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ABSTRACT

Optical holography allows to record tridimensionnal informa-

tions of a scene using only one 2D sensor. Physical optics al-

lows to analyticaly modelise hologram formation according to

objects parameters (position, size, shape...). In simple objects

case (e.g. spherical particles), the model is reduced to few pa-

rameters (four per particles: x,y,z,radius). Using inverse prob-

lem approach, it is possible to determine these parameters re-

solving a global optimization problem. This new approach

is more efficient than classical method : particle parameters

estimation is far more precise and it is possible to localize

particles outside of the camera field of view. The presented

method achieves to detect particles in an area sixteenth times

wider than the CCD field of view with equal precision on both

simulated and real digital holograms. Moreover strong im-

provements in the precision of the localization of the particles

were noticed, particularly along the depth dimension.

1. INTRODUCTION

Particle image velocimetry (PIV) is a measurement technique

for studying flows by retrieving velocimetry field from images

of tracer particles in it. The development of optical hologra-

phy applications in fluid mechanics [1, 2] have proven the

capability of holography to give access to three dimensionnal

distribution of micron-sized particles and their measurements.

Bypassing the wet chemical processing, digital holography

enable direct numerical processing by recording the hologram

directly on a numerical detector. This allows fast acquisitions

for high-speed phenomena analysis.

In-line holography is one of the most classical techniques

in holography and the most efficient in digital holography for

particle image velocimetry (DHPIV). In this simple setup ev-

ery optical apparatus (laser, optics and camera) are aligned.

Studied particles (water droplets) are illuminated with a laser

collimated beam, and both object wave (scattered light) and

reference wave (laser) are recorded on a digital camera. This

setup is presented in figure 1.
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Fig. 1. In-line holography setup.

Over the past decade, many contributions have been made

in the field of digital hologram processing in order to im-

prove the measurement accuracy of the localization of micro-

objects [3, 4]. The two main steps of the numerical processing

are: a numerical reconstruction step to obtain a synthesized

3D distribution with focused particles, and a segmentation

step to extract locations and sizes of the particles from this

3D distribution. Such approaches however suffer from vari-

ous limitations:

• limited depth resolution (about 10 times worse than the

transversal resolution),

• limited field of view (restricted to the center of the holo-

gram to reduce the border effects)

• presence of spurious twin-images [5]

• multiple focusing [6]

In this paper, we propose a new approach using a inverse

problem scheme. Bypassing numerical reconstruction and

segmentation steps, our method allows to detect particles out-

side of the camera field of view with a fine precision. In

this approach we search for the set of particle sizes and po-

sitions yielding a hologram model which best fits the real

hologram image. For simple objects such as water droplets,

physical optics allows to analytically model hologram for-

mation according to objects parameters (four per particles:

x,y,z,radius). Using inverse problem approach, it is possible



to determine these parameters resolving a global optimiza-

tion problem. We effectively solve this global optimization

problem by an iterative algorithm which alternates coarse de-

tection of the particles and local optimization.

The paper is organized as follows. First, we recall the

model of the hologram formation. Then we detail the princi-

ple of the proposed algorithm, in particular the detection and

the local optimization stages. Finally, we apply our method

to the reconstruction of holograms using both simulated and

real world data. More details on the presented algorithm may

be found in references [7] for local optimization stage.

2. MODEL OF THE HOLOGRAM IMAGE

We consider an incident beam of complex amplitude A0 which

is diffracted by opaque spherical particles of radii r j and co-

ordinates (x j, y j, z j). We work under Fresnel approximation,

i.e. the distance z between a diffracting particle and the ob-

servation plane is such that [8] z3 ≫ 4π r4
j
/λ achieved for

z & 1 mm when r j ≈ 50 µm is the largest particle’s axis and

λ = 532 nm is the laser wavelength. For spherical particles

of radius r j small enough to have z j ≫ 4 r2
j
/λ, the complex

amplitude f j(x, y) of the wave diffracted by a single particle

at coordinates (x j, y j, z j) and observed at position (x, y, z= 0)

can be approximated by [9]:

f j(x, y) =
r j

2 i ρ j(x, y)
J1
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where ρ j(x, y) =
√

(x − x j)2 + (y − y j)2 is the distance be-

tween the point (x, y, z= 0) of the observation plane and the

projection (x j, y j, z= 0) of the position of the j-th particle on

the detector at z = 0 and J1 is the first order Bessel function.

Thus, for n particles of parameters {x j, y j, z j, r j; j = 1, . . . , n}

the intensity measured by the detector at position (x, y) is

given by:
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where γ accounts for the quantum efficiency and the conver-

sion factor of the detector whereas Ibg accounts for the detec-

tor background level and for other spurious emission sources

if any. In first approximation, the second order terms (inter-

ferences) can be neglected and the intensity simplifies to:

I(x, y) = I0 −

n
∑

j=1

α j Re
(

f j(x, y)
)

(3)

where α j = 2 γ
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+ Ibg is the image

level given by the detector illuminated by the laser without

diffracting particles.

3. PRINCIPLE

Our algorithm is based on an inverse problem approach: we

search for the set of particle sizes and positions yielding a

hologram model which best fits the real hologram image. In

other words, we need to find the optimal set of n particles

of parameters {x j, y j, z j, r j; j = 1, . . . , n} that minimize the

weighted least-squares penalty:

Pn =

Npixel
∑

k=1

Wk

[

Dk − Mn,k

]2
(4)

where Dk is the k-th pixel value of the observed hologram and

Wk = 1/Var(Dk) is its statistical weight. The model Mn,k for

n particles is directly given by Eq. 3:

Mn,k = I0 −

n
∑

j=1

α j Re
(

f j(Xk,Yk)
)

, (5)

where (Xk,Yk) are the coordinates of the k-th pixel.

Stated like this, the problem requires global optimization

over the space of particle parameters. Such problem has nu-

merous local minimum and can not be solved directly. We

effectively solve this global optimization problem by an iter-

ative algorithm which alternates coarse detection of the par-

ticles and local optimization as described in figure 2. At the

Fig. 2. Synopsis of the method.

nth iteration of this algorithm, we minimize Pn with respect

to the parameters {I0, αn, xn, yn, zn, rn} and consider the other

particle parameters as fixed. Our misfit criterion then reads:

Pn =

Npixel
∑

k=1

Wk

[

Rn−1,k − I0 + αn Re
(

f j(Xk,Yk)
)

]2

. (6)

Rn−1,k is the residual image after having subtracted the contri-

bution of the previous n − 1 particles:

Rn−1,k = Dk +

n−1
∑

j=1

α j Re
(

f j(Xk,Yk)
)

, (7)



where, of course, R0,k = Dk.

Optimizing only on the new particle parameters rather

than fitting all parameters for all particles yields a significant

speed up in the algorithm. Moreover, since the signature of

a given particle is severly disturbed by the patterns due to

the other particles, we achieve an improved sensitivity to the

detection and location of faint particle signatures, by such it-

erative processing over the residual images. A typical run of

the algorithm on real data is shown by Fig. 3.

Fig. 3. Iterative particle removal in real hologram image.

From top left to bottom: initial hologram image R0 = D and

residual images R1, R2, R3, R4 and R5 after detection and re-

moval of 0, 1, 2, 3, 4 and 5 particles respectively.

3.1. Detection

At the nth iteration of this algorithm, particle detection is

done by estimating the vector of parameters pn = {xn, yn, zn, rn}

that minimize Pn. Using computationnal tricks, it is possible

to rapidly evaluate Pn for the whole coarse discretized 4D

grid of interest (x,y,z,r) using FFT. Detection takes 5 FFTs

per (z, r) plane. A particle will be detected at the point where

Pn is minimal.

Owing the large extension of a microparticle diffraction

figure, particle outside of the camera transversal field of view.

With formulation defined in Eq. 6, it is possible to explore

outside of the field of view. Pn can be estimated over a work

region bigger than the CCD. On this virtual sensor the resid-

uals are defined by:

R′n−1,k ≡

{

Rn−1,k(x′
k
, y′

k
) inside the field of view,

0 outside the field of view,
(8)

and corresponding weight map by:

W′k ≡

{

Var(Dk)−1 if Dk is known

0 Otherwise
(9)

If we consider noise as stationnary on the entire sensor Var(Dk)

becomes constant and W ′
k

can be viewed as a binary mask on

the data. As a consequence, the effective field of view can be

several times larger than the CCD (up to sixteenth times in

our experiments).

3.2. Parameters refinement

The coarse parameters (xn,yn,zn,rn) from the detection stage

can be refined by local optimisation [7]. This optimisation

consists on minimizing Pn using a trust-region Newton al-

gorithm [10]. Such an algorithm requires a local quadratic

approximation of the penalty function Pn which is provided

by the first and second order partial derivatives of the penalty

with respect to the parameters. It leads to sub-pixels preci-

sion.

4. RESULTS

This method was applied to the reconstruction of holograms

using both simulated and real world data. We first used simu-

lated data to assess the actual performances of our algorithm

under various conditions.

4.1. Simulation

To caracterize this algorithm we process several simulated

holograms. The main goal of this test was to compare mea-

surement errors on parameters of particle outside of the field

of view versus inside the field of view. Every test were done

with 100 particles. Such concentration represents standard

conditions for a sufficently fast process of our algorithm. We

consider three simulated hologram types with different radius

range: one with radius between 3.5 and 5µm (we call it type

I), another with radius between 30 and 40µm (type III) and

a last one with intermediate radius between 15 and 20µm

(type II). Every simulation were made for a 1024 × 1024

camera with square pixel of 6.70 µm width and a laser of

632.8nm. The particle are randomly distibuted in a box of

8.00 × 8.00 × 30.00 mm located at about 250 mm from the

sensor. The resulting holograms were processed once with

the full field of view (1024 × 1024 pixels) and once with a

small field of view considering only the 512 × 512 pixels on

its center. The error on the four parameters fitted in our model

(position and radius) was evaluated. Rms error upon these pa-

rameters is shown in table 1.

This technique shows equal error (about 0.3 µm or 1/20 pixels)

in lateral positionning (∆x and ∆y) for every simulations. The



configuration

FOV type ∆x ∆y ∆z ∆r

1024 I 0.28 0.28 1.38 0.46

512 I 0.28 0.28 6.38 0.72

1024 II 0.28 0.28 2.53 0.03

512 II 0.28 0.28 11.8 0.09

1024 III 0.28 0.28 14.3 0.14

512 III 0.39 0.39 46.85 0.17

Table 1. Root mean squared errors for the estimated parti-

cles parameters in several simulation configurations —field of

view (FOV) is 512 × 512 or 1024 × 1024, type I are for parti-

cles of size 3.5 µm ≤ r ≤ 5 µm, type II for 15 µm ≤ r ≤ 20 µm

and type III for 30 µm ≤ r ≤ 40 µm.

high spatial frequency diffraction rings help to precisely lo-

cate the depth of the particles. Since these rings are atten-

uated as the size of the particles increases, the longitudinal

errors are worse for bigger particles. On the other hand, this

attenuation favors the determination of the particle radius.

4.2. Experimental data

We carried out an experimental test of our algorithm using

real data from an in-line holography setup. The experimental

layout is shown by Fig. 1 and the components are as follows:

The laser is a double cavity YAG (ULTRA-PIV 30, Quantel)

with a 0.532 µm wavelength. It emits pulses of 7 ns

short enough to freeze the droplets motion.

The injector is a piezoelectric device which generates monodis-

perse droplets. The droplet diameter is tunable from

50 µm to 100 µm. The injector can work in droplet-

on-demand mode, generating droplets at constant time

intervals (1000 Hz in the case of the considered data

set).

The camera is a 12-bit CCD (PCO Sensicam) with 1280 ×

1024 pixels of size 6.7 µm × 6.7 µm. The camera is

at about 25 cm of the injector in order not to disturb

the flow experiment. This leads to a small but realistic

numerical aperture of Ω = 0.014.

The experimental test data consists of a set of 200 holograms.

The 3D positions and diameters of droplets were extracted

from this data set by our algorithm. Figure 3 shows the resid-

ual images during the processing of one of the experimental

hologram. Four or five particles can be seen on the CCD im-

ages. Our algorithm however detects up to 16 particles as

shown in Fig. 4.

The measured particles positions are shown in Fig. 5. Clearly

the average trajectory of the particles is a straight line as can

be expected from the experimental conditions and particle’s

spacing follows ballistic trajectory. At each extremity of the

jet reconstruction, some depth miss estimation can be con-

tated. It is mainly due to slight divergence of laser beam that

lead to non-modelized diffraction pattern deformation which

Fig. 4. Superposition of a real hologram (in the box) with

the model synthetised with the 18 detected particles by the

algorithm (14 are outside of the field of view)

grows as the particle is far from the center of the CCD. The

other observed deviations from the ideal straight trajectory are

mostly due to real physical effects. Indeed the oscillations and

the beam divergence which can be seen in Fig. 5 are due to

vibrations of the injector. Hence the effective precision of the

measured positions is smaller than the variations due to these

physical effects.
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Fig. 5. Droplets jet reconstruction. 3D representation of seg-

mented droplets. Grey area represents camera field of view.

The droplet sizes estimated by our algorithm have a bell-

shaped distribution (see Fig. 6) with a mean diameter of 94.1 µm

and a standard deviation of 0.3 µm in agreement with the set-

tings of the droplet injector.
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Fig. 6. Measured diameters histogram

The processing time scales as the number of particles per

hologram image. For the present experiments, with a Pentium

IV CPU 3.60 GHz with 2 GBytes of RAM our algorithm took

7 minutes per particle: 4 minutes for the detection and 3 min-

utes for particle parameters refinement. We plan to greatly re-

duce this time by performing multiple detections per pass of

our iterative algorithm. We also expect a speedup by a factor

of roughly two thanks to trivial computational optimizations

such as using faster numerical routines to compute the Bessel

functions.

5. CONCLUSION

In this paper we describe a new algorithm for the detection

and localization of particles in digital holography. The most

important difference with other existing techniques is that our

processing is based on an inverse problem approach and does

not require any direct inversion. In this framework, we intro-

duce a simplified model of the hologram images which de-

pends on the sizes and positions of the diffracting particles.

We then solve the problem by seeking for the set of particle

parameters for which the difference between the model and

the data is statistically minimal. Such a criterion turns out

to have multiple local minima and thus global optimization

is required to properly solve the problem. Our algorithm ef-

fectively achieves the global minimum by performing an ap-

proximative detection of the particles in the whole parameter

space followed by a local refinement of the parameters. By

repeating these steps on the residual images, obtained by sub-

tracting the model to the data, our algorithm is able to detect

particles even the ones which have a faint signature compared

to the diffraction pattern due to the other particles.

As estimation is done in data space, our algorithm does

suffer from data truncation and can account for bad data or

non-rectangular holograms by setting to zero the weights of

bad pixels or pixels outside the area covered by the detector.

It allows to detect particles outside from the sensor.

We have tested our algorithm on simulated and real data.

Our results show that the precision along the depth direction

is largely improved and is much better than the optical resolu-

tion in such conditions (δz ≥ λ/Ω2
= 2.6 mm). When dealing

with real data, it appears that our algorithm is also robust with

respect to non-homogeneous illumination and to spurious pat-

terns as the CCD fringes which can be seen in the 5th residual

image of Fig. 3. Moreover, this figure show that, even only

one particle signature can be seen, our algorithm is able to

detect 13 more particles, integrating informations spread all

over the sensor.
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[10] Jorge J. Moré and Danny C. Sorensen, “Computing a

trust region step,” SIAM J. Sci. Stat. Comp., vol. 4, no.

3, pp. 553–572, 1983.


