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Abstract. During the 80’s, Dana Angluin developed an active learning
paradigm, based on the use of an Oracle, able to answer different sort
of queries, of which the best known are the membership and equivalence
queries. However, practical evidence tends to show that if the former are
often available, this is usually not the case of the latter. To get round
this problem, we propose to use a new kind of queries, called correc-
tion queries, which we study in the framework of grammatical inference.
When a string is submitted to the Oracle, either she validates it if it
belongs to the target language, or she proposes a correction, that is to
say, a string of the language close to the query w.r.t. the edit distance.
Then we introduce a non-standard class of languages, that of topological
balls of strings. We show that this class is not learnable in Angluin’s MAT
model, but that it is learnable with a linear number of correction queries.
Finally, we conduct several experiments with an Oracle simulating the
behaviour of a human Expert, and show that our algorithm is resistant
to approximate answers.

Keywords: Grammatical Inference, Oracle Learning, Correction Queries,
Edit Distance, Balls of Strings.

1 Introduction

Do you know how many Nabcodonosaur were kings of Babylon? And do you
know when Arnold Shwartzeneger was born? A few years ago, just 2 decades
ago, you would have had to consult encyclopedias and Who’s Who dictionaries
in order to get answers to such questions. At that time, you may have needed
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this information in order to participate to quizzes and competitions organised
by famous magazines during the summers, but because of these questions, you
might possibly have missed the very first prize. Why?...Nowadays, everything
has changed: You naturally use the Web, launch your favourite search engine,
type 2 keywords, follow 3 links and note down the answers. In this partic-
ular case, you discover...that no king of Babylon was called Nabcodonosaur
but 2 Naebuchodonosor’s reigned there many centuries ago. Again, the day
Arnold Shwartzeneger was born is not clear, but it is easy to check that Arnold
Schwarzenegger was born in 1947, July 30"

So you would probably win today the great competitions of the past. Indeed,
the actual search engines are able to propose corrections when a keyword is
not frequent. Those corrections are most often reliable because the reference
dictionary is built from the billions of web pages indexed all over the world.
Hence, the Web and the search engines are playing the part of an imperfect but
powerful Oracle, able to return relevant documents from a relevant query, but
also to correct any suspect query. In other words, such an oracle is able to answer
to what we shall call correction queries.

The setting itself occurs in other circumstances: When a human being is
asked to provide data in an interactive situation, an alternative to having the
human expert labelling huge quantities of data can be to have the learning
system ask (query) the human expert who then only labels those items that are
required. Nevertheless, assuming that the Oracle is a human expert introduces
new constraints. On the one hand, it is inconceivable to ask a polynomial number
of queries: There may be no chance to get enough answers in reasonable time.
So the learning algorithm should aim at minimising the number of queries even
if we must pay for it with a worse time complexity. On the other hand, a human
(or even the Web) is fallible. Therefore the learning algorithm should aim at
learning functions or languages that are robust from corrections that may not
be ideal, thus approximate.

In the above Web example, the distance used by the search engine to find
a closest string is a variant of the edit distance which measures the minimum
number of deletion, insertion or substitution operations needed to transform
one string into another [1,2]. This distance and variants where each elementary
operation may have a different weight have been used in many fields including
Computational Biology [3], Language Modelling [4] and Pattern Recognition [5].
In Grammatical Inference (GI), it is mainly used in 2 kinds of papers.

On the one hand, several works aim at developing standard probabilistic
GI techniques in order to learn the weights of the edit operations [6,7]. On
the other hand, the edit distance naturally appears in specific GI problems, in
particular when one wants to learn languages from noisy data [8,9]. In the latter
case, we must remark that the classes of languages studied there are not defined
following the Chomsky Hierarchy. Indeed, even the easiest level of this hierarchy,
the class of regular languages, is not at all robust to noise, since the parity
functions (which can be defined as regular languages) are not learnable in the
presence of noise [10]. In this paper also, in order to avoid this difficulty, we shall



consider only special finite languages, that seem elementary to formal language
theoreticians, but are relevant for topologists and complex for combinatorialists:
the balls of strings.

In the paper, we thus study the problem of identifying balls from correc-
tion queries. We begin by revisiting the edit distance and introducing the balls
in Sect. 2. Then we show in Sect. 3 that balls are not learnable with Angluin’s
membership and equivalence queries, that is another reason to introduce the cor-
rection queries. We show in Sect. 4 that balls are learnable with a linear number
of such queries. Then in Sect. 5, we study the effectiveness of our algorithm from
an experimental point of view, showing that it is robust, in particular when the
answers of the Oracle are approximate. Finally, we conclude in Sect. 6.

2 On Balls of Strings as Languages

An alphabet X is a finite nonempty set of symbols called letters. A string w =
aj . ..an, is any finite sequence of letters. We write X for the set of all strings over
X and ) for the empty string. Let |w| be the length of w and |w|, the number of
occurrences of a in w. We say that a string v is a subsequnce of v, denoted u < v,
if u = ay...a, and there exist ug,...,u, € X* such that v = ugaiuy ... apu,.
A language is any subset L C X*. Let IN be the set of non negative integers. For
all k € N, let X% = {w e X*: |w| =k} and X=F = {w € X* : |w| < k}.

The edit distance d(w,w’) is the minimum number of edit operations needed
to transform w into w’ [1]. More precisely, we say that w rewrites to w’ in 1 step,
written w — w’, if either (1) w = uav and w’ = wv (deletion), or (2) w = uv
and w' = wav (insertion), or (3) w = uav and w’ = ubv (substitution), where
u,v € X* a,b € X and a # b. Let %, denote k rewriting steps. The edit distance
d(w,w’) is the minimum & € IN such that w LW E.g., d(abaa, aab) = 2 since
abaa — aaa — aab and the rewriting of abaa into aab cannot be achieved with
less than 2 steps. Notice that d(w,w’) can be computed in time O (Jw]| - |w’|) by
means of dynamic programming [2].

The following standard property states that d(w,w’) is at least the number
of insertions needed to equalise the lengths:

Proposition 1. For all w,w' € X*, d(w,w') > ||w| — |w'||. Moreover,
d(w,w') = |Jw| — ||| iff (w=w" or w < w).

It is well-known that the edit distance is a metric [11], so it conveys to X* the
structure of a metric space. Therefore, it is natural to introduce balls of strings,
since in a way, these are the simplest languages one may consider. The ball of
centre o € X* and radius r € IN, denoted B,.(0), is the set of all strings whose
distance is at most r from o: B,(0) = {w € X* : d(o,w) < r}. E.g., if ¥ = {a,b},
then B;(ba) = {a,b,aa, ba, bb, aba, baa, bab, bba} and B,.(\) = X<" for all r € IN.

The latter example illustrates the fact that the number of strings in a ball can
be exponential with the radius. Experimentally (see Table 1), we clearly notice
that for a fixed length of centre, the average number of strings is more than
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twice bigger when the radius is increased by 1. This combinatorial explosion
occurs as soon as |X| > 2, although we leave open the question of finding a
general formula that would give the volume of any ball B,(0). This remark

Table 1. Average number of strings in a ball with a 2 letters alphabet. Centres are
random strings, each computation is done over 20 centres.

Length of Radius

the centre 1 2 3 4 5 6
0 3.0 7.0 15.0] 31.0 63.0] 127.0
1 6.0] 14.0/ 30.0 62.0 126.0 254.0
2 8.6| 25.6| 56.5| 119.7| 246.8| 501.6
3 10.8| 41.4| 101.8| 222.8 468.6| 973.0
4 13.1| 61.4| 173.8| 402.9( 870.9| 1850.8
5 16.3| 91.0| 285.1| 698.5( 1584.4| 3440.9
6 17.9(125.8| 441.2|1177.5| 2771.3| 6252.9
7 21.2(166.9| 678.0|1908.8| 4835.8{11233.5
8 24.3(200.2(1034.2|3209.9| 8358.1|19653.6
9 26.0(265.4(1390.9|5039.6|13677.8{34013.1

raises the problem of the representation scheme that we should use to learn the
balls. Basically, we need representations whose size is reasonable, which is not
the case of an exhaustive enumeration. An alternative representation could be
by deterministic finite automata (DFA) since balls are finite and thus regular
languages. However, experiments show that the corresponding minimum DFA is
often exponential with r (but linear with |o|) [12]. Again, a formal proof of this
property is a challenging combinatorial problem, but in any case it seems that
DFA are not reasonable representations of balls.

On the other hand, why not represent the ball B, (0) by the pair (o, ) itself?
Indeed, its size is |o| 4+ logr. Moreover, deciding whether w € B,.(0) or not is
immediate: One only has to (1) compute d(o,w) and (2) check whether this
distance is < r, which is achievable in time O (|o| - |w| + logr). Finally, it is
possible for a ball to have several such representations. If X' = {a}, then By(a) =
Bs(X) = {\, a,aa, aaa} for instance, but this is a special case: When the alphabet
has at least 2 letters, (o,r) is a unique thus canonical representation of B,.(0):

Theorem 1. If |X| > 2 and B,,(01) = By,(02), then 01 = 03 and r1 = ra.

Proof. Claim 1: If B, (01) = B,,(02), then |o1| + r1 = |o2| + r2. Indeed, let
w € X", then d(01,00w) = |w| = r1 by Prop. 1, so oyw € By, (01), thus
01w € By, (02), i.e., d(o1w, 02) < ro. Now d(01w, 02) > |o1w| — |oz2| from Prop. 1.
So we deduce that ro > |ojw| — |o2]| = |o1]| 4+ 71 — |02]- The same reasoning yields
lo1] + 71 > |o2] + ro. Claim 2: If |X| > 2 and oo A 01, there exists w € X* such
that (1) |w| = r1+]o1], (2) 01 = w and (3) 02 A w. Indeed, suppose that o, starts
with an a and let b € X'\ {a}; We define w = b™ 07 and get the result. Theorem
itself: Assume that 01 # o02. Then either 01 A 02, or 03 A 01. Suppose the
second case, without loss of generality. By Claim 2, there exists a string w such
that (1) |w| =71+ |o1], (2) 01 < w and (3) 02 A w. As 01 < w, we deduce that



d(01,w) = |w|—]|o1|, by Prop. 1. Moreover, as |w| = r1+]01]|, we get d(o1, w) = r1.
So w € By, (01). On the other hand, 03 A w, so we get d(o2,w) > ‘|w| — |02|‘, by

Prop. 1. As |w| = r1 + |o1], we deduce that d(oz,w) > |r1 + |o1| — |o2]| = 72, s0
w & By,(02), thus B, (01) # By,(02). This is impossible, so 01 = 02, and then
r1 = 19, by Claim 1. a

Hence, representing the ball B,.(0) by the pair (o,r) is reasonable. However,
it is worth noticing that huge balls, whose radii are not polynomially related to
the length of the centres (e.g., r > 21°!), will pose tricky problems of complexity.
For instance, to learn the ball B,.(\) = Y<", one needs to manipulate at least
one string of length r. Therefore, in the following, we will always consider good
balls only:

Definition 1. Given any fized polynomial q(), we say that a ball B,.(0) over an
alphabet X is g-good if v < q(|o|). Let GB4(X) denote the set of all g-good balls.

3 Learning Balls from Queries

Query learning is a paradigm introduced by Angluin [13]. Her model brings a
Learner (he) and an Oracle (she) into play. The goal of the Learner is to identify
the representation of an unknown language, by submitting queries to the Oracle.
The latter knows the target language and answers properly to the queries (i.e.,
she does not lie). Moreover, the Learner is bound by efficiency constraints: (1)
He can only submit a polynomial number of queries (in the size of the target
representation) and (2) the available overall time must be polynomial in the size
of the target representation®.

Between the different combinations of queries, one, called MAT (Minimally
Adequate Teacher), is sufficient to learn DFA [14]. Two kinds of queries are used:

Definition 2. Let R be a class of languages on X* and L € R. In the case of
membership queries, the Learner submits a string w € X* to the Oracle; Her
answer, denoted MQ(w), is either YES if w € L, or NO if w ¢ L. In the case
of equivalence queries, the Learner submits (the representation of) a language
K € R to the Oracle; Her answer, denoted EQ(K), is either YES if K = L, or a
string belonging to the symmetric difference K AL if K # L.

Although MQ and EQ have established themselves as a standard combina-
tion, there are real grounds to believe that EQ are too powerful to exist or even
be simulated. As suggested in [14] we may be able to substitute them with a
random draw of strings that are then submitted as MQ (sampling), but there
are many cases where sampling is not possible as the relevant distribution is
unknown and/or inaccessible [15]. Besides, we will not consider Mq and EQ
because they do not help to learn balls:

3 The time complexity usually concerns the time spent after receiving each new ex-
ample, and takes the length of the information returned by the Oracle into account;
Thus, our constraint is somewhat stronger but not restrictive, since we focus on good
balls only.
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Theorem 2. Assume |X| > 2. Let m,n € IN and B<m., = {B;(0) : 7 <m,o0 €
X*, ol < n}. Any algorithm that identifies every ball of B<., ,, with EQ and MQ
necessarily uses (| X|") queries in the worst case.

Proof. Following [16], we describe an Adversary who maintains a set S of all
possible balls. At the beginning, S = B<,, . Her answer to the equivalence
query L = B,(0) is a counterexample o. Her answer to the membership query
o is NO. At each step, the Adversary eliminates many balls of S but only one
of centre o and radius 0. As there are O(|X|™) such balls in B<,, ., identifying
them requires 2(|X|™) queries. O

It should be noted that if the Learner is given one string from the ball, he
can learn using a polynomial number of MQ. We shall see that correction queries
(CQ), introduced below, allow to get round these problems:

Definition 3. Let L be a fized language and w a string submitted by the Learner
to the Oracle. Her answer, denoted CQ(w), is either YES if w € L, or a correc-
tion of w w.r.t. L if w ¢ L, that is a string w' € L at minimum edit distance
from w: CQ(w) = one string of {w' € L : d(w,w") is minimum}.

Notice that the CQ can easily be simulated knowing the target language.
Moreover, we have seen in the introduction that they naturally exist in real-
world applications such as the search engines of the Web. Also, we can note that
Cq are relevant from a cognitive point of view: There is growing evidence that a
child acquires his native language using the corrections of his mother [17]. And
last but not least, CQ as well as balls rely on a distance, that foreshadows nice
learning results. Indeed, suppose that we are not working with the edit distance
and strings, but the Euclidean distance and disks in the plane. We can proceed
in 3 stages to learn a disk of centre O and radius R with CQ.

(1) We start by selecting 2 points A, B
far from each other and outside of the
disk we want to identify. Looking for
them haphazardly by asking to the Or-
acle if such or such a point is in the
disk is enough: Intuitively, we are go-
ing to find them with very few queries.
(2) We ask the Oracle to give correc-
tions to A and B. Concerning A, the
Oracle returns a point C' inside the disk, as close as possible to A. Clearly, this
point will be at the intersection of the segment [OA] and the boundary circle of
the target disk. Likewise, let D be the correction of B. (3) We draw the lines
(AC) and (BD) with a ruler: They intersect in O. Then we draw the circle with a
compass. We get the radius by measuring the distance between O and C. Hence,
it is easy to learn the balls of IR? with CQ. Now, focusing on balls of strings, we
may hope that the previous approach is good and try to reproduce it.




4 Identifying Balls using Corrections

In this section, we propose an algorithm that learns balls using a linear number
of CQ. Actually, we are going to follow the previous algorithm, that learns balls
of IR? by searching border points in order to deduce the centre. Nevertheless,
the problem is more complicated with balls of strings.

First, when one submits a string outside of a ball to the Oracle, she still
answers with a string that belongs to the circle delimiting the ball. In other
words, it will still be possible to circumscribe it. However, a string often has a
lot of different possible corrections, contrarily to what happens in the plane.
E.g., the possible corrections for the string aaaa w.r.t. the ball Bo(bb) are
{aa, aab, aba, baa, aabb, abab, abba, baab, baba, bbaa}. By definition of the CQ, the
Oracle will choose one of them arbitrarily, potentially the worst one w.r.t. the
Learner’s point of view. Nevertheless, the Oracle’s potential malevolence is lim-
ited by the following result, that characterises the set of all the possible correc-
tions for a string:

Theorem 3. Let B,(0) be a ball and m a string s.t. m & B,.(0). Then the set
of possible corrections of m is exactly {z € X* : d(o,z) = r and d(z,m) =

d(o,m) —r}.

Proof. Let k = d(o, m) and consider a derivation from o to m of minimum length:
0L m. Asm ¢ B,(0), we get k > r, so this derivation passes through a string

wo such that 0 = wy ~—"> m. Let us define the set W = {w e X* : d(o,w) =
r and d(w,m) = k — r}. Basically, wg € W, so W # (. Moreover, W C B, (o).
Finally, let Z denote the set of all the possible corrections of m. We claim that
Z = W. Indeed, let z € Z and w € W. If d(z,m) > d(w, m), then w is a string
of B,(o) that is strictly closer to m than z, so z cannot be a correction of m.
On the other hand, if d(z,m) < d(w, m), then d(o, m) < d(o, z) + d(z,m), and it
follows that d(o, z) > d(o,m) — d(z,m) > d(o,m) — d(w, m). As d(o,m) = k and
d(w,m) =k —r, we get d(o,z) > r, which is impossible since z € Z C B,(0). So
d(z,m) = d(w,m) = k — r. In consequence, every string w € W is at the same
distance from m as every correction z € Z, thus W C Z. Moreover, we have
d(o,m) < d(o,z) + d(z,m), so k < d(o,z) + k —r,s0d(o,z) > r. As z € B,(0),
we deduce that d(o,z) = r. Moreover, we have stated that d(z,m) =k —r, so
we conclude that Z C W. O

Here is a geometric interpretation of the result above. Let us define the segment
[o,m] = {w € X* : d(o,w) + d(w,m) = d(o,m)} and the circle C.(0) = {w €
X* :d(o,w) =r}. Theo. 3 states that a string z is a possible correction of m iff
z € [o,m] N C,(0). The fact that m has several possible corrections shows that
the geometry of X* is very different from that of IR%.

Secondly, building the centre of a ball from strings on its periphery is difficult
for at least 2 reasons. On the one hand, (X*,d) is a metric space with no vector
space as an underlying structure. This is the same story as if we were trying to
learn the disks of the plane with just a compass but no ruler...On the other
hand, the problem is formally hard [18]:
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Theorem 4. Given a finite set of strings W = {w1,...,w,}, finding z € X*
that minimises ),y d(z,w) or maxy,ew d(z,w), are N'P-hard problems.

Therefore, we must study the balls in more detail and make the best pos-
sible use of the CQ so as not to build the centres from scratch. We begin by
distinguishing the longest strings of any ball:

Definition 4. The upper border of a ball B, (0), denoted BI***(0), is the set of
all the strings that belong to B,.(0) and are of mazimum length: B™*(0) = {z €
B, (o) : Yw € B,(0),|w| < ||}

E.g., let X = {a,b}. As Bi(ba) = {a,b,aa,ba,bb,aba,baa,badb,bba}, we get
B (ba) = {aba, baa, bab, bba}. The strings of B"** (o) are remarkable because
they are all built from the centre o by doing r insertions. So having one string
w € B (o), one ‘simply’ has to guess the inserted letters and delete them to
find o again. We get:

Proposition 2. w € B (o) iff (0 X w and d(o,w) = |w| — |o| = 7).

Proof. Let us assume that o < w and d(o, w) = |w|—|o| = r. Then w € B, (o). Let
w' be astring s.t. |[w’| > |w|. Then, by Prop. 1, d(o,w’) > |w'|—|o| > |w|—|o| = r,
so w' ¢ By(0). Therefore, w € B"**(0). Conversely, let w € B"**(o) and
k = d(o,w) < r. Then there exists a rewriting derivation o £, w. If a deletion
appears along this derivation, then forgetting it leads to a new derivation from
o0 to some string w’ whose length is |w| + 1 and whose distance to o is < k, so
w ¢ B (o). If a substitution appears along the derivation, say an a by a b,
then keeping the a and making the insertion of a new b also leads to a derivation
from o to some string w’ whose length is |w| + 1 and distance to o is < k, so
w ¢ Bl (0). Therefore, only insertions occur along the derivation, so o < w.
Lastly, if £ < r, then doing one more insertion leads to a derivation from o to
some w’ whose length is |w|+ 1 and distance to o is < k, so w &€ BI"**(0). Hence
k=r. ad

Several strings of B]"®*(0) are very informative. Indeed, let @ € X' be an
arbitrary letter. Then the string a"o = a...q o0 satisfies 0 < a"o and d(o0,a"0) =

r times
r,80 a0 € BI"**(0). Moreover, if one knows r, one can easily deduce o. We claim
that CQ allow us to get hold of a"o from any string w € B™*(0) by swapping
the letters (see Algo. 1).

For instance, B5***(bb) = {aabb, abab, abba, abbb, baab, baba, babb, bbaa, bbab,
bbba, bbbb}. Running EXTRACT _CENTRE on the string w = baba and radius
r = 2 transforms, at each loop, the " letter of w to an a that is put at the
beginning and then submits it to the Oracle. ¢ counts the number of times this
transformation is accepted. We get:

/

il w | w |CQ(w)|w changes|c
1{babalaaba| baba no 0
2|baba|abba| YES yes 1
3|abba|aabb| YES yes 2




Algorithm 1 EXTRACT_CENTRE

Require: a string w = x1 ...z, € B*(0), the radius r

Ensure: the centre o of the ball B,(o)

c— 051+ l;a «— zp

while ¢ < r do
Assume w =z1...2n and let W’ = az1...2i—1%it1...Tn
if Cq(w’) = YEs then w «— w';c + ¢+ 1 end if
1—1i+1

end while

PRI R

: Assume w = x1...x, and return T,41...2,

When ¢ = 2 = r, EXTRACT _CENTRE stops with w = aabb and returns o = bb.

Lemma 1. Algo. 1 is correct: Given r and w € B***(0), EXTRACT _CENTRE
returns o using O (Jo| + 1) CQ and a polynomial amount of time.

Proof. Let us show that the swapping operation is correct. Let w = ;... 2, €
B™* (o) and w' = axy...%i—1%Ti11 ... 2T, for some i € 1..n. If there exists at
least one derivation o — w where the letter z; of w comes from an insertion in
o, then deleting x; and doing the insertion of an a in front of o yields a string
w’ that satisfies 0 < w’ and |w'| = |w|. By Prop. 1, we get d(o,w’) = |w'| — |c| =
|w| — |c| = r, so by Prop. 2, w' € B™**(0) and CQ(w’) = YES. On the other
hand, if there is no derivation where z; is introduced by an insertion, then x; is
a ‘real’ letter of o. In this case, deleting z; and inserting an a yields a string w’
s.t. o 2 w'. By Prop. 1, we get d(o,w") > |w'| —|o|. As |w'| = |w|, we deduce
that d(o,w’) > r. So w’ & B7**(0) and CQ(w’) # YES. O

Hence, we are now able to deduce the centre of a ball as soon as we know its
radius and a string from its upper border. The following technical lemma is a
step towards finding this string (although we have no information about r and

lo| yet):

Lemma 2. Suppose X = {a1,...,an}. Then every correction w of the string
m = (ay...a,)" where k > |o| +r belongs to BI** (o).

Proof. Let Z be the set of all the possible corrections of m. Let us show that
Z = B™%(0). As m = (a1...a,)* with k& > |o| + 7, we get o = m, so by
Prop. 1, d(o,m) = |m| — |o|. Let w € B"**(0). By Prop. 2, we get o < w and
d(o,w) = |w| — |o| = . Moreover, as m = (ay...a,)" with k > |o| +r, we
get w < m, so by Prop. 1, d(w,m) = |m| — |w| = |m| — |o| —r = d(o,m) — r.
As d(o,w) = r and d(w,m) = d(o,m) — r, we deduce that B***(0) C Z, by
Theo. 3. Now let z € Z. Theo. 3 yields d(o,z) = r. If 0 < z, then z € B]"**(0)
by Prop. 2. If 0 £ z, then Prop. 1 yields d(o, 2) > |z| — |o], i.e., |z| < |o| + 7. But
then, d(z,m) > |m| — |z| > |m| — |o| —r = d(w, m) for all w € BT**(0), which
contradicts z € Z. So Z C B™**(o). O

Submitting (a; . ..a,)* with a sufficiently large k is sure to be corrected by
a string from B/™**(0). So all that remains is to find such an interesting k. The
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following lemma states that if one asks the Oracle to correct a string made of a
lot of a’s, then the correction contains precious informations on the radius and
the number of occurrences of a’s in the centre:

Lemma 3. Consider the ball B.(0) and let a € X and an integer j € IN s.t.
a’ € B,(0). Let w = CQ(a’). If lw| < j, then |w|, = |0|a + 7.

Proof. Let o/ ¢ B,.(0) and w = CQ(a?). By Theo. 3, we get d(o,w) = r and
d(w,a?) = d(o,a?) — r. As |w| < |a’|, the computation of d(w,a’) consists in
(1) substituting all the letters of w that are not a’s, and (2) doing insertions of
a, so d(w,a’) = j — |wl|,. Following the same arguments, d(o0,a’) = j — |o|,. So
Jj—|wle =J — |ole — 7, that is to say, |w|, = |o|s + 7 O

Now, let us assume that the alphabet is ' = {a1,...,a,} andlet ji,...,j, €
IN be large integers. Define k = > | |CQ(aZ')|q,. Then, Lemma 3 brings k =
St (|ola; +7) = |o|+|X| 7 > |o| + r. Thus we can plug k into Lemma 2 to get
a string w = CQ ((a1 ...an)*) € BM*(0). Moreover, due to Prop. 2, we have
|w| = |o| + r. Therefore, as k = |o| + |X| - r and |w| = |o| + r, we deduce that
r=(k—|w|)/(X|-1) (and |o| = (|X] - |w| — k)/(|X| — 1)). In other words, we
can guess the radius (and the length of the centre).

Let us summarise, by assuming that X' = {a4,...,a,} and that the target is
the ball B,(0). (1) For each letter a;, the Learner asks for the correction of a;
where j is sufficiently large to get a correction whose length is more than j; (2)
We define k = > | |CQ(al")|,, and suppose the Learner gets the correction w
for the string m = (a; . .. a,)*; (3) From k and |w|, we deduce r; (4) The Learner
uses EXTRACT _CENTRE on w and r in order to find o. In other words, we are
able to learn the balls with CQ:

Algorithm 2 Identification of the balls using CqQ
Require: The alphabet ¥ = {a1,...,an}
Ensure: The representation (o,7) of the ball B, (o)
1 j—1k<0
: for i =1to n do
while |CqQ(a?)| > j do j < 2-j end while
k — k+|Ca(a])la,
end for
w — CQ((a1az . ..an)")
r e (k= [w) /(2] - 1)
0 «— ExTRACT _CENTRE(w,T)
return (o,7)

For instance, consider the ball By(bb) defined over X' = {a,b}. Our algorithm
begins by looking for the corrections of a’ and &’ with a sufficiently large j. We
might observe: CQ(a) = YES, CQ(a?) = YES, CQ(a*) = aabb, CQ(a®) = abba,
CQ(b%) = bbbb. So k = |abbal, + [bbbbly = 2 + 4 = 6. Then Cq ((ab)®) =
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CqQ(abababababab) = baba, for instance, so r = (6 — 4)/(2 — 1) = 2. Finally,
ExTRACT _CENTRE(baba, 2) returns bb. So Algo. 2 returns (bb, 2).

Theorem 5. Given any fized polynomial q(), the set GB4(X) of all g-good balls
B,-(0) is identifiable with an algorithm using O (|X] + |o| + 1) CQ and a polyno-
mial amount of time.

Proof. The identifiability is clear. Concerning the complexity, the corrections of
the strings a] requires O (|X| + log(|o| + 7)) CQ (lines 2-5). EXTRACT _ CENTRE
needs O (Jo| +r) CQ (line 8). O

Notice that the set of all the balls, that contains good balls but also huge
ones s.t. > 2/°l for instance, is not polynomially identifiable with our algorithm
since O (|| + |o| +7) > O(2/°]) for some of them.

5 Experiments with a Human-like Oracle

In this section, we would like to show the advantages of our approach. Therefore,
we made several experiments that aim at studying the responses of our algorithm
faced with an Oracle that could be human. As we said in introduction, our
algorithm (1) should make use of as few queries as possible (since the Oracle
gets quickly ‘tired’) and (2) should not believe unwisely the answers he gets
(since they can be approximate).

5.1 On the Practical Number of CqQ

We have seen that the balls are identifiable with a linear number of CQ. This
may be too much in a human setting. Nevertheless, this complexity corresponds
to the worst case. Moreover, we are going to show that this bound is rarely
reached in practice.

By Theo. 5, the number of CQ needed to identify B, (o) is O (|X| + |o| + 7).
So, if we fix |o| + r = 1000, the required number of CQ should be globally
constant. Therefore, we fix ¥ = {a, b}, and make r vary between 0 and 1000.
For every value of r, we randomly choose 100 centres o s.t. |o| = 1000 — r. Then
we feed the Oracle with the 100 balls B, (0), and we count the number of CQ
used by our algorithm to identify them. In Fig. 1, we show the average number
of Cq that we need for each radius.

Basically, the number of CQ is not constant but grows quasi-linearly between
500 and 1000 with the radius. The extreme points of this curve are easy to
justify. Recall that our algorithm uses the function EXTRACT _CENTRE. Besides,
a careful reading of the proof of Theo. 5 shows that the cost of this function is the
essential part of the complexity of our algorithm: Without it, we could expect a
logarithmic complexity, that is, O (| 2| + log(|o| + 7)).

EXTRACT CENTRE finds o by scanning a string w € B***(0). By Prop. 2,
|w| = |o| + r = 1000 and o < w. Therefore, when » ~ 1 and |o| ~ 999, EX-
TRACT _CENTRE must scan on average half of the strings w to find the only

11
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Fig. 1. Number of CQ needed to iden- )
tify a ball B, (o) when |o| + r = 1000. Fig. 2. Number of CQ needed to iden-

For each r, we compute the average  tify a ball B.(0o) when [o| +r = ¢ with
over 100 balls. t € [100;1000]. For each r, we compute the
average over 100 balls.

inserted letter in o. So he is going to submit ~ 500 CQ. On the other hand,
when 7 ~ 999 and |o| ~ 1, as EXTRACT _CENTRE must swap r letters to find o,
he uses ~ 1000 CQ. Notice that in the latter case, the curve of Fig. 1 shows a
number of CQ that is a bit more than 1000, about 1012. This difference is due
to the first stages of the algorithm, in which is used the logarithmic number of
Cq.

Now, the linearity of the curve, as well as the change in the slope when
r =~ |o| ~ 500, are much more difficult to justify. If we had worked with a larger
alphabet X, then EXTRACT CENTRE would have made ~ 1000 - r/(r + 1) CQ
to get 0. But in our setting, with a small alphabet, there are plenty ways to find
o as a subsequence of w. In consequence, our rough formula becomes wrong, and
formally assessing the number of CQ needed to extract o, that would justify the
curve, is an intricate combinatorial problem. We can only note that this number
is often much smaller than 1000 - r/(r 4+ 1) ~ 1000 when 100 < r < 900.

At last but not least, in order to check that the behaviour above was not due
to the arbitrary hypothesis |o|+r = 1000, we have repeated the same experiment
with |o| + 7 = t, where ¢ takes values ranging from 100 and 1000 (see Fig. 2).
The surface we get confirms our conclusions: The average number of CQ is less
than the theoretical one for big centres and small radii. Thus, our algorithm is
efficient under these conditions.

5.2 Faced with an Approximate Oracle

Our algorithm was designed in an ideal setting, where we have assumed that
the Oracle was a perfect machine: Her answers were so precise that we could
scrupulously characterise them (see Theo. 3). However, in practice, an Oracle is
often an expert, a human being, and in such settings, our assumption is no longer
correct. Indeed, computing the correction of a®*° w.r.t. the ball Bsg(ab®"?) is

12



probably out of the cognitive capacities of any human being. In this section, we
would like to show, with a series of experiments, that our algorithm withstands
such approximate (i.e., inaccurate, noisy) answers.

Modelling the Approximate Oracle

We want here to design an Approximate Oracle that might look like a human
being. So let us consider a string w and a ball B,(0). Let CQp(w) denote the
answer of the Approximate Oracle, and CQ(w) the answer that would give a
Perfect Oracle (as before).

First, we assume that an expert can easily determine whether an example
fulfils a concept or not, thus here, whether w belongs to B,.(0) or not. So we
assume that if CQ(w) = YES, then CQj,(w) = YES. Secondly, what is really
hard for the expert is to compute the correction of w when w ¢ B,(0), and
more precisely, a string of the ball that is as close to w as possible. Again, it
is reasonable to think that CQj,(w) will be in the ball, so d(o, CQy(w)) < r.
But often, CQy,(w) will not be as close as possible to w, so d(w, CQp(w)) >
d(w, CQ(w)). Staying a step ahead, we must now quantify how far CQ, (w) could
be from w, w.r.t. a perfect correction.

A very first idea is to use a geometric distribution. So let X = d(w, CQj(w))—
d(w, CQ(w)), that measures how far an approximate correction is from a perfect
one. Intuitively, an approximate but strong Oracle will often provide corrections
s.t. X = 0, sometimes X = 1 and rarely X > 2... Conversely, an Adversary, that
does not want us to learn, would systematically give bad answers s.t. X > 0.
To formalise this idea, we introduce a confidence parameter 0 < p < 1, called
the accuracy level of the Oracle, that translates the quality of her answers. The
accuracy of a Perfect Oracle will be 1, whereas the accuracy of a Malicious
Adversary would tend to 0.

Concerning the distribution for X, we assume that Pr(X = k) = (1 — p)¥p,
for all k € IN. Therefore, with probability (1 — p)*p, the correction CQ,(w) of
a string w will be in the target ball, at distance k of CQ(w). Basically, we get
B(X) = S5 kp(1-p)* = (1-p) S5, kp(1—p) " = (1-p)(1/p) = (1/p) ~ 1.
So when the Oracle is very accurate, say p = 0.8, then the average distance
between an approximate and a perfect correction is low (0.25). Conversely, an
expert with limited computation capacities, say p = 0.4, might often provide
inaccurate corrections, at distance 1.5 on average.

Our model of Approximate Oracle is simple. For instance, we do not suppose
that she has any memory, thus by submitting twice every string w, we will
probably get 2 different corrections, that could be used to correct the corrections!
In other words, as we assume the independence of her answers, multiplying
the same query allows to boost our Approximate (Weak) Oracle into a Perfect
(Strong) one. On the other hand, we want here to study the behaviour and
the resistance of our algorithm to approximate answers, not to design the best
possible algorithm, able to assimilate inaccurate corrections. So our simple model
of Approximate Oracle is sufficient from this viewpoint.

13



Behaviour of the Algorithm faced with an Approximate Oracle

Following Theo. 5, our algorithm systematically guesses the target ball with
the help of a Perfect Oracle. Thus ideally, he does not commit any error. But of
course, this is wrong when he is in front of an Approximate Oracle. There are
several ways to measure his error. We think that the statistical methods must
be discarded since they aim at assessing the generalisation error using test sets
and cross-validation for instance, that is far from our learning paradigm: The
spirit of Query Learning is the exact identification of all the balls.We want here
to show that Algo. 2 is resistant to approximate corrections. Therefore, a more
relevant measure is the precision of the algorithm, thus the number of balls he
is able to find over the number of balls he is asked to retrieve.

We have conducted the following experiment: We fix |o| 4+ r = 200; For every
0.5 < p <1, we make r vary between 20 and 180 by steps of 20; Then we assess
the precision of the algorithm over 10 balls whose centres, of length 200 — r, are
randomly chosen. We get Fig. 3. We remark that the algorithm is pretty robust
to the approximations of the Oracle. For instance, he is able to identify about
75% of the balls faced with an accuracy level of p = 0.9. Of course, as one can
expect, with lower levels of accuracy, the performance of the algorithm quickly
drops (15% for p = 0.5).
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Fig. 3. Precision of the algorithm faced
with an Approximate Oracle in function
of the accuracy level p. For each r €
[20; 180], we compute the average over 10
balls whose length of the centres is 200 — 7.

Fig. 4. Average distances between the cen-
tres of the target balls and the centres of
the learnt balls, when the algorithm fails
in retrieving them.

We also show, in Fig. 4, the average distances between the centres of the
target balls and the centres of the balls learnt by the algorithm when he fails to
find them. We observe that these distances are not that important: Even with an
accuracy level of p = 0.5, this distance is less than 4. Therefore, there is reason
to hope that with only local modifications of the returned centres, and without
doing more CQ, we may be able to improve the learning results.
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Improving the Precision with a posteriori Heuristics

We have seen that our algorithm was able to assimilate the approximations of
the Oracle up to a certain level of accuracy. Moreover, the learnt centre returned
by the algorithm is generally not far from the target one. Thus, it is reasonable
to think that we could find the target centre by mining the neighbourhood of
the learnt one, using local edit modifications. These kind of approaches has been
pioneered by Kohonen in [19] and is surveyed in [20].

More precisely, suppose that the learnt ball is B,.(0) and let Q denote the
set of all the corrections the Approximate Oracle has returned during the run
of the Learner. Consider the set Bq(o) of all the strings that one gets by ap-
plying one edit operation on o. Some of them may be the centre of balls that
contain all the corrections of Q but are smaller than B,.(0), in terms of radius;
Following the usual Occam’s razor arguments, they appear to be more relevant
than B,(0). So, as a first criterion, we should focus on these centres. We de-
fine v’ = min | maxd(o, w)> and H/ the subset of Bi(o0) that induce ' as

0o’€B1(0) \weL
minimum radius.

Experimentally, we have observed that H{ could contain a lot of strings, so
we need a second criterion to choose one of them. Suppose that the Approximate
Oracle is not too bad. If B, (o) is the target ball, then most of the corrections
she will provide, will be on the circle delimiting this ball, by Theo. 3. So choosing
the centres o’ € H{ which maximise the number of strings in Q at distance 7/
from o’ seems a good idea. Let H; denote this set.

Again, even though the set of possible centres dramatically reduces w.r.t.
Bi(0), it is still possible that H; contains several strings. Therefore, if H; is a
singleton, we return it; Else if o is in Hy, we return o; Else we randomly return
one string of H;.

These heuristics will be very good each time o is at distance 1 from the target
centre. But as soon as this distance grows, the algorithm will fail again. In order
to enhance these one-step heuristics, we can consider that the construction of
H, is the first stage of an iterative process and design a second until-convergence
heuristic as follows: Assume that H; was built after ¢ iterations; We define H;
by (1) computing all the strings at distance 1 from the strings of H; and (2)
among them, keeping those that verify the same 2 criteria as those used for Hy;
We repeat the process until H; 1 = H; and ultimately choose the final centre as
for H;.

In order to show that the balls learnt by our algorithm can be corrected a
posteriori, we compare, in a series of experiments, the precision of the algorithm
without any post-treatment, with the one-step heuristics and with the until-
convergence heuristics. We fix |o| + r = 200. We make the accuracy level vary
from 0.5 to 1 and the radius, from 20 to 180. For each pair (accuracy, radius),
we randomly draw 50 centres of length 200 — r, and test our algorithm. We plot
the resulting average precisions in Fig. 5.

We can remark that whatever the accuracy level, using the until-convergence
heuristics is never worse than the one-step heuristics, that is never worse than
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Fig. 5. Precision of the algorithm with and without heuristics in function of accuracy
and radius when |o|+7 = 200. For each pair (accuracy, radius), we compute the average
over 50 balls.

no post-treatment at all. Nevertheless, our heuristics do not always improve the
precision of the algorithm: This depends on the radius of the target ball (thus
also on the length of the centre). In order to detail this, we have extracted 2
transverse sections, shown in Fig. 6, where we fix the radii.
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Fig. 6. Precision of the algorithm when |o| + 7 = 200 for » = 120 (left) and r = 20
(right). For each accuracy, we compute the average over 50 balls.

The left curves of Fig. 6 describe the precision of the algorithm for target
balls such that » = 120 and |o| = 80. In this case, we earn hardly anything using
the heuristics. This is probably due to the fact that the size of the set Q, which
is used to control the heuristics, is incomparably smaller than the volume of such
balls. In other words, the heuristics are not sufficiently guided by O towards the
targets, because Q is not informative enough.
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On the other hand, the right curves of Fig. 6 describe the precision for target
balls such that » = 20 and |o| = 180. Basically, our heuristics outperform the
precision w.r.t. the algorithm without any post-treatment, whatever the accuracy
level of the Oracle. Moreover, the benefit is all the more important since the
accuracy level is bad. For instance, when p = 0.6, the until-convergence heuristics
is able to dramatically boost the precision from 26% to 90%.

So in this setting, faced with an Approximate Oracle, and with no further
enhancement, our algorithm produces balls that are so close to the targets that
they can easily be improved using only basic local modifications.

6 Discussion and Conclusion

In this work, we have used correction queries to learn languages from an Oracle.
The intended setting is that of an inexact Oracle, and experiments show that
the algorithm we propose can learn a language sufficiently close to the target for
simple local modifications (with no extra queries) to be possible. In order to do
this, the languages we consider are balls of strings defined with the edit distance.
Beyond their outward simplicity, they often have intricate and counter-intuitive
properties. Studying them allowed us to catch a glimpse of the geometry of 2™,
which is very different from the Euclidean geometry. A number of questions and
research directions are left open by this work:

A first question concerns the distance we use. We have chosen to work with
the unitary edit distance, but in many applications, the edit operations can
have different weights, depending on how easy they are or how often they occur.
Preliminary work has allowed us to notice that the algorithmics could change
considerably depending on the sorts of weights we used; For instance with the
substitutions costing less than the other 2 operations a much faster algorithm
exists, requiring only O (log(|o| + r)) queries [21].

A second question concerns the inaccuracy model we are using: As noticed
in Sect. 5, with the current model it would be possible to repeat the same CQ
various times, getting different corrections, but possibly being able, through some
majority vote scheme, to get the adequate correction with very little extra cost.
Just asking for persistent corrections is not enough to solve this problem: A good
model should require that if one queries from a close enough string (a%?? instead
of a'%%%) then the corrections should also remain close. Topologically, we would
expect the Oracle to be k-Lipschitz continuous (with 0 < k < 1).

A third more challenging problem then arises: Our choice here was to learn
supposing the Oracle was exact, and correcting later. But a more direct approach
might be better, by taking into account the inexactitude of the Oracle when
interpreting the correction.

These are some of the directions that should be followed in order to hope to
learn from correction queries to an imperfect oracle.
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