
AN ADAPTIVE EMBEDDED ARCHITECTURE FOR REAL-TIME PAR TICLE IMAGE
VELOCIMETRY ALGORITHMS.

Alain Aubert, Nathalie Bochard, Virginie Fresse

Laboratoire de Traitement du Signal et Instrumentation
CNRS UMR 5516, bat F. 18 rue Benoit Lauras, 42000 Saint Etienne, France.

phone: + (0033) 477 91 57 94, fax: + (0033) 477 91 ,
email: {alain.aubert, nathalie.bochard, virginie.fresse}@univ-st-etienne.fr

ABSTRACT

Particle Image Velocimetry (PIV) is a method of imaging
and analysing fields of flows. The PIV techniques compute
and display all the motion vectors of the field in a resulting
image. Speeds more than thousand vectors per second can
be required, each speed being environment-dependent. Es-
sence of this work is to propose an adaptive FPGA-based
system for real-time PIV algorithms. The proposed structure
is generic so that this unique structure can be re-used for any
PIV applications that uses the cross-correlation technique.
The major structure remains unchanged, adaptations only
concern the number of processing operations. The required
speed (corresponding to the number of vector per second) is
obtained thanks to a parallel processing strategy. The image
processing designer duplicates the processing modules to
distribute the operations. The result is a FPGA-based archi-
tecture, which is easily adapted to algorithm specifications
without any hardware requirement. The design flow is fast
and reliable.

1. INTRODUCTION

Particle Image Velocimetry PIV is a method of imaging
and analysing fields of flow in critical environment. The ini-
tial groundwork for a PIV theory was laid down by Adrian
[1] who described the expectation value of the auto-correla-
tion function for a double exposure continuous PIV image.
Nowadays many techniques exist and they all remain com-
puting intensive [2]. Traditional systems are therefore not
suitable for real-time PIV applications as they cannot achieve
the required high performance and be integrated in the critic-
al environment. From an algorithmic point of view, several
parameters depend on the experimental environment. The
size of images, camera frequency and other information are
tailored for a given environment as they depend on the char-
acteristics (size and speed) of the fluid.

As a result, an embedded dedicated architecture must be
designed for real-time PIV algorithms. This system must be
adapted to the given algorithm specifications to meet the
constraints without requiring a complete system redesign
when the critical environment changes. To date, FPGAs are
increasingly used in embedded systems as they can achieve
high-performance in a small footprint. As modern FPGA in-
tegrate many different heterogeneous resources on one single
chip, the complete image processing algorithm can be imple-

mented without any other external resources. More import-
antly, the reconfigurable aspects of FPGA give the circuit the
versatility to change its functionality according to the al-
gorithm requirements.

Essence of this work is to propose an adaptive embed-
ded architecture dedicated to real-time PIV algorithms. Ac-
cording to the given constraints and the required results, the
designer changes the FPGA-based architecture with only few
modifications and without any hardware requirement.

This paper is organised into 4 further sections. Section 2
presents the Particle Image Velocimetry algorithm. Section 3
introduces the proposed FPGA-based system with the global
structure. Experimental results are presented in section 4 and
section 5 concludes the paper.

2. PIV ALGORITHM

Particle Image Velocimetry is a technique for flow
visualisation and measurement. The fluid motion is measured
thanks to particles seeded in the flow.

Blower

Image

sensor

Laser

Particles

Jet of smoke

+

Particles

PC

FPGA-based

systems

Laser sheet

FIGURE 1. A real-time PIV system.

Indeed, small particles are used as markers for mo-
tion visualisation in the studied flow as shown in figure 1.
This is a non invasive measure as the sizes of particles do not
alter the flow or fluid properties [3].

Two images are taken from one or two cameras
within a short time interval t and t+∆t. In our application two
single exposure image frames are recorded by one camera

only. Images recorded by the camera are divided into small
sub-regions called interrogation areas or interrogation win-
dows.

From the interrogation window of the second image
is extracted a pattern. This pattern is shifted in the corres-
ponding interrogation window in image1 and both are direct
cross-correlated as shown in equation 1.

(,) 1(,) 2(,)
x y

F i j s x y s x i y j= × − −∑∑ (1)

where s1 and s2 respectively represent the grey
levels of the interrogation windows from images 1 and 2.
The resulting output on the correlation plane is a single
peaked function where the peak represents the displacement
of the particles (figure 2). Direction of the displacement is
determined unambiguously because the images from expos-
ure 1 and 2 are recorded separately.

FIGURE 2. 2 single exposure input sub-regions and the
corresponding output cross-correlation plane. The loca-
tion of the single bright correlation peak from the origin
is the average displacement.

FIGURE 3. Resulting image of PIV

The resulting image is a set of vectors indicating the flow
displacement as shown in figure 3.
Traditional technique using grey-level images is adapted to
binary direct cross-correlation to ensure an easier implement-
ation on programmable logical circuits. A binary direct cross-
correlation gives efficient results if preceded by a suitable
binary operation as shown in [4]. Multiplications used in
equation (1) are replaced by XNOR logical operations:

(,) 1(,). . 2(,)
x y

F i j s x y XNOR s x i y j= − −∑∑ (2)

PIV algorithm is suitable for parallel processing as
the direct cross-correlation computation is highly parallelis-
able. Two cross-correlated interrogation windows are inde-
pendent of each other. A unique operation is computed simul-
taneously on different interrogation windows. These complex
computations are therefore good candidates for a hardware
real time implementation.
First characteristic of PIV applications is unbalanced data
flows between input and output as showed in figure 4. The
input data flow captures several images meaning that input
data correspond to thousand of pixels. The output data flow
represents a little number of vectors. Another characteristic
is the data parallelism inherent to this application. The cor-
relation is duplicated several times (according the sizes of
image and interrogation window) and processing operates
on local pixels.

Processing

module

Input Data flow

Command flow

Result flow

FIGURE 4. Main characteristics of PIV applications

Using these characteristics, a generic structure for PIV al

gorithms is defined.

3. DEDICATED ARCHITECTURE

The FPGA-based system presents a Globally Asyn-
chronous Locally Synchronous (GALS) architecture (figure
5). For all GALS structures, each module runs at its own fre

quency and communicate asynchronously with a handshake

protocol. All synchronous blocs units are therefore independ

ent. As a result, a modification required for a specific module

does not alter the rest of the architecture. For example, a

CMOS image sensor must be replaced by a camera with a

higher frequency. The modifications only concern the acquis

ition module as other modules are independent.

A main characteristic is the communication ring for con-
trol data and output data. All modules are inserted around this
ring by means of an asynchronous wrapper structure. This
wrapper is a 4-phase handshake protocol and is identical for
all types of module. The control remains identical and trusty
operations are insured. The advantage of this ring includes
minimizing latency as several commands can run simultan-
eously inside the ring. Empty commands can also be sent by
the control module. This empty command can be used by any
module to send some results back to the control module. As
all modules are inserted around the communication ring,
there are no limits in the number of inserted modules. And a
module insertion does not modify the global structure. The
advantage is a unique communication protocol whatever the
number and type of modules.

Pattern

extraction

Interrogation

window

Image 2

Correlation peakbest match Motion vector

Interrogation window

Image 1

Pattern shifting

t+t

t

Acquisition

Module

Storage

Module

Control

Module

FPGA

Processing

Module 1

Processing

Module 2

CMOS image sensor

PC

 commands and results

 data

FIGURE 5. Adaptive FPGA-based architecture for real-
time PIV applications.

This structure handles different type of operations which
are required in PIV applications. All these operations are de-
signed in specific modules [5].

3.1 Different type of modules

• The Control Module sends commands to
each module through the communication
ring. These commands activate predefined
macro functions in the target module. The
integrity and the acceptation of the com
mands are checked with a flag inserted in
the same command that returns in the con
trol module. As all commands are sent from
this module, the scheduling is specified in
the control module. In the same way, this
module receives resulting data transferred
coming from processing modules.

• The Acquisition Module produces all
CMOS image sensor commands and re
ceives CMOS image sensor data. One part
takes the 10 bit-pixel data from the sensor
and generates one bit data thanks to a binar
isation operation. As the binarisation de
pends on the critical environment (i.e. the
position of the camera and the acquired
scene), this pre-processing operation can
use either a unique threshold for the entire
image or a local and adaptive threshold for
each sub-region.

32 binary data are packed and sent to the storage module.
All commands dedicated to acquisition operations (win
dowing, configuration, pre-processing…) are received
from the Control Module through the ring.

• The Storage Module stores incoming im
ages from the Acquisition Module. Memory
banks are FPGA-embedded memories, and
writing and reading cycles are supervised
by the control module.

• The Processing Module contains the logic,
which is required for the direct cross-correl
ation operations. The result from the image

processing is then sent to the control mod
ule by means of the communication ring.
More than one processing module can be
used for the parallel direct cross-correlation
operations.

In the GALS structure, each type of modules runs at their
own frequency. For the following implementations, the used
frequency are given in table I.

TABLE I: Frequencies per type of module.

Modules Pro
cessing

Acquisi
tion

Sto
rage

Control

Frequency
(MHz)

100 10 100 150

3.2 Asynchronous wrapper

An asynchronous wrapper, figure 6 is designed to accept
multi-clock domains. Each module is a synchronous module
running at its own frequency. Communications between
modules are asynchronous and they use a single-rail data
path 4-phase handshake. The wrapper includes two inde-
pendent asynchronous units. One receives frames from the
previous module and the other one sends frames to the fol-
lowing module at the same time.

Synchronous

FPGA block

Asynchronous

wrapper Send Unit

Decode

Unit

Storage

Unit

Specific Units

Synchronous module

Asynchronous

communication

Receive

Unit

Control

Unit

FIGURE 6. The asynchronous wrapper structure.

4. IMPLEMENTATIONS AND RESULTS

For the following implementations, the size of images is
320*256 with 80 interrogation windows (with a size of
32*32 pixels). The FPGA-based system is a NIOS II board
with a Stratix II 2S60 FPGA. Image data are acquired in a
100ns CCD sensor.

The initial architecture contains 4 modules, one module
for each type of operation. From this structure is added one
or more processing modules in the communication ring that
makes the execution time faster. The binary cross-correla-
tions operations are then proceed in a parallel design strategy.
As a consequence all processing module execute a binary
cross-correlation operation several times. With an architec-
ture that contains one processing module, this module per-
forms all cross-correlation operations, and generates 80 vec-
tors. With an architecture that contains two processing mod-
ules, both modules execute half of the cross-correlation oper-

ations, each processing module giving 40 vectors. And so
on…

The proposed architecture is implemented with one pro-
cessing modules up to 6 processing modules. The imple-
mentation results are given in table II.

TABLE II : Implementation results.
Nb of pro-

cessing mod-
ules

Image/sec.

Pixel clock

frequency

(MHz)

Nb of vectors

per second

1 204 16.8 16 393

2 403 33.0 32 258

3 571 46.8 45 714

4 757 62.1 60 606

5 925 75.9 74 074

6 1 063 87.1 85 106

Observation is as follow: the binary cross-correlation
operations are distributed onto all processing modules. The
parallel design strategy equally distributes the operations for
each module. As a result, the number of vectors per second
increases when the number of processing modules increases.
This FPGA-based system can handle high-speed constraints
such as more than 80000 vectors/second and be adapted to
high-speed applications. With 6 processing modules, this sys-
tem can work with a speed of 1 000 images/second (for a
320*256 image) and more than 330 images per second for a
512*512 image.

As the processing modules are inserted around the com-
munication ring, there are no restrictions in the number of
processing modules. The communication remains unchanged
and resources required for the communication between mod-
ules are few.

FIGURE 7. Number of vector per second per number of
processing modules.

Therefore, this FPGA-based system can integrate a high
number of processing modules. As shown in figure 7, the
number of processing depends on the specified speed (num-
ber of vectors per second). The image processing designer
numbers how many processing modules are required and in-
serts them in the architecture.
Theoretically, the number of processing modules is unlim-
ited. The number of required resources depends on the num-
ber on processing modules. Therefore this number of pro-
cessing modules will depend on the available FPGA re-
sources. On the other hand, the communication ring will
slow down the system for a very high number of processing

modules. Indeed, the execution time decreases for an increas-
ing number of modules but the communication time between
neighboured modules remains unchanged. Present work con-
sist in evaluating the limit (i.e. the number of processing
modules) for which the communication ring will slow down
the system.

5. CONCLUSION AND PERSPECTIVES

As a result, this FPGA-based system presents a generic
architecture that can be easily adapted to any real-time PIV
algorithms, which uses the cross-correlation technique. All
functional blocks remain unchanged only the number of pro-
cessing modules changes.

According to the speed, the image processing designer
evaluates the number of processing modules. Then, he du-
plicates an identical processing modules several times around
the communication ring without any functional modifica-
tions. All other type of blocks remain unchanged that makes
the design flow fast and reliable.

Future work consists in demonstrating that changing any
external devices does not alter the rest of the structure. The
CMOS sensor will be therefore replaced by another external
devices such as a camera or a CCD sensor with another fre-
quency. The GALS structure ensures to integrate any mod-
ules running at a different frequency. In this paper, only the
speed changes. Perspectives are to prove that this generic ar-
chitecture can be also easily modified when the size of the
image changes or the interrogation window.

REFERENCES

[1] R.J. Adrian: “Statistical properties of particle image
velocimetry measurements in turbulent flow”. Laser
Anemometry in Fluid Mechanics III, 1988.

[2] J. Nakamura, Y. Tomira, S. Honda: “Real time particle image
velocimetry using liquid crystal display”. IEEE Technology
Conference in. Advanced Technologies in Instrumentation and
Measurement, vol 3, pp 1205 - 1208l, 10-12, May 1994.

[3] C.E. Willert, M. Gharib, “Digital particle image velocimetry”,
Experiments in fluids, vol. 10, pp.81-193, 1991.

[4] J. Dubois, J. Jacquet; G. Motyl, and al.: "Design of a binary cor-
relator component and its integration in Round-About architec-
ture for real-time motion measurement". 25th International Con-
gress on High-speed photography and Photonics”. 29th Septem-
ber-3rd October 2002, Beaune, France.

[5] L. Lelong, G. Motyl, G. Jacquet, N. Bochard, F. Celle : ”Image
processing implementation on embedded system ; physical
parametres measurements by real-time correlation”. 4th

International Conference on Physics in Signal and Image
Processing, pp 225-230, 31st January-3rd February2005,
Toulouse, France.

0

10 000

20 000

30 000

40 000

50 000

60 000

70 000

80 000

90 000

0 1 2 3 4 5 6

processing modules

v
e
c
to

rs
 p

e
r

s
e
c
o

n
d

	1.Introduction
	2.PIV algorithm
	3.dedicated architecture
	3.1Different type of modules
	3.2Asynchronous wrapper

	4.implementations and results
	5.conclusion and perspectives
	References

