗h2Nd therefore lowers like 1/(z +2Nd) does and only the first terms of the
sum are required to find a good estimate for (b).

3.1.3. Implementation and illustration

The Fourier transform of term (c) has many zeros. There are therefore stability issues for inversion of equation
6. The proposed inverse filter has a spectrum that evolves as illustrated in figure 6(a) when the number of terms
N increases. The spectrum tends to a ray spectrum whose singularities are responsible for the instability. Only
a limited number of terms have to be used for inverse filtering to preserve the quality of the deconvolution. The
determination of this number can be achieved in comparing the squared modulus of deconvolved term (b) and
hologram I1.

Each term appearing in the sum of equation 7 has to fullfil good sampling conditions. The higher the order of
the term, the more it must be windowed to prevent from aliasing. Figure 6(b) illustrates the cutting frequency
dependency on term order.

The inverse filtering procedure is applied on a synthetic particle hologram. A reconstructed plane is displayed
on figure 7(b) to compare with both classical (i.e. without twin-image reduction) reconstruction, figure 7(a), and
perfect (computed from exact phase) reconstruction, figure 7(c).
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Figure 8. Gerchberg-Saxton iterative phase retrieval

3.2. Iterative propagation approach: Gerchberg-Saxton derived method

3.2.1. Principle of the phase retrieval method

The Gerchberg-Saxton iterative algorithm refers to a wide class of methods.21 It requires either to know two
images (the modulus of the object and the modulus of its Fourier transform) or only one image (the modulus
of the Fourier transform) plus a constrain (on the object). Although the version with a single image has been
adapted to the case of inline holography of a real and plane object5, the most interesting version for digital
holography is the two-images version6 as it applies to the more general class of 3D objects (and equivalently
complex-valued transmittance objects).

Phase retrieval in the in-line holography context requires to adapt Gerchberg-Saxton’s algorithm. The two
recorded images correspond to two Fresnel transforms (at different scales) of the object. The correspondance
from one plane to another is done via conjugate (complex) Fresnel Transforms. The principle of the iterative
phase reconstruction is depicted in figure 8. Algorithm initialization is discussed in the following section. The
algorithm consists in four steps7, 21: (1) propagate the estimate of complex amplitude in the first hologram plane
to the second hologram plane; (2) replace the modulus of the resulting complex amplitude with the square root
of the second hologram; (3) back-propagate this new estimate to the first hologram plane; and (4) replace the
modulus of the computed complex amplitude with the square root of the first hologram. In equation, this is for
the kth iteration, using similar formalization as in Ref. 21:

A2k
≡ |A2k

| exp(jϕ2) = A′

1k
∗ hd,

A′

2k
= |

√

I2| exp(jϕ2),

A1k
≡ |A1k

| exp(jϕ1) = A′

2k
∗ h−d,

A′

1k+1
= |

√

I1| exp(jϕ1),

(8)

where I1 (resp. I2) is the intensity of the first (resp. second) hologram, d is the distance between the holograms,
A′

1k
and ϕ1 (resp. A′

2k
and ϕ2) are estimates of the complex amplitude and phase in the first (resp. second)

hologram plane.

3.2.2. Implementation and illustration

In order to reach a good estimate of the phase in a small number of iterations, the first step has to give a
reasonably good phase. The choice of the hologram to start the iterations with is therefore important. To the
best of our knowledge, it has not been discussed previously (see Ref. 7). Let I1 and I2 be the two recorded
holograms (resp. at distances z1 and z2). According to equation 5, the propagation of centered hologram I1 can
be expressed as:

Ĩ1 ∗ hz2−z1
≈ −a ∗ hz2

− a∗ ∗ hz2−2z1
.

Let’s write the ratio of the amplitude of the first term (induced by the real object) to the amplitude of the second
term (corresponding to the propagation of the virtual object):

−z2 + 2z1

z2
= 2

z1

z2
− 1. (9)
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Figure 10. Twin-image reduction using Gerchberg-Saxton algorithm

As we aim at reaching the phase of the first term, we have to set z1 and z2 so as to maximize the aforementionned
ratio. Therefore, z1 has to be larger than z2. The hologram to start the iterations with should be the farther
from the object. The distance between the holograms should be chosen as large as possible.

This distance has also to be chosen accordingly to both the sensor and pixel sizes. On the one hand, if the
holograms are recorded too close one another, their difference will not be significant and equation 9 ratio will
stay close to one. On the other hand, the higher the inter-hologram distance, the worse the reconstructed phase
at the image borders.

Another issue is the precision at which this distance is known. Let’s note here that it can be easily retrieved
using the following procedure, illustrated in figure 9: (1) substract its mean to each hologram; (2) cross-correlate

the first hologram with the second; (3) find the distance dmax which maximizes hd ∗
(

Ĩ1 ⋆ Ĩ2

)

.

The sub-pixel lateral position of the maximum can also be used to correct misalignment of the hologram (i.e.
hologram registration).

Care has also to be taken to fulfill a correct numerical propagation without introducing periodization artifacts.
Both adapted anti-aliasing and zero padding must be applied.

Figure 10 shows the classical reconstruction (fig. 10(c)) obtained from hologram (b). Gerchberg-Saxton
algorithm applied on holograms (a) and (b) simulated respectively at 190mm and 100mm provides the twin-
image attenuated image (d).



4. TWIN-IMAGE CLEANING BY ITERATIVE NON-LINEAR FILTERING OF A
SINGLE HOLOGRAM

The need of more than one hologram is a constraint which can induce a more complex system and some ad-
ditional treatments, especially for three dimensional objects in motion and deformation. Such a situation can
be encountered in Digital Holography Particle Image Velocimetry which is an important application of in-line
holography. Another twin-image reduction approach involving a single hologram therefore has to be carried out.

4.1. Principle

The twin-image can not be reduced for 3D objects using a linear filtering approach on a single hologram (see
section 3.1). In the case of small objects with strong transmittance contrast, a spatial separation scheme between
the in-focus and the out-of-focus images can be attempted. Iterative algorithm have been proposed to suppress
the twin-image in the case of plane objects (see Ref. 8), we describe a relatively different approach here.

Figure 3(b) shows a reconstructed plane of a numerically simultated hologram of three objects. Two of the
objects lie in the same plane, the other one is located 20mm above. In the reconstruction plane, two objects are
in focus and the third one is slightly out of focus (see section 2.3). Although the first two objects are easy to
separate from their twin rings, the third one can not be easilly extracted. Volume objects therefore require 3D
processing to separate the twin-images.

In our process to suppress twin-image noise, the signal consists in the in-focus real images while the noise
is formed by out-of-focus twin-images. However it should be noted that the in-focus and out-of-focus images
contain the same information and are transformed one into another when propagating towards the symmetrical
plane with respect to the hologram. Moreover, we know a priori that all the objects lie the same side of the
sensor. The out-of-focus rings therefore can be suppressed by masking their focalized counterpart in the virtual
image side.
Let us note that the following two transformations are equivalent:

(a) (1) reconstruct plane zr; (2) delete focalized objects; (3) back propagate towards the hologram;

(b) (1) reconstruct plane zr; (2) delete all but focalized objects; (3) back propagate towards the hologram;
(4) substract the complex amplitude computed in step (3) to the hologram.

Transformation (b) however is more interesting as it does not involve the out-of-focus image that could overflow
the reconstructed image borders.

The general principle therefore is to clean the twin-image rings by substracting a corrective complex amplitude
to the hologram. This complex amplitude is computed through backpropagation of in-focus virtual objects. These
virtual objects are selected on a thresholding basis. The corrections are applied iteratively to the hologram to
ensure efficient twin-image cleaning.

As we underlined at the begining of this section, three dimensional objects require an appropriate processing.
The masking operation can not be applied on a single plane. The principle we use to extend the algorithm to
three dimensional object is inspired from non-linear wavelets filtering. Denoising is performed with wavelets
by applying a threshold on the transformed images at different scales and then by summing up all the reverse-
transformed images. Transposed into our problem, the denoising operation consists in summing up all the
propagated planes after thresholding the virtual-side volume.

4.2. Algorithm description

The algorithm consists in two major steps:



A– Mask construction: In this step a three dimensionnal mask is created. A limited number N of planes
is chosen and those planes are reconstructed. They are thresholded at a high enough level to prevent from too
many false detections. The binary mask then is dilated and low pass filtered in order to reduce border effects
during step B:

• reconstruct N planes (real side of the hologram),

• threshold the volume (set the mask to 1 inside the objects and to 0 elsewhere),

• dilate slightly by a 2 pixels radius disk,

• filter the mask.

B– In-mask cleaning: The aim of this step is to clean the out-of-focus image. To do that we suppress the
influence of the virtual particles. They are selected using the mask on a plane by plane basis:

For each plane, do

• reconstruct the plane (virtual side of the hologram),

• multiply the complex amplitude and the mask,

• back-propagate this amplitude in the hologram plane,

• substract computed amplitude to the hologram.

Then, move on to the next plane.

Two options are possible to reiterate this algorithm. Either the two steps are applied with a decreasing
threshold level, as the signal to noise ratio is increasing (step A, second point); or only step B is reiterated. The
modulus constraint of the recorded hologram can be reintroduced after each B step, however, thanks to the fast
convergence of the algorithm, this is not necessary in practice.

Figure 11 illustrates the algorithm scheme. The twin-image cleaning process appears more clearly: images at
the right side contain the real objects while images at the left side contain out-of-focus images of the real objects
and in-focus remainder of the virtual objects. The twin-image therefore is reduced using a non linear filtering in
the twin (i.e. virtual) half-space. The number of analysed planes can be limited as the cleaning operation can act
efficiently even in a slightly out-of-focus plane. Figure 12 displays the evolution of both in-mask (i.e. cleaning
plane) and in-focus amplitudes (only the real part is shown) during the cleaning of a virtual particle. The
analysed plane is 2mm beyond the in-focus plane (in practice, the in-focus plane location would be unknown).
After 5 iterations, the virtual object appears to be efficiently deleted (figure 12, first row of images, last column).
The in-mask amplitude tends to zero (figure 12, last row of images, last column). The energy of the correction
applied on the hologram at each iteration decreases as depicted in the semi-logarithmic plot of figure 13.

4.3. Results

Let us illustrate results we can get with this algorithm with three examples.

Synthetic hologram of a simple three dimensional distribution of small objects The object studied
here is made of three planes located at 20 mm distance each. The simulated hologram is recorded at 100mm
from the closest plane. Figure 14(a) gives a diagram representing the object. The corresponding computed
hologram is displayed in figure 14(b). Figures 14(c) to (e) show the three reconstructed planes using the classical
reconstruction algorithm (see section 1). The reconstructed planes after twin-image cleaning are given in figure
14(f) to (h). The twin-image reduction appears to be very efficient.
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Figure 15. Twin-image cleaning applied on a synthetic hologram of 100 particles
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Figure 16. Twin-image cleaning applied on an experimental hologram of a water spray

Simulated hologram of opaque particles One hundred opaque spheres (diameter 90µm) were spread in a
6×6×6×mm3 volume. An hologram was numerically generated at a distance z = 120mm. Figure 15(a) displays
the hologram. Classically reconstructed and twin-image cleaned planes are displayed in figures 15(b) and 15(c)
respectively. Five “cleaning” planes were used in the algorithm. Figure 15(d) gives the signal to noise ratio in
each 5 plane before (lowest curve) and after (highest curve) twin-image reduction. The twin-image reduction
algorithm has increased the SNR by 10dB.

Experimental hologram of a water spray A cloud of water droplets was produced by a water spray. A
hologram was recorded on a camera (1280 × 1024 pixels) using a YAG pulsed laser (lambda = 532nm, pulse
duration= 7ns). The dropplets were located within a bounding volume of 60mm depth. Their sizes is roughly
90µm. Figure 16(a) shows the experimental hologram. The classical reconstruction is given in figure 16(b).
The reconstruction after twin-image reduction is displayed in figure 16(c). The twin-image has been strongly
attenuated.

5. DISCUSSION

Whatever the method chosen, let us notice that as long as the twin-image is strongly reduced, the non-linear
term in the expression of the hologram intensity (see equation (4)) can be suppressed as described in Ref. 3.

In the given description of the three possible methods for twin-image reduction, we paid specific attention
to adapt the algorithms to 3D objects. Improvements were proposed to the classical approaches. Each method
has been reformulated as a phase retrieval problem in the hologram plane. This formulation gives control on the
stability of the inverse filter in the linear filtering approach. It also permits a natural extension to the case of
3D objects.



Gerchberg-Saxton’s iterative approach has been reviewed and the problem of the choice of the initial value
has been raised. We have shown that the farthest hologram should be used to get the best phase estimate after
the first step of the algorithm.

An iterative algorithm requiring a single hologram has been introduced. The results given on both synthetic
and experimental holograms are promising. We are now working on improvements of this technique to address
the following challenge: process higher and higher concentrated holograms!
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