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Digital holography makes it possible to acquire quickly the interference patterns

of objects spread in a volume. The digital processing of the fringes is still too

slow to achieve on line analysis of the holograms. We describe a new approach

to obtain information on the direction of illuminated objects. The key idea is

to avoid reconstruction of the volume followed by classical three-dimensional

image processing. The hologram is processed using a global analysis based on

autocorrelation. A fundamental property of diffraction patterns leads to an es-

timate of the mean geometric-covariogram (MGC) of the objects projections.

The rose of directions is connected with the MGC through an inverse problem.

In the general case, only the 2D rose of the object projections can be recon-

structed. The further assumption of unique-size objects gives access with the

knowledge of this size to the 3D direction information. An iterative scheme is

suggested to reconstruct the 3D rose in this special case. Results are provided

on holograms of paper fibers.

1



1. Introduction

Non-intrusive on-line control is of great importance in most production processes. In the

case of 3D moving objects, designing this control is challenging. To track the directions of

small objects spread in a volume one requires both a fast 3D imaging facility and an efficient

image processing scheme.

Holography is a technique that allows a description of a three-dimensional distribution

of objects to be stored on a two-dimensional detector. It ensures non intrusive control of

still or moving objects. The recording of the hologram on a digital camera suppresses the

wet chemical processing step and makes it possible to acquire and analyze volume objects

within a short time, the limiting factor being the numerical processing speed. It gives rise to

a whole range of potential algorithms for the processing of the holograms. Digital holography

has been widely studied these last years (see recent contributions published in (Poon et al.,

2006)) and applied to many different fields such as microscopy, particle image velocimetry

and deformation analysis. It plays an important role for the study of small objects and is

used in fluid mechanics for 3D flow visualization.

Since fast acquisition of 3D objects is possible with digital holography, we focus in this

article on the hologram processing. We describe a method to study the direction of fibers

randomly distributed in a volume from a single hologram. We follow an original stereological

approach that differs from classical analysis of the volume reconstructed from the hologram.

This work follows a sizing method based on the hologram-autocorrelation analysis (Denis

et al., 2006).

To quantify anisotropy of the fiber distribution, a statistical representation is often used:

the rose of directions R (Serra, 1982). It is the distribution of directions weightened by the

mean fiber-length in each direction. If the fiber process is isotropic, then R is the uniform

distribution. By contrast, the fact that R is uniform does not imply that the underlying

fiber process is isotropic (Serra, 1982; Stoyan & Beneš, 1991; Kiderlen & Pfrang, 2005). A

non-uniform rose of directions clearly indicates anisotropy. In particular, preferred directions

of a fiber system can be detected (Kiderlen & Pfrang, 2005). The estimation of R requires
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either direct measurement of spatial directions or an indirect approach. In the latter case,

R is derived from another quantity carrying the same directional information while being

directly estimated from the data. The mean geometric covariogram (MGC) (Serra, 1982),

defined as the autocorrelation of an object, averaged over the objects population, is such a

quantity. Another commonly used quantity to derive R is the rose of intercepts γ, defined as

the diametral variation in a given direction (Serra, 1982).

After a short introduction to digital holography (section 2), we derive the rose of direc-

tions of the fibers projections from their mean geometric covariogram computed from the

hologram. The mean geometric covariogram of the objects projections is estimated directly

from the hologram (section 3). In the general case, only the 2D rose of directions can be

derived from the estimated MGC (section 4). With a further assumption one can reconstruct

the 3D rose of the objects. An iterative reconstruction algorithm is suggested in this case

and the method is illustrated on simulated and experimental holograms (section 5).

2. In-line digital holography

Let’s give a preliminary description of in-line digital holography to introduce the basics and

the notations we will follow in the next sections.

The in-line holography recording setup, also named “Gabor holography” after its inven-

tor, involves no imaging lens. The intensity of the incident coherent beam, diffracted when

crossing the objects and free propagated beyond is recorded on the sensor (a digital camera)

(see Figure 1). This setup, used to record holograms of small opaque objects such as micro-

particles or fibers, is robust with respect to vibrations thanks to the unique beam used.

Increasing the concentration of objects yields a degradation of the hologram quality due to

speckle noise. This technique therefore is restricted to collections of objects whose projected

surface on the hologram plane remains under a limit (1% of the hologram surface) (Royer,

1974).

The recorded hologram can be explained as the interference pattern between two beams:

the reference beam and the objects beam. Unlike with two-beams setups, in Gabor holog-

3



raphy there is a single beam which can be interpreted past the objects as the superposition

of two waves: a reference wave identical to the incident wave and a object wave emerging

from the objects (Goodman, 1996). In all-optic holography, the reconstruction is led by re-

illuminating the hologram with the reference beam. The hologram then diffracts the beam

and gives rise to the real and virtual images. Diffraction of a plane wave by a plane object of

given transmittance t can be modeled under Fresnel approximation as a spatial convolution

(Goodman, 1996). The complex amplitude Az of the diffracted wave in a plane located at a

distance z related to the objects is given by:

Az(x, y) =
(
t ∗ hz

)
(x, y) (1)

with the following kernel:

hz(x, y) = 1/(iλz) exp
[
iπ(x2 + y2)/(λz)

]

where i stands for the imaginary unit, λ is the wavelength and ∗ denotes the two-dimensional

convolution. The complex amplitude Az is called the Fresnel transform of transmittance

function t with parameter λz (scale parameter). Since diffraction governs both the hologram

formation and its reconstruction, Fresnel transform is a fundamental tool for both hologram

modeling and digital reconstruction.

Fresnel transform is a totally redundant scaling transform (Onural, 1993). By changing

the scale parameter, images can be reconstructed at various depths z. The redundancy of the

transform results in the presence of out-of-focus objects in the reconstructed images. These

out-of-focus objects appear as low contrast concentric fringes. The numerical transform is

performed using Fast Fourier transforms and a digital focusing is obtained by modifying the

parameter z of the convolution kernel.

3. Estimating the mean geometric covariogram of the objects projections

We derive in this section an estimate of the mean geometric covariogram (MGC) of the

objects projections from the expression of the hologram intensity.
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In the context of in-line holography of small opaque objects, the hologram intensity is

related with the objects through a diffraction phenomenon. If we consider the incoming wave

to remain quasi-plane for each object, which is justified for holograms of low-concentration

collections of objects, the resulting diffracted wave in the recording plane is (Denis et al.,

2006):

A ≈ 1 −
N∑

j=1

ϑj ∗hzj
∗ δxj ,yj

where zj is the distance between object j and the recording plane, N is the number of objects,

ϑj denotes the aperture of object j, δxj ,yj
stands for Dirac’s distribution centered in (xj, yj).

In this expression, the first term can be interpreted as the reference wave (with normalized

energy and null phase in the hologram plane) ; the other term is a sum of the contribution

of each object. These contributions are complex valued and are summed up.

The recorded signal in the hologram plane corresponds to the intensity IH of the wave,

related to the complex amplitude via the following relation: IH = |Azr
|2. The hologram

intensity can therefore be expanded as follows:

IH = 1 − 2
N∑

j=1

ϑj ∗ℜ(hzj
) ∗ δxj ,yj

+
N∑

j=1

N∑

k=1

(

ϑj ∗hzj
∗ δxj ,yj

)

×
(

ϑk ∗h−zk
∗ δxk,yk

)

, (2)

where ℜ denotes the real part of a complex number. The first term is constant and corre-

sponds to the reference wave, the second term is the sum of all diffraction patterns, and the

last term expresses both inter-object interferences (j 6= k) and the non-linear component

of a diffraction pattern (j = k) . Under the hypothesis of both small objects and low-

concentration holograms, the third term can be neglected. This gives the following linear

hologram-formation approximation:

IH ≈ 1 − 2
N∑

j=1

ϑj ∗ℜ(hzj
) ∗ δxj ,yj

. (3)

When considering objects with a random distribution in space, implanted on points of a

3D homogeneous Poisson point process with intensity c (i.e. c is the average number of points

per unit volume), the hologram can then be described in the context of random set models

as a dilution random function (Serra, 1968; Jeulin, 1992). The primary functions ϑj ∗ℜ(hzj
)
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depend on the distance zj to the hologram and on the object aperture ϑj (defined as the

indicator function of the projection of the j-th object). They are implanted on points of a 2D

Poisson point process resulting from the projection with intensity c · e (e being the thickness

of the volume) and whose realization is the set of (xj, yj)j objects locations.

The reconstruction of the volume recorded in a hologram is based on the diffraction of a

plane wave by the hologram. The digital processing of a hologram is traditionally carried out

via convolution with Fresnel functions. An in-focus image of an object is obtained when the

parameter of the Fresnel function hz matches the object-hologram distance. This is made

possible thanks to the inversion property of Fresnel function: hz ∗ h−z = δ0,0. The physical

interpretation of this property is the well-known principle of ray reversibility. The real part

of Fresnel functions satisfies a weakened version: ℜ(hz)∗ℜ(h−z) = 1
2
[δ0,0+ℜ(h2z)]. As Fresnel

functions are symmetrical and ℜ(h−z) = ℜ(hz), the last equation can be rewritten in terms

of cross-correlation: ℜ(hz) ⋆ ℜ(hz) = 1
2
[δ0,0 + ℜ(h2z)] (with ⋆ denoting the cross-correlation

operation, connected to the convolution through the relation f ⋆ g = f ∗ ǧ with f and g any

distribution and ǧ the symmetric of g with respect to the origin). The aperture of object j is

nearly recovered when the jth diffraction pattern ϑj ∗ℜ(hzj
) ∗ δxj ,yj

is cross-correlated with

ℜ(hzj
). This is the basic principle classically used in digital in-line holography. The distance

zj has to be known in order to get an in-focus image of the object.

Instead of using ℜ(hzj
) to perform the cross-correlation, the diffraction pattern can be au-

tocorrelated. The (xj, yj) location is then lost and the remaining terms are: 1
2
ϑj⋆ϑj+

1
2
ϑj⋆ϑj∗

ℜ(h2zj
). The autocorrelation of the centered hologram intensity ĨH (i.e. its autocovariance)

can be expanded into three terms(Denis et al., 2006):

ĨH ⋆ ĨH ∝ 2
N∑

j=1

ϑj ⋆ ϑj + 2
N∑

j=1

ϑj ⋆ ϑj ∗ℜ(h2zj
)

+ 4
N∑

j=1

N∑

k=1

k 6=j

ϑj ⋆ ϑk ∗ℜ(hzj
) ∗ℜ(hzk

) ∗ δxj−xk,yj−yk
.

(4)

The first term corresponds to the mean geometrical covariogram of the apertures (up to a

proportionality factor accounting for the number of objects and experimental parameters
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such as the camera gain and the laser power); the second to a virtual image of the geomet-

ric covariogram; the third to slightly out-of-focus and largely out-of-focus cross-correlation

terms. It has been shown in the quantitative study carried out in reference (Denis et al., 2006)

that the MGC dominates the other terms on most of its range. Thus, in the case of holograms

of low-concentration volumes and under the assumption of a homogeneous Poissonian object

process, the hologram autocovariance leads to a good estimate of the MGC.

4. Reconstruction of the rose of directions

We have shown in the previous section that the mean geometric-covariogram (MGC) can be

estimated easily from a hologram. The MGC carries information about the direction, size and

shape of the objects projections. However the contributions of shape(s) and size(s) mix with

that of directions. The resulting MGC can therefore be difficult to interpret quantitatively.

We describe in this section how the MGC can be processed to get a reconstruction of a rose

of directions.

In the general case, only a projection of the rose of directions of the objects can be

reached from the estimated MGC. We describe in section 4.A how the 2D rose of directions

can be derived form the MGC. We then describe in section 4.B how the MGC of the objects

projections can be connected with the theoretical geometric-covariogram of a parametrized

model. The MGC can easily be computed for given shapes, sizes and directions of the objects.

The reconstruction problem of the 3D rose of directions is an inverse problem. Due to the

projection operation that connects the objects to the MGC, additional information is required

to reconstruct the 3D rose of directions. We suggest a reconstruction algorithm in the case

of short fibers under the assumption of constant and known object size. This description is

of more general scope and the derivation can easily be carried out for other types of shapes.

4.A. Derivation and inversion of the rose of intercepts

We review in this paragraph the first possible approach for MGC processing: the derivation

of the rose of intercepts.

The rose of intercepts γ(α) defines the diametral variation in the direction orthogonal
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to α. It can be easily measured on an image of the objects. In our case, objects are not

directly accessible and the rose of intercepts must be derived from the MGC expressed in

polar coordinates k̄(r, α) using the following relation (Serra, 1982):

γ(α) = −
∂k̄(r, α)

∂r

∣
∣
∣
∣
r=0

(5)

The rose of directions can then be reconstructed from the rose of intercepts using one of

the inversion schemes described in the literature (see reference (Kiderlen & Pfrang, 2005)

for an overview of available methods).

This approach is however limited by the difficulty to get a robust estimation of the zero

derivative of the MGC as the presence of uncorrelated noise in the hologram tends to interfere

with it. Furthermore, the MGC is underused which is regrettable as the underlying inverse

problem is ill-posed. To circumvent these drawbacks, a more general approach making use

of the whole MGC is described in the following paragraphs. The objects under study to

illustrate the reasoning are micro-fibers.

4.B. Formulation of the general inverse problem

We derive in this section the connection between the MGC, estimated directly from the

hologram, and the distribution of directions of the underlying fiber population.

Let a short fiber be defined by its direction (θ, φ) (given in spherical coordinates), its length

L and its thickness t (see Figure 2). Its projection along the z axis can be approximated by

a rectangle of height h = t and width w = L sin φ + t cos φ.

The geometric covariogram K(r, α) of a w × h rectangle directed along θ is the common

area between the rectangle and its translate by a vector of length r and direction α (see

Figure 3):







Kt,L,θ,φ(r, α) = (w − r| cos(α − θ)|) (h − r| sin(α − θ)|)

if w − r| cos(α − θ)| ≥ 0 and h − r| sin(α − θ)| ≥ 0;

Kt,L,θ,φ(r, α) = 0 if not.

(6)

A graphical representation of the geometric covariogram is given in Figure 4.
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As the contribution of each fiber is added to form the mean geometric covariogram (see

section 3), the overall MGC k̄ is connected to the density f(t, L, θ, φ) of sizes and directions

through the integral relation:

k̄(r, α)
︸ ︷︷ ︸

data

=

∫∫∫∫

Kt,L,θ,φ(r, α)
︸ ︷︷ ︸

model

f(t, L, θ, φ)
︸ ︷︷ ︸

unknown

dtdLdθdφ + n(r, α)
︸ ︷︷ ︸

noise

. (7)

This equation links together the data and the unknown and underlines the inverse problem

nature of the reconstruction. The geometric covariogram Kt,L,θ,φ(r, α) represents the model

of the shape/size/direction dependency in the MGC and is known analytically. Since the

MGC is obtained from experimental data and with an approximation, we introduce a noise

term that represents the difference between the modelization and the actual data.

Equation 7 expresses both a projection operation and an integration over all possible

objects. The reconstruction of the density f requires to invert both operations. The projection

can not be inverted without prior information. Therefore, the scheme to recover the 3D

density information described in the following subsections rely on necessary assumptions.

4.C. Discrete problem

We describe here how equation 7 can be sampled and we suggest an iterative algorithm to

reconstruct the unknown distribution f under additional assumptions.

The number of parameters must first be reduced in order to allow the reconstruction. Two

problems of interest can be studied:

(P1) reconstruct the 3D direction distribution under the assumption that t and L are known

and constant;

(P2) reconstruct the 2D direction and projected length distribution of fibers under the

assumption that t is known and constant (only the projection of the directions is

studied).

These two problems are of equivalent difficulty since the projected length and the out-of-

plane direction play similar roles in the expression of the geometric covariogram K. We
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therefore describe the reconstruction of f(θ, φ) in the case of fibers of constant length. The

results obtained can directly be adapted to problem P2.

The MGC is estimated on a disc that includes the bounded support of the MGC. The

sampling used is Cartesian as the estimation is based on Fourier transforms. The noise

n(r, α) associated with the data is not stationary as it is derived from an autocorrelation.

To take into account the difference in noise level between the center of the autocorrelation

and farther regions, we introduce a weighting matrix W that reduces the influence of data

points with low confidence due to the noise level. W is defined in the general case as the

inverse data-covariance matrix W = cov(k̄)−1.

The unknown distribution f is computed at chosen points (θ, φ). To compare easily the

reconstructed density in two different directions one has to use a uniform sampling in θ. A

uniform sampling in spherical coordinates would lead to an over-sampling effect for directions

close to φ = 0. This region however is badly defined as the directions are nearly collinear

to the projection direction. A form of regularization can be introduced by using a looser

sampling than spherical coordinates. Since the direction discrimination is connected with the

difference between the projections, the sampling can be defined uniformly in the projected

space (i.e. in a disc). For this purpose, we chose a sampling based on a spiral distribution

inspired from the paper (Rakhmanov et al., 1994).

The discretized form of equation 7 can be written as a matrix product:















k̄(r1, α1)

...

k̄(rn, α1)

...

k̄(rn, αm)















=















Kθ1,φ1
(r1, α1) · · · Kθp,φq

(r1, α1)

...
...

Kθ1,φ1
(rn, α1) · · · Kθp,φq

(rn, α1)

...
...

Kθ1,φ1
(rn, αm) · · · Kθp,φq

(rn, αm)





























f(θ1, φ1)

...

f(θp, φ1)

...

f(θp, φq)















+















n(r1, α1)

...

n(rn, α1)

...

n(rn, αm)















k̄ = K f + n

,

(8)

where (rk, αl) represents a sampling point in the autocorrelation space, (θk, φl) a sampling

point in the directions space (S2) and bold faced symbols k̄, K, f and n are compact notations
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for their vector and matrix counterparts.

4.D. Reconstruction algorithm

There exists a wide range of reconstruction algorithms to solve inverse problems. The choice

of a specific approach requires to analyze the characteristics of the problem and especially to

identify general properties common to all possible solutions: a priori knowledge. In the case

of the rose of directions of fibers, a reconstruction of the rose is of special interest only if there

exists one or a few significant directions. The distribution of directions f then is close to

zero for all directions but that of the fibers. This “mainly zero” characteristic together with

the positivity constraint (f(θ, φ) ≥ 0 for all (θ, φ)) lead us to use a constrained maximum

likelihood approach: the solution f (ML) is that which maximizes the likelihood under the

positivity constraint:

f (ML) = arg max
f

Pr(k̄|f) = arg max
f

φML(f), subject to ∀ (θ, φ), f(θ, φ) ≥ 0, (9)

with φML(f) the log-likelihood: φML(f) ∝ log[Pr(k̄|f)]+constant.

Well known and easy to implement iterative algorithms have been proposed to solve such

problems. They are referred to as multiplicative algorithms (Lantéri et al., 2002) and differ

depending on the noise nature. In the case of Poissonian noise, two identical algorithms

have been introduced: Richardson-Lucy Algorithm (Richardson, 1972; Lucy, 1974) and the

expectation-maximization procedure (Shepp & Vardi, 1982). In the case of Gaussian noise,

the Image Space Reconstruction Algorithm (ISRA) builds a solution through the following

recursion formula (Daube-Witherspoon & Muehllehner, 1986):

f
(k+1)
j = f

(k)
j

(
KTWk̄

)

j

(KTWKf (k))j

, (10)

where the subscript ·j denotes element j of the vector, and the superscript ·T is used for the

transpose operator. As long as the initial value f (0) is positive, the reconstructed densities f (k)

remain positive (or null) as the iterative definition of equation 10 involves only positive reals.

Let us notice that the mean geometric covariogram is known up to a proportionality factor,
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f is therefore retrieved up to that factor and the actual density is obtained by normalization

by
∑

j fj.

W clearly appears as a weighting factor that reduces the influence of data values with

high noise variance. Even if the Gaussian model does not in our case appear as a natural

model, this weighting capability (i.e. non-stationarity) is of great interest and overcomes the

validity considerations on the Gaussian hypothesis. The approximations described in section

3 indeed lead to a bias that depends on (r, α) parameters. To take into account this bias,

one can weight the data to give less influence to data points subject to higher bias.

5. Application to holograms of paper fibers

The model of short fibers introduced in the previous section can be applied to different kind

of objects. The main constraint is that the fibers are required to be straight which is often

true for short enough fibers (less than a millimeter). We worked on paper fibers as the on-line

study of fiber directions in the very first step of paper making can have significant impact

for paper industry.

The principles presented in section 4 are illustrated here on simulated and experimental

data. The scheme of the proposed method to reconstruct a distribution of 3D directions in

the case of fibers of constant size is depicted on Figure 5. A hologram is processed in two

steps: first, the MGC is estimated as described in section 3; then the MGC is inverted to

reconstruct the distribution of directions, based on section 4. Results are given on simulated

data in the following subsection. In the case of fibers with variable lengths, the derivation of

the rose of intercepts is illustrated on an experimental hologram in section 5.B.

5.A. Numerical simulation

The diffraction approximation (equation 1) makes it possible to simulate holograms. Our

method can then be confirmed and the precision of the reconstruction assessed by comparing

the retrieved distribution with the underlying exact distribution of the random process used

to generate numerically the hologram.
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Fiber population A set of 100 fibers was generated according to a random uniform dis-

tribution in a 7mm × 7mm × 7mm volume (fig. 6). The fibers are oriented along one of

two mean directions: (θ1, φ1) = (57◦, 30◦) and (θ2, φ2) = (18◦, 83◦). Two thirds of the fibers

have a direction close to (θ1, φ1), with a standard deviation of 4◦; the last third is directed

following to (θ2, φ2) with a lower standard deviation (1.5◦). The fibers are 20µm thick and

500µm long.

Figure 6(a) displays a 3D view of the fibers. The distribution of directions is shown on

Fig. 6(b): directions are represented as vertices on a discretization of the unit sphere.

Simulated hologram A hologram of the fibers is simulated according to equation 1. The

distance between the volume of fibers and the hologram is set to 100mm along the z axis

(see fig. 6(a)). The resulting 1024 × 1024 hologram with 6.7µm pixel width is displayed in

Figure 7. We use it as the input of our algorithm to reconstruct the direction distribution.

MGC estimation The first step consists in estimating the MGC. We have shown that

the hologram autocovariance is related to the MGC of the fibers projections. Figure 8(a)

illustrates the autocovariance of the simulated hologram. Unwanted oscillations can be no-

ticed outside of the MGC domain. The autocovariance therefore is thresholded to determine

a domain of confidence. Figure 8(b) displays the autocovariance over this domain. The data

restricted to the domain of confidence is not sufficient to guarantee fast convergence of the

inversion algorithm in the next step. Data is therefore extrapolated outside the domain in

polar coordinates (1D interpolation) to determine the domain where the MGC is null (Figure

8(c)). Data extrapolated (i.e. outside of the domain of confidence and non null) is not used in

the inversion step; only the domain where the MGC is null is kept to reinforce the inversion

constraints.

Reconstruction of the distribution of 3D directions The MGC can then be in-

verted using equation 10. Figure 9 displays the reconstructed distribution after a thousand

iterations. A comparison of the retrieved distribution with the exact distribution (Figure
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6(b)) shows good agreement. The whole reconstruction process takes about 30 seconds using

Matlab R© language on a Pentium 4 3GHz PC. The convergence speed can be improved by

using a C language implementation in combination with techniques such as the non-linear

conjugate gradients or the limited-memory variable metric methods described in (Thiébaut,

2002).

5.B. Experimental hologram of fibers

We illustrate the general case of fibers with varying sizes and directions in this paragraph.

Objects The objects under study are short paper fibers spread on a glass plate with a

brush. The choice of a planar distribution of the fibers was caused by the ease to depict the

actual distribution. A reconstructed plane can be computed to show an image of the fibers,

for pedagogical reasons.

Hologram The hologram is recorded at 50mm from the glass plate with a 632nm HeNe

laser. The camera used has a 1024× 1280 pixel array with 6.7µm pixel width. The hologram

is displayed on Figure 10.

Estimated rose of intercepts The MGC is estimated from the hologram using the au-

tocovariance technique described in section 3. The derivative at the origin of the MGC is

then estimated using a mean square approach (Serra, 1982) to get the rose of intercepts as

pointed out in paragraph 4.A. The resulting rose of intercepts is shown on Figure 11. Its

shape is characteristic of an anisotropic image. This can be confirmed with the reconstructed

image computed in Figure 12.

The 2D rose of directions of the fibers projections can be computed by inverting the rose

of intercepts (see section 4).
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6. Conclusion

We have described and illustrated in this paper an original stereological approach for in-

line digital holograms. The use of an imaging technique capable of fast 3D acquisition in

association with direct processing of the data leads to a system suitable for on-line control.

In-line digital holography gives access to moving objects in a deep field (edges a few

centimeters long). The hologram can be approximated as a sum of diffraction patterns cor-

responding to each object. The hologram auto-covariance then appears to lead to a good

estimate of the MGC of the projections of the objects. The MGC carries interesting informa-

tion on the shape of the projection of the objects. In the case of anisotropic objects such as

fibers, the MGC can be used to estimate the main direction of a set of objects, as classically

done with conventional images. Our MGC derivation from a hologram extends this method

to “diffractive projections” of the objects.

In order to get quantitative results, the MGC requires further processing. The recon-

struction of the distribution of directions of the objects is an inverse problem that requires

additional knowledge to be inverted. We have suggested a scheme to reconstruct the 3D rose

of directions of fibers under the assumption of known and unique size. If no assumption can

be done on the fibers sizes or directions, only the 2D rose of the projected directions can be

derived through the computation of the rose of intersection from the MGC.

We illustrated both cases on simulated or real data. We focused our attention on the

extraction of the direction information rather than on an exhaustive study of the performance

of our inversion technique. Good results are obtained with our inversion method when there

are only a few main directions. Further work should focus on both the robustness of the

inversion algorithm and on further improving its convergence speed.
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Fig. 1. Optical setup used in digital in-line holography
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Fig. 2. Model of a short fiber and its orthogonal projection along the optical

axis
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Fig. 3. Geometric covariogram K(r, α) of a rectangle (hatched area)
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Fig. 4. Geometric covariogram of a rectangle with w = 5h
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Fig. 5. Scheme of the method to reconstruct the rose of directions from an

in-line hologram
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Fig. 6. Fiber population used in the numerical simulation: (a) 3D view of the

studied volume; (b) corresponding distribution of fiber directions
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Fig. 7. Simulated hologram of the volume of fibers displayed in Figure 6
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Fig. 8. MGC estimation: (a) hologram auto-covariance; (b) auto-covariance

restricted to the domain of confidence; (c) MGC estimation: linear radial ex-

trapolation of (b)
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Fig. 9. Retrieved distribution of directions from the simulated hologram of

Figure 7 through MGC inversion.
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Fig. 10. Experimental hologram of paper fibers spread on a glass plate.
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Fig. 11. Rose of intercepts derived from the MGC estimated from hologram of

Figure 10.
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Fig. 12. Reconstructed plane of the fibers showing their varying sizes and

directions.
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