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Abstract
We present a mathematical analysis of the problem of image reconstruction
from truncated data in two-dimensional (2D) single-photon emission computed
tomography (SPECT). Recent results in classical tomography have shown that
accurate reconstruction of some parts of the object is possible in the presence of
truncation. We have investigated how these results extend to 2D parallel-beam
SPECT, assuming that the attenuation map is known and constant in a convex
region � that includes all activity sources. Our main result is a proof that, just
like in classical tomography accurate SPECT reconstruction at a given location
x ∈ �, does not require the data on all lines passing through �; some amount
of truncation can be tolerated. Experimental reconstruction results based on
computer-simulated data are given in support of the theory.

1. Introduction

Recently, several works have shown that classical two-dimensional (2D) tomography is not
‘all or nothing’ contrary to long-standing folklore [1–4]. That is, the measured data need not
cover the whole object for accurate reconstruction to be possible in some regions-of-interest
(ROIs). Or, in other words, each parallel-beam projection may be truncated without preventing
accurate reconstruction of some ROIs. These statements hold for any finite-size object, and this
paper investigates how they may be extended to single-photon emission computed tomography
(SPECT).
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In an idealized model, the 2D SPECT reconstruction problem amounts to finding a (tracer-
activity) function p(x, y) or p(x) with x = (x, y) from its attenuated Radon transform

(Aap)(φ, s) =
∫ ∞

−∞
p(sθ + tθ⊥) e− ∫ ∞

t
a(sθ+t ′θ⊥) dt ′ dt, (1)

where a is a known function, referred to as the attenuation map, θ = (cos φ, sin φ) and
θ⊥ = (−sin φ, cos φ). For physical reasons, the support of p is bounded. Therefore, the
integrand in (1) is non-zero over a bounded interval; this integral is written over (−∞, +∞)

for notational convenience.
In this paper, the attenuation map is assumed to be a constant µo over a convex region

� that includes all the activity, that is a convex region outside which p is zero. Under this
assumption, the SPECT reconstruction problem reduces to finding p(x) from its exponential
Radon transform

(Eµo
p)(φ, s) =

∫ ∞

−∞
p(sθ + tθ⊥) eµot dt. (2)

This reduction is achieved through a simple weighting of (Aap)(φ, s). See [5–9] for details.
Geometrically, (Eµo

p)(φ, s), just like (Aap)(φ, s), represents a weighted integral of p along
the line of direction θ⊥ at signed distance s from the origin.

For a fixed φ, the values of (Eµo
p)(φ, s) obtained by varying s define an exponential

parallel-beam projection of p. If these values are only known for a limited range of s, the
projection is said to be truncated. For example, if � is the centred disc of radius R, the
projection is truncated as long as (Eµo

p)(φ, s) is not known for all s ∈ [−R,R]. In practice, a
projection may be considered known over a given interval whenever (Eµo

p)(φ, s) is measured
over this interval with a sampling distance that is in agreement with the resolution targeted
for p.

Until 2001, theoretically exact and stable reconstruction of p from its exponential Radon
transform was investigated under the assumption that the projections of p are non-truncated
and known over 360◦. Various reconstruction methods were developed under this assumption,
see for example [5–17]. A nice theory unifying most of these methods in a common framework
was presented in [18, 19]. The 360◦ of data seemed to be necessary because the exponential
Radon transform does not present the parity property of the Radon transform (in general,
(Eµo

p)(φ + π,−s) �= (Eµo
p)(φ, s) for µo �= 0). However, in 2001, accurate reconstruction

from non-truncated projections known only over 180◦ was shown to be possible for any value
of µo [20]. The results in [20] were extended to various π -scheme data acquisitions in [21, 22],
which allow the 180◦ of data to be distributed over a union of disjoint intervals. Furthermore,
an explicit inversion formula was suggested in [23].

In this paper, we investigate image reconstruction from exponential parallel-beam
projections that are only known over 180◦ and may each be truncated. We build this
investigation on Rullgård’s results in [23]. The angular range over which the projections
are known is seen as a single interval, not a union of disjoint intervals, and, for convenience,
this interval is chosen as φ ∈ [0, π ]. Given a truncation pattern, we examine where accurate
reconstruction is possible inside �. We assume � is not only convex but also bounded.

The paper is organized in five sections. In section 2, we first reduce the inversion of
the exponential Radon transform with truncated projections to the solution of a 1D integral
equation. Then, we set up a condition under which this integral equation admits a unique and
stable inverse and we present in section 3 a numerical procedure allowing verification that this
condition is met for arbitrary values of µo. The theory is supported by simulation results in
the SPECT context, which are given in section 4. Finally, section 5 summarizes our findings
and discusses various related aspects.



SPECT with truncated data 647

2. Theory

To achieve SPECT reconstruction with truncation, we follow the steps of the theory developed
in [2] for the non-attenuated case with truncated data. First, we introduce a differentiated
backprojection (DBP) operation and show that this DBP yields a one-dimensional (1D) integral
equation for the unknown p. Then, we investigate the inversion of this integral equation.

2.1. Differentiated backprojection

Usually, the backprojection operation in computed tomography represents the adjoint operation
of the projection equation describing the data. For the exponential Radon transform, this
(unweighted) adjoint is∫ π

0
eµox·θ⊥

(Eµo
p)(φ, x · θ) dθ. (3)

However, Tretiak and Metz [8] and Gullberg and Budinger [5] noted that replacing µo by −µo

in (3) is a key step in developing an exact reconstruction formula. Noting this point, we define
the differentiated backprojection for the exponential Radon transform as

b(x) =
∫ π

0
e−µox·θ⊥

(E′
µo

p)(φ, x · θ) dφ (4)

with

(E′
µo

p)(φ, s) = ∂

∂s
(Eµo

p)(φ, s). (5)

To guarantee the existence of this DBP, we assume that p is continuously differentiable. Note
that our definition is consistent with the concept of DBP in the non-attenuated case: when µo

is equal to zero, (4) reduces to the DBP expression in [2].

2.2. Link between the DBP and the image function p

We start from (5). Replacing (Eµo
p)(φ, s) by its integral expression (2), moving the partial

derivative with respect to s within the integral and applying the chain rule, we obtain

(E′
µo

p)(φ, s) =
∫ ∞

−∞
eµot

′
θ · ( �∇p)(sθ + t ′θ⊥) dt ′. (6)

Therefore, since x = (x · θ)θ + (x · θ⊥)θ⊥,

(E′
µo

p)(φ, x · θ) =
∫ ∞

−∞
eµot

′
θ · ( �∇p)((x · θ)θ + t ′θ⊥) dt ′

=
∫ ∞

−∞
eµot

′
θ · ( �∇p)(x + (t ′ − x · θ⊥)θ⊥) dt ′. (7)

Or, equivalently, with t = t ′ − x · θ⊥, and using a second time the chain rule,

(E′
µo

p)(φ, x · θ) = eµox·θ⊥
∫ ∞

−∞
eµot θ · ( �∇p)(x + tθ⊥) dt

= −eµox·θ⊥
∫ ∞

−∞

eµot

t

∂

∂φ
{p(x + tθ⊥)} dt. (8)
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The insertion of this result in the DBP (4) with a change in the order of integration (φ first, t
second) yields the sought link:

b(x) = −
∫ ∞

−∞

eµot

t
[p(x + tθ⊥)]π0 dt

= −
∫ ∞

−∞

eµot

t
(p(x, y − t) − p(x, y + t)) dt (9)

= −−
∫ ∞

−∞

eµot

t
p(x, y − t) dt + −

∫ ∞

−∞

eµot

t
p(x, y + t) dt (10)

with x = (x, y).
Note the vertically centred horizontal bar over the integral symbols in (10). Each integral

in (10) is only meaningful in the sense of a Cauchy principal value, that is (10) should be
understood as

b(x) = − lim
ε→0,ε>0

∫
|t |>ε

eµot

t
p(x, y − t) dt + lim

ε→0,ε>0

∫
|t |>ε

eµot

t
p(x, y + t) dt. (11)

The bar over each integral symbol in (10) emphasizes this understanding. On the other hand,
no bar was needed over the integral symbol in (9) because the numerator in (9) behaves like a
multiple of t near t = 0, so that the integrand in (9) is not singular at t = 0.

Equation (10) is easily rewritten as

b(x, y) = −2π −
∫ ∞

−∞

cosh µo(y − y ′)
π(y − y ′)

p(x, y ′) dy ′. (12)

We see thus that b(x, y) is (up to a factor of −2π ) a 1D convolution of p(x, y) with
cosh(µoy)/(πy) at fixed x. For µo tending towards 0, this convolution kernel reduces to
1/(πy), and b(x, y) becomes (up to the factor of −2π ) the Hilbert transform of p(x, y) at
fixed x, in agreement with the results in [2].

In practice, (12) is only of interest for (x, y) ∈ �, the bounded and convex region outside
which p is known to be zero. Let (x, Lx) and (x, Ux) be the end points of the intersection of
� with the line parallel to the y-axis through a point (x, y) ∈ �. Using this notation, we have

b(x, y) = −2π −
∫ Ux

Lx

cosh µo(y − y ′)
π(y − y ′)

p(x, y ′) dy ′ for (x, y) ∈ �. (13)

This expression is preferred to (12) because it shows explicitly that the integral in y ′ has finite
bounds. For example, if � is a centred disc of radius R, Ux = −Lx = √

R2 − x2.
Equation (13) reduces the reconstruction problem to solving a 1D integral equation with

a convolution kernel. However, note that p is not readily found from b using a simple 1D
deconvolution, because the convolution kernel cosh(µoy)/(πy) grows exponentially with
increasing y.

At this stage, we would like to emphasize that (13) together with (4) is not an original
contribution of this paper. Rullgård [23] recently developed this result, albeit using a somewhat
different notation. Furthermore, Rullgård [23] showed that there exists a generalized function
(distribution) ρ such that

p(x, y) = −
∫ y+Dx

y−Dx

ρ(y − y ′)b(x, y ′) dy ′ for (x, y) ∈ �, (14)

where Dx = Ux −Lx . Note that the limits of integration in (14) far extend beyond the [Lx,Ux]
interval. A method to obtain a polynomial approximation of ρ was also described in [23].
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Figure 1. Illustration of allowed data truncation. The activity sources are within the ellipse �.
(a) According to Rullgård’s results [23], accurate reconstruction at (x, y) only requires the data on
the lines that cross a neighbourhood of the vertical line segment through (x, y). Line L2 is thus
needed but not line L1. (b) According to Rullgård’s results [23], accurate reconstruction within the
depicted ROI requires the data on all lines passing through the shaded vertical strip. (c) According
to our results, accurate reconstruction within the depicted ROI only requires the data on all lines
passing through the intersection of the shaded vertical strip with �. In particular, line L2 is not
needed.

Although not pointed out in [23], (14) represents a first proof that reconstruction of an
ROI in SPECT with uniform attenuation does not require knowledge of Eµo

p on all lines
passing through the region � where the activity lies. To obtain p at a given location (x, y) ∈ �

according to (14), only the values of Eµo
p required to compute b(x, y ′) with |y ′ −y| < Dx are

needed. These values correspond to the lines that meet a neighbourhood of the line segment
connecting (x, y − Dx) to (x, y + Dx), hence Eµo

p need not be available for all lines passing
through the activity region. See figure 1(a) for an illustration of this assertion and figure 1(b)
for its extension to an ROI.

The methodology outlined in equations (4)–(14) for accurate reconstruction from
truncated data is conceptually similar to the approach developed in [2] for classical tomography.
However, we observe a fundamental difference in terms of allowed data truncation: following
the theory in [2] when µo = 0 only the values of Eµo

p for the lines that intersect a
neighbourhood of the line segment from (x, Lx) to (x, Ux) are needed to accurately reconstruct
p(x, y). We improve on Rullgård’s result, equation (14), by discarding the convolution and
relaxing the measurement requirement. Specifically, we show that

A function p that is continuously differentiable on � can be accurately reconstructed
at a given location (x, y) ∈ �, if for each φ ∈ [0, π ] the values of Eµo

p are known
(measured) for just those lines that intersect a neighbourhood of the line segment
from (x, Lx) to (x, Ux).

This statement holds for any value of µo that satisfies a condition given in section 2.4
(equation (45)). Numerical evaluation of this condition reveals that it is satisfied for a fine
sampling of a wide range of values of µo that effectively covers all medical applications of
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SPECT. See figure 1(c) for a visual illustration of the statement in comparison with truncation
allowed by Rullgård’s formula.

To prove our statement, the inversion problem is recast in the following more compact
form: reconstruct a function f (τ) with |τ | � 1 assuming that

g(t) = −
∫ 1

−1

cosh µ(t − τ)

π(t − τ)
f (τ) dτ (15)

is known for |t | � 1 and that

mµ =
∫ 1

−1
f (τ) cosh µτ dτ (16)

is also a known quantity, where µ is some constant. Solving this more compact problem
implies proving our statement because, first, (13) is easily cast into (15) through the affine
change of variables that maps the interval [Lx,Ux] into [−1, 1] and yields

µ = µo

Ux − Lx

2
, (17)

f (τ) = p

(
x,

Ux − Lx

2
τ +

Ux + Lx

2

)
, (18)

g(t) = 1

π(Lx − Ux)
b

(
x,

Ux − Lx

2
t +

Ux + Lx

2

)
. (19)

Second, mµ may be considered as a known quantity because (Eµo
p)(0, x) and (Eµo

p)(π,−x)

are part of the data we require for reconstruction at (x, y) ∈ � and

mµ = 2

Ux − Lx

{
e−µo

Ux +Lx
2 (Eµo

p(0, x)) + eµo
Ux +Lx

2 (Eµo
p(π,−x))

}
. (20)

In medical applications of SPECT, the value of µo depends both on the radionuclide and
on the type of tissue. For the most common nuclide used in SPECT, 99mTc, typical values of
µo range between 0.15 cm−1 for soft tissues such as muscle and 0.21 cm−1 for bones. For a
head scan the diameter of � would be about 20 cm, yielding µ = 1.5 for µo = 0.15 cm−1.
For a cardiac scan, the diameter of � might be as large as 80 cm, leading to µ = 6 for µ0 =
0.15 cm−1.

2.3. Conversion to a Fredholm equation of the second kind

We convert the problem defined by equations (15) and (16) to a Fredholm equation of the
second kind, as explained below.

Let g0(t) be the expression of g(t) in the particular case where µ = 0. According to
Söhngen [24] and Tricomi [25],

f (t) = 1√
1 − t2

{
−−

∫ 1

−1

1

π(t − ρ)

√
1 − ρ2g0(ρ) dρ +

m0

π

}
(21)

for |t | < 1, with

m0 =
∫ 1

−1
f (τ) dτ. (22)

Also, from (15),

g0(ρ) = g(ρ) − µ

∫ 1

−1
c(µ(ρ − τ))f (τ ) dτ (23)
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with

c(q) =
{
(cosh q − 1)/(πq) if q �= 0
0 otherwise.

(24)

Note that there is no Cauchy principal value symbol in the second term of the right-hand
side of (23) because c(q) behaves like q/(2π) near q = 0, unlike (cosh µq)/(πq) in (15),
which behaves like 1/(πq) near q = 0. Also note that c(q) is a smooth function. We insert
equation (23) into (21). This yields

f (t)
√

1 − t2 = −−
∫ 1

−1

1

π(t − ρ)

√
1 − ρ2g(ρ) dρ +

m0

π

+ µ −
∫ 1

−1
dρ

√
1 − ρ2

π(t − ρ)

∫ 1

−1
dτf (τ)c(µ(ρ − τ)). (25)

Or, switching the order of integration in the last term (see appendix A) and introducing
intermediate quantities,

h(t) = hd(t) +
m0

π
+

∫ 1

−1
h(τ)

1√
1 − τ 2

kµ(t, τ ) dτ, (26)

with

h(t) = f (t)
√

1 − t2, (27)

hd(t) = −−
∫ 1

−1

1

π(t − ρ)

√
1 − ρ2g(ρ) dρ, (28)

kµ(t, τ ) = µ −
∫ 1

−1

√
1 − ρ2

π(t − ρ)
c(µ(ρ − τ)) dρ. (29)

Equation (26) is a Fredholm integral equation of the second kind for h, with hd directly
obtainable from the data. However, this equation is not completely satisfactory because m0 is
only known when µ = 0. To circumvent the problem, we replace m0 by the quantity mµ of
equation (16), incorporating the difference between m0 and mµ within the integral kernel. In
operator notation, the integral equation becomes

h = hd +
1

π
mµ + Kh, (30)

with

(Kh)(t) =
∫ 1

−1
h(τ)

1√
1 − τ 2

kµ(t, τ ) dτ, (31)

where

kµ(t, τ ) = kµ(t, τ ) +
1

π
(1 − cosh µτ). (32)

In this equation, the two ‘forcing terms’, hd and mµ, are now both known quantities.
Recall from, e.g., [25] that

−
∫ 1

−1

√
1 − ρ2

π(t − ρ)
dρ = t if |t | � 1. (33)

Using this result, kµ(t, τ ) in (29) can be rewritten in the following form:

kµ(t, τ ) = µtc(µ(t − τ)) + µ

∫ 1

−1

√
1 − ρ2

c(µ(ρ − τ)) − c(µ(t − τ))

π(t − ρ)
dρ if |t | � 1.

(34)
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This expression does not include a Cauchy principal value anymore and shows us since c(r)

is a smooth function that kµ(t, τ ) and therefore kµ(t, τ ) in (32) are continuous over the region
(t, τ ) ∈ [−1, 1] × [−1, 1].

2.4. Solution of the integral equation

Equation (30) is not easier to explicitly solve than (15) but the fact that the singular Cauchy
kernel in (15) has been replaced by a continuous Fredholm kernel (equation (32)) greatly
simplifies the analysis of existence, uniqueness and stability.

First, we observe that if p and therefore f are continuously differentiable, then h and hd

in equations (27) and (28) are in the Hilbert space H = L2
w(−1, 1) with norm

‖h‖2 =
∫ 1

−1

|h(t)|2√
1 − t2

dt. (35)

Furthermore, the operator K defined by (31) is compact in H, because the kernel (32) is
continuous and thus square integrable, that is∫ 1

−1
dt

∫ 1

−1
dτ

1√
1 − τ 2

1√
1 − t2

|kµ(t, τ )|2 < ∞. (36)

See for instance chapter 9 in [26] for a proof of compactness for operators with square
integrable kernels.

Given the above observation, we analyse equation (30) in H, applying the Fredholm
alternative theorem [27]. This theorem guarantees that (30) admits for any hd + mµ/π a
unique solution that depends continuously on hd + mµ/π provided the parameter µ is such
that the homogeneous equation Kh = h has only the trivial solution h = 0. In other words,
the inverse operator (I − K)−1 exists and is bounded when Kh = h implies h = 0. The
bound ‖(I − K)−1‖ = C is such that

‖(I − K)−1h‖ � C‖h‖ for any h ∈ H (37)

or, equivalently,

‖(I − K)h‖ � C−1‖h‖ for any h ∈ H. (38)

Inequality (37) is important because it determines the stability property of the solution to (30).
Specifically, suppose only some approximation hε

d + mε
µ/π of the forcing term hd + mµ/π is

known, with ∥∥∥∥
(

hε
d +

1

π
mε

µ

)
−

(
hd +

1

π
mµ

)∥∥∥∥ � ε (39)

for some ε > 0. Then, the solution hε corresponding to hε
d +mε

µ/π approximates the unknown
h as follows:

‖hε − h‖ =
∥∥∥∥(I − K)−1

((
hε

d +
1

π
mε

µ

)
−

(
hd +

1

π
mµ

))∥∥∥∥ � Cε. (40)

Assume a strictly positive quantity Ĉ is found such that

‖(I − K)h‖ � Ĉ−1‖h‖ for any h ∈ H. (41)

Then, the equation Kh = h can only have h = 0 for solution and, from the Fredholm
alternative theorem, the inverse (I − K)−1 exists and is bounded with C � Ĉ. Hence, the
existence and uniqueness of the solution to (30) and the stability of this solution in the presence
of noise are all ensured by finding a strictly positive quantity Ĉ satisfying (41).
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A quantity such as Ĉ may be obtained through a decomposition of K into the sum of
two terms KM and RM , where KM is a compact operator that approximates K and RM is the
difference between K and KM . Suppose we can find positive numbers AM and BM such that
for any h ∈ H

‖(I − KM)h‖ � AM‖h‖ (42)

‖RMh‖ � BM‖h‖. (43)

The numbers A−1
M and BM represent, respectively, an upper bound on the norm of the operator

(I − KM)−1 and on the norm of the approximation error RM . Then, for any h ∈ H ,

‖(I − K)h‖ � ‖(I − KM)h‖ − ‖RMh‖ � (AM − BM)‖h‖, (44)

which is similar to (41). Thus, provided AM > BM , equations (38) and (40) are satisfied with

C � 1

AM − BM

. (45)

In section 3, we introduce a degenerate-kernel approximation KM of K that comes with
appropriate numbers AM and BM , allowing us to numerically verify existence, uniqueness and
stability, according to the description above.

3. Numerical analysis

Successive approximations, degenerate-kernel approximation, quadrature methods and
projection methods are standard textbook methods for the numerical solution of integral
equations [27, 28]. The method using degenerate-kernel approximation is the simplest in
terms of implementation and error analysis, but is often less efficient than either the quadrature
method or the projection method. However, for kernels involving hyperbolic functions,
Taylor expansions provide in some cases a way to achieve an efficient degenerate-kernel
approximation. We report here on such an approximation and its use for the analysis of the
inversion of (30). More specifically, we first explain below how Taylor expansions can be used
to obtain a degenerate-kernel approximation for K. Next, we show that the combination of this
approximation with the strategy outlined in section 2.4 yields a numerical method to check
whether (30) has a unique and stable solution for a given µ. We have applied this method
and proved thereby that (30) has a unique and stable solution for a fine sampling of µ that
effectively covers all medical applications of SPECT.

3.1. Series expansion for K

Using Taylor series expansions as explained in appendix B, we found the following series
expression for the kernel of K in equation (32):

kµ(t, τ ) =
∞∑

n=0

(−µ)n

πn!
an(t)rn(µτ) for (t, τ ) ∈ [−1, 1] × [−1, 1] (46)

where an(t) and rn(µτ) are both functions exhibiting attractive properties.
The function an(t) is a polynomial of degree n that can be obtained by recurrence according

to the relation

an(t) = tan−1(t) − ηn−1 for n � 1, (47)
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Figure 2. Plot of polynomials an(t) for n = 0, . . . , 5. The interval |t | � 1 is the region for which
all an(t) are required for reconstruction, independent of µ.

with a0(t) = 1 and with η0 = 0, η1 = 1/2 and ηn+2 = nηn/(n + 3) for n � 0. The important
feature of an(t) is that

|an(t)| � 2 for n � 0. (48)

The function rn(q) is very similar to either cosh q or sinh q depending on the parity of n,
with the sinh q behaviour exhibited in the case where n is odd. This function is best described
by the following series expression:

rn(q) =




1 − cosh q for n = 0
∞∑

m=0

n

2m + n

q2m

(2m)!
for n > 0 and even

∞∑
m=0

n

2m + n + 1

q2m+1

(2m + 1)!
for n > 0 and odd.

(49)

The important feature of rn(q) is that

|rn(q)| � cosh q for n � 0. (50)

Recalling that sinh |q| < cosh q, this feature is easily derived from (49). Figures 2 and 3 give
an illustration of functions an(t) and rn(q), respectively.

The series expression (46) for the kernel of K is attractive because an(t) and rn(q) are
smooth functions that are easily computed and because, more importantly, an(t) and rn(q) are
uniformly bounded sequences of functions, so that (46) is a rapidly converging series. More
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Figure 3. Plot of functions rn(q) for n = 0, . . . , 7. Left: for n even. Right: for n odd. The interval
|z| � 4 includes the domain over which rn(q) is required for reconstruction with any µ � 4.

precisely, if kµ,M(t, τ ) is the result of truncating (46) to the first M terms, then (48) and (50)
yield the following approximation error for |t | � 1 and |τ | � 1:

|kµ(t, τ ) − kµ,M(t, τ )| � 2

π
cosh µ

∞∑
n=M

µn

n!

� 2

π
cosh µ

(
eµ −

M−1∑
n=0

µn

n!

)
. (51)

This error is smaller than 10−8 for M = 40 and any µ � 8.
We use kµ,M(t, τ ) to split K into the sum of two terms KM and RM and we assess the

invertibility of (30) through this decomposition, following the theory in section 2.4. The
specific definition for KM is

(KMh)(t) =
∫ 1

−1
h(τ)

1√
1 − τ 2

kµ,M(t, τ ) dτ (52)

for any h ∈ H . Thus, from (46),

(KMh)(t) =
M−1∑
n=0

(−µ)n

πn!
βnan(t) (53)

with

βn =
∫ 1

−1

rn(µτ)h(τ)√
1 − τ 2

dτ, n = 0, 1, . . . , M − 1. (54)

By definition, KM is a degenerate-kernel operator and as such is compact in H. Below, bounds
AM and BM on I − KM and the residual RM are given following equations (42) and (43),
respectively.



656 F Noo et al

3.2. Expression for AM

According to (42), AM exists only if the operator I − KM is invertible and AM defines then a
bound on the inverse of this operator. So, to find AM , we need to investigate the problem of
finding h ∈ H such that

(I − KM)h = hg (55)

for any given hg ∈ H . Following standard theory for the solution of integral equations with
degenerate kernels [27], we use (53) to replace this equation by

h(t) = hg(t) +
M−1∑
n=0

(−µ)n

πn!
βnan(t) (56)

with βn given by (54). Then, we replace h(τ) on the right-hand side of equation (54) by its
expression from (56), and obtain

βm = γm +
M−1∑
n=0

Bmnβn, for m = 0, 1, . . . , M − 1 (57)

with

Bmn = (−µ)n

πn!

∫ 1

−1

rm(µt)an(t)√
1 − t2

dt, m � 0, n � 0. (58)

and

γm =
∫ 1

−1

rm(µt)hg(t)√
1 − t2

dt. (59)

Equation (57) defines a system of M linear equations for M unknowns, namely the
coefficients βn with n = 0, . . . ,M − 1. Let DM be the determinant of the matrix of this
system of equations; when µ is zero, DM equals 1 because then Bmn = 0 for n > 0 and
B00 = 0 (recall from (49) that r0(0) = 0). If DM �= 0, then I − KM has a bounded inverse.
For now, we assume this condition holds and write the solution of (57) as

βn =
M−1∑
m=0

Cnmγm. (60)

Using this notation, we find an expression for AM as follows. First, we note from (60) that

|βn| �
M−1∑
m=0

|Cnm||γm|. (61)

Next, we apply the Cauchy–Schwartz relation to (59), which gives

|γm| � ‖hg‖ · ‖rm(µt)‖, (62)

so that from (61)

|βn| � ‖hg‖
M−1∑
m=0

|Cnm|‖rm(µt)‖. (63)

Finally, we apply the triangle inequality to (56). This yields with (63)

‖h‖ � ‖hg‖ +
M−1∑
n=0

‖an(t)‖ µn

πn!
|βn|

� ‖hg‖
(

1 +
M−1∑

m,n=0

‖an(t)‖ µn

πn!
|Cnm|‖rm(µt)‖

)
. (64)



SPECT with truncated data 657

From (55), this last result is equivalent to

‖(I − KM)h‖ �
(

1 +
M−1∑

m,n=0

‖an(t)‖ µn

πn!
|Cnm|‖rm(µt)‖

)−1

‖h‖, (65)

which yields, comparing with (42),

AM =
(

1 +
M−1∑

m,n=0

‖an(t)‖ µn

πn!
|Cnm|‖rm(µt)‖

)−1

. (66)

Recall Dm �= 0 was assumed earlier; expression (66) for AM applies only when Dm �= 0
so that the coefficients Cmn, which form the inverse of the matrix of the system of equations
in (57), are well defined.

3.3. Expression for BM

According to (43), BM is any upper bound on the norm of the residual operator RM = K−KM .
From (31) and (52), RM is an operator in H with kµ(t, τ ) − kµ,M(t, τ ) for kernel. Hence,

‖RM‖ �
(∫ 1

−1
dt

1√
1 − t2

∫ 1

−1
dτ

1√
1 − τ 2

|kµ(t, τ ) − kµ,M(t, τ )|2
)1/2

(67)

(see for example [26]). Applying (51), this relation yields

‖RM‖ � 2 cosh µ

(
eµ −

M−1∑
n=0

µn

n!

)
, (68)

so that the following expression may be taken for BM :

BM = 2 cosh µ

(
eµ −

M−1∑
n=0

µn

n!

)
. (69)

3.4. Existence, uniqueness and stability

Now that expressions have been found for AM and BM , the existence, uniqueness and stability
of the solution to (30) can be proved for any value of µ through a numerical evaluation of
these expressions. If a value of M can be found such that DM �= 0 and AM > BM , then (30)
admits a unique and stable solution. Appendix C describes an efficient method to compute the
matrix elements Bmn and thus to facilitate the numerical evaluation of AM in (66).

We computed DM,AM and BM for M = 20 and a fine uniform sampling of µ over the
interval [0, 8]. The sampling distance was 0.0001 and the computation outcome is illustrated
in figure 4. This figure shows that DM was always larger than 1, thus (57) was always
invertible. The figure also shows that AM was larger than BM for µ < 4.7, thus proving (30)
has a unique and stable solution for all sampled values of µ below 4.7.

Note that the result in figure 4 does not preclude (30) from having a unique and stable
solution for µ larger than 4.7. To illustrate this point, we ran the experiment again with
M = 40. The outcome of this experiment is illustrated in figure 5. This figure shows that the
increase in M had little effect on the values of DM and AM but significantly changed those of
BM , so that BM is now smaller than AM up to at least µ = 8.

The experimental results above prove that (30) admits a unique and stable solution for
µ = k/10000, k = 0, . . . , 80000. The obtained plots also strongly suggest a stable solution
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Figure 4. Left: plot of log10 DM as a function of µ, where DM is the determinant of the system
of equations defined by (57); the plot shows that DM � 1 for all sampled values of µ. Right:
plot of log10 AM and log10 BM as functions of µ. When AM and BM are such that AM > BM , or
equivalently log10 AM > log10 BM , existence, uniqueness and stability of the solution to (30) are
guaranteed. Here, M = 20 and AM is larger than BM for all sampled values of µ below 4.7.

Figure 5. Same plots as in figure 4 but for M = 40. The graphs of DM and AM are similar to
those in figure 4, but not the graph of BM . For M = 40, we see that BM remains smaller than AM

up to at least µ = 8.

for all values of µ ∈ [0, 8]. Note that AM seems to decrease exponentially with increasing µ,
which negatively affects the stability of the inversion, as outlined by equations (40) and (45)
in section 2.4. The plot of 1/(AM − BM) is given in figure 6 for M = 40 and µ ∈ [0, 4], a
range that covers most patients in medical applications of SPECT. In this figure, the stability
appears clearly very robust for µ < 1 but beyond that starts degrading exponentially. This
degradation is not surprising given the exponential behaviour of the convolution kernel that
relates the data to the sought function in the initial problem (equation (15)).

4. Experimental results

Numerical testing using a SPECT version of the Shepp–Logan phantom [29] was performed
under various conditions. This phantom is displayed in figure 7, while table 1 gives a
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Figure 6. Plot of 1/(AM − BM) as a function of µ for M = 40. This quantity is an upper bound
on how errors in the DBP result due to data noise are amplified through the inversion of (30), as
explained by equations (40) and (45).

Figure 7. Display of the Shepp–Logan phantom used for testing. Grey scale: [0.15, 0.45]. The
central rectangular box drawn over the phantom was used to truncate the data, as described in the
text.

description of the ellipses that form this phantom by addition. Analytical formulae were used
to sample the exponential Radon transform of the phantom for three values of µo, namely
0.0 cm−1, 0.15 cm−1 and 0.3 cm−1. A total of 1000 projections with 400 rays per projection
was simulated for each value of µo. The samples in φ were at angles φk = kπ/999 with
k = 0, . . . , 999, and the samples in s were at positions s = (−9.975 + 0.05l) cm with
l = 0, . . . , 399. None of the simulated projections was truncated.

Reconstructions from the simulated data were performed with and without added Poisson
noise and also with and without introduced truncation. These reconstructions used a centred
square of side 20 cm for �, the bounded and convex set that includes all activity sources. The
first reconstruction step was the computation of the DBP of equation (4) onto a centred
Cartesian grid of 400 × 400 square pixels of width 0.05 cm. This step reduced the
reconstruction problem into 400 integral equations, one for each sampled value of x and
given each by (13) with Ux = −Lx = 10 cm. Next, each integral equation was converted into
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Table 1. Definition of the ellipses forming the SPECT version of the Shepp–Logan phantom by
addition.

Centre (cm) 1st axis (cm) 2nd axis (cm) Polar angle (◦) Intensity

(0, 0) 6.9 9.2 0 0.5
(0, −0.184) 6.624 8.74 0 −0.2
(2.2, 0) 3.1 1.1 72 −0.2
(−2.2, 0) 4.1 1.6 108 −0.2
(0, 3.5) 2.1 2.5 0 0.1
(0, 1) 0.46 0.46 0 0.1
(0, −1) 0.46 0.46 0 0.1
(−0.8, −6.05) 0.46 0.23 0 0.1
(0, −6.05) 0.23 0.23 0 0.1
(0.6, −6.05) 0.23 0.46 0 0.1

equation (30) using µ = 10µo, according to (17). The forcing term hd in (30) was computed
using a band-limited version of the Hilbert transform kernel, as explained in [2]. Finally, each
instance of (30) was inverted using the degenerate-kernel approximation of equation (56) with
M = 20 and hg = hd + mµ/π .

Truncation was introduced by setting to zero any sample that corresponded to a line not
going through the rectangular box drawn over the phantom in figure 7. The width of this
box was 4 cm. According to our theory, accurate reconstruction should be possible anywhere
within this box.

Poisson noise was added following the standard procedure, assuming a total count of 109

photons and a uniform attenuation map of support identical to the support of the phantom.
For completeness, we now summarize this procedure: (i) the samples of the exponential
Radon transform were converted into samples of the attenuated Radon transform, (ii) each
resulting sample was scaled so that the sum of the samples become 109, (iii) each scaled
sample was replaced by one realization of a Poisson variable of mean equal to the value of
the scaled sample, (iv) each noisy sample was scaled back down and then converted back to
noisy samples of the exponential Radon transform. The conversion forth and back between
the exponential and the attenuated Radon transform followed the equations in [5].

Figure 8 shows the reconstruction results from non-truncated data. As expected, the larger
the value of µo the more noisy the reconstruction when noise is added to the data. Even in the
absence of noise, we observe that a larger value of µo results in larger discretization errors.

Figure 9 shows the reconstruction results from truncated data. Outside the rectangular
box, no accurate reconstruction was expected and this is clearly visible. However, inside
the rectangular box, the reconstruction appears as accurate as in the non-truncated case, as
predicted by the theory in this paper. Figure 10 compares the profiles along the line x = 0 and
gives thus a quantitative picture of discretization errors.

In both figures 8 and 9, the noise in the reconstructions appears strongly spatially variant.
We attribute this variance to the mean value of the exponential weight in the expression of the
DBP. Consider for example the computation of the DBP at y = 0. In this case, the exponential
weight is exp(−µx sin φ). Recalling that we use φ ∈ [0, π ], sin φ � 0 and therefore this
weight is larger than one for any positive x and smaller than one for any negative x. Hence,
data noise gets more amplified in the reconstruction as x increases.

5. Conclusions and discussion

This paper presented an analysis of the problem of image reconstruction from truncated
projections in SPECT. For this analysis, we assumed that the attenuation map is constant in
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Figure 8. Reconstructions with no data truncation. Grey scale: [0.15, 0.45]. Top row: without
noise. Bottom row: with added Poisson noise corresponding to a total count of 109 photons. From
left to right, in each row, µo is successively 0 cm−1, 0.15 cm−1 and 0.3 cm−1.

Figure 9. Reconstructions with data truncation such that any measurement corresponding to a line
not passing through the rectangular box in figure 7 was discarded. Grey scale: [0.15, 0.45]. Top
row: without noise. Bottom row: with added Poisson noise corresponding to a total count of 109

photons. From left to right, in each row, µo is successively 0 cm−1, 0.15 cm−1 and 0.3 cm−1.
Accurate reconstruction is only expected within the rectangular box.

a convex region that includes all activity sources, so that the exponential Radon transform
could be used to model the mathematical relation between the projections and the sought
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Figure 10. Plots along the line x = 0 in the Shepp–Logan phantom. Top left: ground truth. The
other plots correspond to the reconstructions in the first row of figure 9, i.e. from non-noisy but
truncated data. Top right: µo = 0. Bottom left: µo = 0.15 cm−1. Bottom right: µo = 0.3 cm−1.

activity function. Also, the projections were assumed to be known only over 180◦. The
analysis was based on the concept of DBP, introduced earlier by Rullgård [23]. This concept
reduces the reconstruction problem to a 1D integral equation for which Rullgård found a
deconvolution-type inversion formula. We noticed first that Rullgård’s result implies exact
and stable reconstruction of a ROI is possible from truncated data. Next, we presented a
shift-variant method as a substitute to Rullgård’s deconvolution formula for inversion of the
1D integral equation resulting from the DBP. Using this shift-variant method, we proved that
exact and stable reconstruction of a given ROI is possible with even less restriction on the
data than required by Rullgård’s formula. The proof was given for a broad range of values
of the attenuation coefficient that covers all medical applications of SPECT. The theory was
supported by simulated results in the SPECT context.

The improvement on the pattern of allowed truncation for reconstruction of a given ROI
is the main result of this paper. Though any appropriate iterative reconstruction algorithm
could be used to take advantage of this result, our shift-variant inversion method also provides
an efficient reconstruction algorithm, the efficacy of which was demonstrated using simulated
data. In this demonstration, the data were finely sampled and simulated with a high photon
count since the primary goal was to support the theory with numerical examples. Evaluations
with less ideal data are reported in [30].

The theory we presented defines an extension of results published in [2] for classical
tomography. Compared to the non-attenuated case, the particular 180◦ angular range over
which the projections are known seems to play a critical role in the pattern of truncation
that is allowed for reconstruction of a given ROI. This difference arises from the fact that
projections that are 180◦ apart differ from each other in the presence of attenuation, unlike in
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the non-attenuated case where any 180◦ angular interval of measurements provides the same
complete set of measurements.

As mentioned at the beginning of this section, our theory is not valid for arbitrary non-
uniform attenuation maps. Remarkable findings have been published recently on a general
inversion of the attenuated Radon transform [31–38], see [39] for an overview. These findings
allow accurate reconstruction with attenuation maps that are non-uniform over the activity
region. However, they assume that the projections are known over 360◦, except in [36, 37]
and [38] where early theories are laid down for reconstruction from data over 180◦. And,
more importantly, [31–39] assume non-truncated projections. The problem of inverting the
attenuated Radon transform for regional reconstruction from truncated projections remains
open.

The ability to handle truncation is significant for SPECT, particularly when using
converging collimators to focus the data acquisition on a given ROI. Converging collimators
offer an improved trade-off between detection efficiency and spatial resolution, but this
improvement is usually offset by data truncation difficulties. The results in this paper offer
a better understanding of conditions under which quantitative reconstruction with converging
collimators is guaranteed in the presence of truncation, disregarding the analytical or iterative
nature of the algorithm used for reconstruction.
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Appendix A

We briefly justify here the switching in the order of integration that was used to step from
(25) to (26). This switching is valid for any square integrable function f as can be seen by
recalling from (24) that c is a smooth function and by rewriting (25) in the following form:

−
∫ 1

−1
dρ

√
1 − ρ2

π(t − ρ)

∫ 1

−1
dτf (τ)c(µ(ρ − τ))

=
∫ 1

−1
dρ

√
1 − ρ2

∫ 1

−1
dτf (τ)

c(µ(ρ − τ)) − c(µ(t − τ))

π(t − ρ)

+

(
−
∫ 1

−1
dρ

√
1 − ρ2

π(t − ρ)

) (∫ 1

−1
dτf (τ)c(µ(t − τ))

)
. (A.1)

In the first term, there is not singularity anymore at t = ρ since c is a smooth function, so
switching the order of integration is allowed for this term. In the second term, the two integrals
are independent and their order can thus be switched. Recombining the two terms together
after carrying order switching in each of them yields the same result as directly changing the
order of integration in the initial double integral, even though the first integral is only defined
as a Cauchy principal value.

Appendix B

This appendix explains how to derive the series expansion (46) of kµ(t, τ ), the kernel of K,
that was given in section 3.1.
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Consider the following Taylor series expansion of c(µ(ρ − τ)), which appears in the first
term of kµ(t, τ ) according to equations (32) and (29):

c(µ(ρ − τ)) =
∞∑

n=0

(µρ)n

n!
c(n)(−µτ) (B.1)

where c(n) is the nth derivative of c. From the definition (24) of c, c(n)(−q) = (−1)n+1c(n)(q)

and defining

c(n)(q) = rn+1(q)

π(n + 1)
, (B.2)

we obtain

c(µ(ρ − τ)) = −
∞∑

n=0

(−µρ)n

π(n + 1)!
rn+1(µτ). (B.3)

The insertion of this expansion into (29) gives

kµ(t, τ ) =
∞∑

n=0

(−µ)n+1

π(n + 1)!
rn+1(µτ)an+1(t) (B.4)

=
∞∑

n=1

(−µ)n

πn!
rn(µτ)an(t) (B.5)

where

an(t) = −
∫ 1

−1

√
1 − ρ2

π(t − ρ)
ρn−1 dρ. (B.6)

At this stage, we define a0(t) = 1 and r0(q) = 1 − cosh q, so that from (32)

kµ(t, τ ) =
∞∑

n=0

(−µ)n

πn!
rn(µτ)an(t). (B.7)

Equation (B.7) has the same form as (46), the sought expansion. To complete the proof, we
need to show that the introduced functions rn(q) and an(t) are as defined in section 3.1. Using
Taylor series expansion around q = 0, we have from (24)

c(q) = 1

π

∞∑
m=0

1

2m + 2

q2m+1

(2m + 1)!
(B.8)

and, consequently,

c(n)(q) = 1

π

∞∑
m=(n− mod (n,2))/2

1

2m + 2

q2m+1−n

(2m + 1 − n)!
(B.9)

= 1

π

∞∑
m=0

1

2m + n + 1 + j

q2m+j

(2m + j)!
, j = mod(n + 1, 2). (B.10)

The combination of this expression with (B.2) yields equation (49) for rn(q).
Now, the case of an(t) is discussed. The recurrence relation of equation (47) is first

proved, then the bound (48). First, we know from Tricomi [25] that a1(t) = t for |t | < 1,
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which validates (47) for n = 1. For n > 1, the integral in (B.6) is split into two integrals using
the relation ρn−1 = (ρ − t + t)ρn−2:

an(t) = − 1

π

∫ 1

−1

√
1 − ρ2ρn−2 dρ + t−

∫ 1

−1

√
1 − ρ2

π(t − ρ)
ρn−2 dρ

= −ηn−1 + tan−1(t) (B.11)

with

ηn = 1

π

∫ 1

−1

√
1 − ρ2ρn−1 dρ, n � 1. (B.12)

From (B.12), one finds η1 = 1/2, η2 = 0 and ηn+2 = nηn/(n + 3) for n > 0, as expected.
Finally, to get the bound (48), note that (B.11) implies

|an(t)| � |an−1(t)| + ηn−1 for |t | � 1 and n � 1. (B.13)

Given that a0(t) = 1 and η0 = 0 by definition, successive applications of this relation yield

|an(t)| � 1 +
n−1∑
q=0

ηq � 1 +
∞∑

q=1

ηq, (B.14)

i.e., from (B.12)

|an(t)| � 1 +
∫ 1

−1

√
1 − ρ2

π

∞∑
q=1

ρq−1 dρ � 1 +
∫ 1

−1

√
1 + ρ

1 − ρ
dρ. (B.15)

Hence, |an(t)| � 2 for |t | � 1 and n � 0.

Appendix C

This appendix briefly describes an efficient method to compute the integral in the definition
(58) of the matrix element Bmn. First, let

Apn =
∫ 1

−1

tpan(t)√
1 − t2

dt. (C.1)

From the recurrence relation (47) for an(t),

Apn = Ap+1,n−1 − πρpηn−1 (C.2)

with

ρp = 1

π

∫ 1

−1

tp√
1 − t2

dt. (C.3)

From (C.3), ρ0 = 1, ρ1 = 0 and ρp+2 = ρp(p +1)/(p +2). Therefore, noting that Ap,0 = πρp

since a0(t) = 1, (C.2) may be used to quickly compute a range of values of Apn.
Now, recall from (49) that a rapidly converging power series expansion is available for

rm(µt). Using the following general notation for this series,

rm(µt) =
∞∑

p=0

b(m)
p tp, (C.4)

(58) is rewritten as

Bmn(µτ) = (−µ)n

πn!

∞∑
p=0

b(m)
p Apn, (C.5)

which may be computed accurately with few terms, using pre-computed values of Apn.
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