
HAL Id: ujm-00160027
https://ujm.hal.science/ujm-00160027

Submitted on 6 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Model for Managing Collections of Patterns
Baptiste Jeudy, Christine Largeron, François Jacquenet

To cite this version:
Baptiste Jeudy, Christine Largeron, François Jacquenet. A Model for Managing Collections of Pat-
terns. ACM Symposium on Applied Computing, May 2007, Seoul, South Korea. pp.860-865. �ujm-
00160027�

https://ujm.hal.science/ujm-00160027
https://hal.archives-ouvertes.fr


A Model for Managing Collections of Patterns

Baptiste Jeudy, Christine Largeron, and François Jacquenet

Laboratoire Hubert Curien, UMR CNRS 5516
Univ. of St-Etienne, France

Abstract. Data mining algorithms are now able to efficiently deal with
huge amount of data. Various kinds of patterns may be discovered and
may have some great impact on the general development of knowledge.
In many domains, end users may want to have their data mined by data
mining tools in order to extract patterns that could impact their business.
Nevertheless, those users are often overwhelmed by the large quantity of
patterns extracted in such a situation. Moreover, some privacy issues, or
some commercial one may lead the users not to be able to mine the data
by themselves. Thus, the users may not have the possibility to perform
many experiments integrating various constraints in order to focus on
specific patterns they would like to extract. Post processing of patterns
may be an answer to that drawback. Thus, in this paper we present a
framework that could allow end users to manage collections of patterns.
We propose to use an efficient data structure on which some algebraic
operators may be used in order to retrieve or access patterns in pattern
bases.

1 Introduction

The amount of information that has been stored in data bases all around the
world has continously increased among the years. In order to explore these po-
tential mines of knowledge, efficient data mining tools have been designed for
many years. Hence, it is now possible to mine huge databases in order to extract
various kinds of patterns, modeling some knowledge. Depending on the algo-
rithms used by end users for their needs, patterns may be varied, we may cite
for example decision trees, association rules, formal concepts, etc. While mining
huge databases is becoming a common task for many users, those one are now
faced with a new problem: how can they exploit the large amount of patterns
that are commonly extracted by the data mining tools. Indeed, in the same way
it was impossible to manually extract knowledge from huge databases, it is now
impossible to manage large volumes of patterns and the end users are in need of
new tools in order to do that.

In fact two approaches have been proposed to users in order to manage and
explore what is commonly called Pattern Bases. The first one is based on the
concept of inductive databases [8,2,13,12]. In Europe, the CInQ project1 has
played a dynamic role in researches in that domain. An inductive database not

1 http://www.cinq-project.org/



only contains data but also patterns and data mining languages integrated in the
inductive database management systems offer some facilities for pattern manip-
ulation through post-processing operators [3]. Nevertheless those one are very
basic and pattern base management systems should provide more sophisticated
functionalities.

The second approach for managing patterns focuses on Pattern Base Manage-
ment Systems (PBMS). In [5,4], a PBMS is defined as ”a system for handling
(storing / processing / retrieving) patterns defined over raw data in order to
efficiently support pattern matching and to exploit pattern-related operations
generating intentional information”. Thus, the principle consists in storing the
patterns extracted by some data mining systems using some efficient data struc-
tures. Pattern manipulation languages have then to be designed in order to
manage them. This approach involves two questions. The first one concerns the
possibility to design a generic model for patterns, the second one concerns the
language needed to access and query patterns. The PANDA project2 [10] is an
interesting work in that way. It proposes a generic framework to model various
classes of patterns, then some SQL-like operators allow the user to manage them.
Nevertheless, as the underlying model used for storing the patterns is the rela-
tional model, the requests that can be designed by users are very complex, non
intuitive and time consuming. Even if SQL may be considered an obvious can-
didate to manage collections of patterns, it was in fact designed to access data
stored in databases and it is not well suited to manage patterns [11]. Zaki also
proposed in [18] a generic framework for specifying data structures and manage-
ment functionalities on patterns. Tuzhilin [15] specifies some SQL-like operators
in order to explore sets of association rules. In those two cases, while some efforts
have been done in order to efficiently store patterns, the languages proposed to
handle them are quite poor. Finally, in the field of pattern base management,
we may cite the PMML project [7] that allows interoperability of pattern bases,
specifying an XML framework associated to the concept of pattern. Neverthe-
less this framework is more concerned with structured representation of patterns
than with their management.

Our work also belongs to this second approach based on the post processing
of patterns. That is we aim at designing a data structure and efficient algorithms
for the management of large pattern bases. We think that it may be interesting
for the users to be able to get various sets of patterns, that could be successively
extracted running data mining tools on various databases, and then to use ef-
ficient tools to manage them. Indeed, in many cases, due to privacy issues or
commercial one, the user does not have any access to the data. In this paper,
we propose a framework for the management of a particular class of patterns
that are called concepts [16]. More precisely, our approach is based on labeled
graphs to represent collections of concepts. In this domain few works have been
done. The most related one to ours is probably the work of Mielikäinen [9] who

2 http://dke.cti.gr/panda



suggested to represent patterns using deterministic finite automata. The results
obtained experimentally show that minimum automata provide a compact rep-
resentation. Nevertheless, Mielikäinen considered collections of itemsets and not
of concepts. Moreover he does not provide any generic framework, based on some
algebraic operators.

The next section recalls some basic definitions useful for the understanding
of the paper. In Section 3, we introduce the labeled graph representation of
concepts collections while Section 4 presents a basic algorithm to build this
graph. In Section 5 we define operators that allow to query the graph and that
can be combined using an algebra (in some sense, this section is related to [6]).

2 Definitions

A database Db is a relation between a set of attributes A = {a1, a2, ...} and
a set of objects O = {o1, o2, ...}.

Such a database can be represented as a boolean matrix where the columns
are attributes and the rows are objects.

A B C D E F

1 1 1 0 1 1 1

2 1 1 1 1 0 0

3 1 1 0 1 1 0

4 1 1 0 1 0 1

5 0 0 1 1 1 0

(ABCDEF,O)

(ABDEF,1)

(ABCD,2) (CDE,5)

(CD,25)(DE,135)

(ABDE,13)(ABDF,14)

(D,12345)

(ABD,1234)

5

134

C

3 F4

E 24

134

E 245
AB

C

5
AB

C AB

13
C E 2

D

F 23

E

1

EF 2 5 ABF

Fig. 1. Example of a database where A = {A, B, C, D, E, F} and O =
{1, 2, 3, 4, 5} (top), Hasse diagram of the formal concept collection Concepts(Db)
(left) and the corresponding graph representation with labels on the edges (right,
see Sect. 3)

For instance, this database can be the result of gene expression measures.
In this case, the columns represent genes and the rows represent biological sit-
uations. There is a relation between a gene and a situation if the gene is over-
expressed in the given situation. Mining formal concepts in this kind of data has
been shown to be interesting for biologists [1].



A bi-set is a pair (X, Y ) where X ⊆ A and Y ⊆ O. A 1-rectangle is a bi-set
(X, Y ) such that all the attributes of X are in relation with all the objects of Y .
In the matrix, a 1-rectangle thus defines a sub-matrix containing only ones.

Example 1. In our example of Fig. 1, (ABD, 123) (we use this notation for
({A, B, D}, {1, 2, 3})) and (E, 135) are 1-rectangles. (ABC, 12) is a bi-set but
is not a 1-rectangle since C is not in relation with 1.

The inclusion ⊆ on bi-sets is defined by: (X1, Y1) ⊆ (X2, Y2) iff X1 ⊆ X2 and
Y1 ⊆ Y2. A formal concept is then a maximal 1-rectangle for the order defined
on bi-sets by the inclusion. The collection of all formal concepts in a database
Db is Concepts(Db) (see Fig. 1).

We then define an order on the concepts as follow: (X, Y ) � (X ′, Y ′) iff
X ⊆ X ′ and Y ′ ⊆ Y (notice the direction of the inclusion). With this order,
the collection of formal concepts forms the well known formal concept lattice.
The Hasse diagram of this lattice for our running example is presented in Fig. 1
(left).

3 Representation of a Collection of Concepts

There are several desirable properties for a good representation:

– The representation must allow querying: for instance, given a collection C
of concepts, we want to be able to select all concepts containing a given
attribute or object, or all the concepts containing at least 5 objects. . .

– The result of a query must be a collection of concepts with the same repre-
sentation as the original collection (closure property). This is important to
support successive queries on a collection.

– In the definitions, there is a duality between objects and attributes. The
representation should respect this duality. If it is the case, we can use ”dual”
algorithms for dual operations. For instance, the algorithm to select all con-
cepts containing a given attribute will be the dual of the algorithm selecting
all concepts containing a given object.

The output of concept extraction algorithms (such as D-miner [1]) is typically
a file containing a list of concepts. This is probably the most simple way to
represent a collection of concepts.

Mielikäinen [9] proposed to use an automaton to store an itemset collection
(an itemset is a set of attributes). Several automata are possible: for instance a
simple prefix tree or a minimum automaton. However, it is necessary to define
an order on the attributes to transform itemsets into strings and choosing a
good ordering is very difficult [9] and not very natural. Using an automaton
to represent concepts is also possible if we can transform concepts into strings.
However, doing this without introducing a arbitrary order or losing the duality
between objects and attributes seems very difficult.

To solve the problem of the need to choose an order, Mielikainen proposed to
use what he called commutative automata [9]. However, these automata have a



lot of edges and this is an issue if we want to query efficiently the representation.
Furthermore, the commutative automata only store the attributes of concepts
(and not the objects). This means that the duality is of course lost and that it will
be impossible to query the set of objects of the concepts without recomputing
them.

We propose to use a labeled graph: the Hasse diagram of the order � on the
collection of concepts: the vertices are the concepts and there is an edge X → Y

between the concepts X and Y iff Y cover X , i.e., X ≺ Y and it does not exist
a concept Z such that X ≺ Z ≺ Y . We add two special vertices: ⊥ and ⊤ such
that (X, Y ) ≺ ⊤ and ⊥ ≺ (X, Y ) for all (X, Y ).

We can choose to put the labels on the edges or on vertices: On the vertices:
the label consists of the two sets X and Y . On the edges: on the edge (X, Y ) →
(X ′, Y ′) the label consists of the sets X ′ \ X and Y \ Y ′.

Figure 1 shows an example of the constructed graph with the collection of
all the concepts in the database.

With this representation, we do not need to order the attributes or the objects
and we will show that it is easy to query this representation.

4 Construction of the Graph Representation

Given a list of concepts extracted by a concept extraction algorithm such as
D-miner [1], the following algorithm constructs the graph representing the col-
lection. In fact this algorithm is a common release of classical algorithms that
have been investigated by the Formal Concept Analysis community [17] in order
to build a graph representation of concepts. As this is not the core of our paper,
we do not provide too much details on this construction.

The idea of the construction of the graph is to start from a graph representing
the empty collection (which contains only the vertices ⊤ and ⊥) and to insert
the other concepts in the graph one after the other. In order to simplify the
algorithm, we choose to add the concepts (X, Y ) in order of the increasing size
of X .

When a new concept C = (X, Y ) is inserted, there is no other concept C′

in the graph such that C � C′ (because of the order in which the concepts are
inserted). Therefore, the only successor of C is ⊤ and an arc C → ⊤ is added.
Next, we must find all predecessors C′ of C in the graph (i.e., the concepts C′

in the graph such that C covers C′) to create the arcs C′ → C.
For this purpose, a depth first traversal of the graph is performed (starting

from ⊤). The whole graph does not need to be traversed: each time that a concept
C′ covered by C is found, there is no need to explore the concepts smaller than
C′ (for �) since none of them can be covered by C.

Finally, if C covers a concept C′ that was covered by ⊤, the edge C′ → ⊤
must be removed (since ⊤ no longer covers C′).

This is implemented by the algorithm construct graph. It uses functions
to manipulate the graph (insert vertex, insert edge and delete edge which
are not detailed) and call a procedure insert concept to insert the next concept



in the graph. This procedure call a recursive procedure rec insert to traverse
the graph (the set E is used to ”mark” the vertices that have been explored).

Algorithm 1: construct graph

Input: An ordered collection C of concepts
Output: A graph G representing the collection C
G = empty graph
insert vertex(⊤, G)
insert vertex(⊥, G)
insert edge(⊥ → ⊤, G)
forall B ∈ C do

insert concept(B, G)

return G

Procedure insert concept(concept B, graph G)

insert vertex(B, G)
E = ∅ // E is a global variable

forall X ∈ predecessor(⊤) do
if X � B then

delete edge(X → ⊤, G)
insert edge(X → B, G)

else
rec insert(B, X, G)

insert edge(B → ⊤, G)

Procedure rec insert(concept B, vertex V , graph G)

forall X ∈ predecessor(V ) \ E do
E = E ∪ {X}
if X � B then

if ∄Y ∈ successor(X) such that Y � B then
insert edge(X → B, G)

else
rec insert(B, X, G)

5 Queries

In this section, we study different operations that can be made on a collection of
concepts. We distinguish two kind of queries: selection and projection queries.



(O,12345)

(C,25)(AB,1234)

(ABC,2)

111
110
110
001

1
2
3
4
5

110
111100
110110
110101
001110

1
2
3
4
5

110111
ABCDEF ABC

Projection on ABC

Concept extraction Concept extraction

(ABCDEF,O)

(ABDEF,1)

(ABCD,2) (CDE,5)

(CD,25)(DE,135)

(ABDE,13)(ABDF,14)

(D,12345)

(ABD,1234)

Fig. 2. Projection of concepts. The original database Db and the correspond-
ing concepts Concepts(Db) (left); The projected database π{A,B,C}(Db) and
concept(π{A,B,C}(Db)) (right). The {A, B, C}-equivalence classes (dotted, see
Def. 1) and their least elements (underlined). One can check the fact that the
intersection of the least elements with {A, B, C} are exactly the concepts of
π{A,B,C}(Db) (Theorem 1).

5.1 Selection Queries

Given a collection of concepts C and a predicate p on the concepts, we define the
selection with respect to p as

σp(C) = {(X, Y ) ∈ C | p(X, Y ) is true}

Example 2. Classical examples of selection predicates include [14]:

– minimum (or maximum) length: p(X,Y ) = (|X| > γ)

– minimum (or maximum) frequency:
p(X, Y ) = (|Y | > γ)

– minimum (or maximum) area:
p(X, Y ) = (|X|.|Y | > γ).

– requiring that an attribute (object) belongs (does not belong) to a concept: p(X,Y ) =
(A ∈ X).

– . . .



5.2 Projection Queries

For example, given gene expression data, a biologist might be interested in only a part
of the genes. He may want to focus only on a subset of the genes, for instance the genes
A,B and C.

The most simple solution would be to extract the concepts not on the whole dataset,
but on a part of it containing only the columns A, B and C, i.e., on a projection of
the original database (see Fig. 2, right). If A is a set of attributes, we denote πA(Db)
the projection of the database Db on the attributes of A.

However, a new extraction of concepts in the projected database would be expen-
sive. Furthermore, the original data are perhaps not available anymore (for privacy
purposes for example). If the collection of concepts in the whole database is still avail-
able, a natural question is whether it is possible to compute the collection of concepts
in the projected database from the concepts in the whole database (i.e., to find the
operation corresponding to the dotted arrow in Fig. 2).

In other words, we want to be able to compute Concepts(πA(Db)) from
Concepts(Db) without having to perform an extraction in πA(Db). It is indeed pos-
sible. First, we need to define an A-equivalence relation on the concepts.

Definition 1 (A-equivalence). Given a set A of attributes, two concepts (X, Y ) and
(X ′, Y ′) are A-equivalent iff X ∩ A = X ′ ∩ A.

This is obviously an equivalence relation. Figure 2 gives an example of the equiva-
lence classes. Furthermore, we have the following proposition:

Proposition 1. The A-equivalence classes have a least element (for �).

To prove this proposition, we use the following well known result: if C1 = (X1, Y1)
and C2 = (X2, Y2) are two concepts, then there exists a concept C = (X1 ∩ X2, Y )
with Y1 ∪ Y2 ⊆ Y .

Proof. Given two A-equivalent concepts C1 = (X1, Y1) and C2 = (X2, Y2), then there
exists a third concept C = (X1 ∩ X2, Y ) with Y1 ∪ Y2 ⊆ Y .

Of course, C is A-equivalent to C1 and C2 and we also have C � C1 and C � C2

(by definition of �).
Therefore, the A-equivalence class of C1 and C2 has only one minimum element,

i.e., it has a least element.
⊓⊔

The following theorem characterizes the collection Concepts(πA(Db)) with respect
to Concepts(Db).

Theorem 1. Given a database Db and a set of attributes A, we denote by LEA the
set of the least elements of the A-equivalence classes. Then

Concepts(πA(Db)) = {(X ∩ A, Y ) | (X, Y ) ∈ LEA}.

Proof. In this proof, we use the fact that if (X, Y ) is a concept in πA(Db) then it can
be ”extended” to form a concept (X ′, Y ) in Db where X ′ ∩ A = X.
First inclusion ⊆ :
Let (X, Y ) be a concept in πA(Db). We can ”extend” it to a concept (X ′, Y ) of Db.
Let (X ′′, Y ′′) be a concept A-equivalent to (X ′, Y ) such that (X ′′, Y ′′) � (X ′, Y ).



(X ′′ ∩ A,Y ′′) = (X, Y ′′) is a 1-rectangle of πA(Db). Since Y ⊆ Y ′′ and (X, Y ) is a
concept of πA(Db), Y and Y ′′ are equal. Therefore (X ′′, Y ′′) is included in (X ′, Y )
and therefore X ′′ = X ′ which means that (X ′′, Y ′′) = (X ′, Y ) and (X ′, Y ) is the least
element of its A-equivalence class.
Inclusion ⊇ :
Let (X, Y ) ∈ LEA. Then (X∩A, Y ) is a 1-rectangle in πA(Db). Suppose that there exists
a 1-rectangle (X ′, Y ′) in πA(Db) such that (X ′, Y ′) ⊇ (X ∩ A, Y ). Then X ′ = X ∩ A

otherwise (X ∪ X ′, Y ) is a 1-rectangle strictly containing (X, Y ) and therefore (X, Y )
cannot be a concept. We can extend (X ′, Y ′) = (X ∩ A, Y ′) to a concept (X ′′, Y ′) of
Db. Then X ′′ ⊆ X otherwise (X ∪ X ′′, Y ) is a 1-rectangle strictly containing (X, Y )
and thus (X, Y ) cannot be a concept. Therefore (X ′′, Y ′) � (X, Y ) and these two
concepts are A-equivalent. Therefore they are equal (since (X, Y ) is a least element)
and (X ∩ A,Y ) is a maximal 1-rectangle in πA(Db) (for ⊆), i.e., a concept of πA(Db).

⊓⊔

More generally, we can define a projection operation on collections of concepts:

Definition 2 (collection of concepts projection).
Given a collection of concepts C in a database Db and a set of attributes A, we

define the projection of the collection C with respect to A by:

πA(C) = {(X ∩ A,Y ) | (X, Y ) ∈ C ∩ LEA}

where LEA is defined as in Theorem 1.

Theorem 1 means that this projection operation can be used to compute the con-
cepts in the projected database πA(Db) by projecting the concepts of the original
database Db: Concepts(πA(Db)) = πA(Concepts(Db)). In this equality, the first πA de-
notes a database projection whereas the second one denotes a collection of concepts
projection (Def. 2).

5.3 Algebra

In this section, we study how the projection and selection operations on collection of
concepts compose with each other.

We want to know if there exists an operation to close the following diagram (dotted
arrow). A natural candidate is the projection that we have just defined.

concepts(Db)

Db’

concepts(Db’)

C C’

concept selection

Db

concept projection

concept projection

concept extraction

concept selection

database projection

concept extraction

Indeed, the following theorem shows that this diagram can be closed using the
projection operation:



Theorem 2. Given a collection of concepts C in a database Db, a set of attributes A

and a selection predicate p such that for all concepts (X, Y ), p(X ∩ A, Y ) = p(X, Y ),
then

πA ◦ σp(C) = σp ◦ πA(C).

Proof. (X, Y ) ∈ πA(σp(C)) ⇐⇒ ∃(X ′, Y ) ∈ σp(C) ∩ LEA such that X = X ′ ∩ A (by
Def. 2) ⇐⇒ ∃(X ′, Y ) ∈ LEA ∩ C such that p(X ′, Y ) is true and X = X ′ ∩ A ⇐⇒
∃(X ′, Y ) ∈ LEA ∩ C such that p(X,Y ) is true and X = X ′ ∩ A (since p(X ′, Y ) =
p(X ′ ∩ A,Y ) = p(X, Y )) ⇐⇒ (X, Y ) ∈ πA(C) and p(X, Y ) is true (by Def. 2) ⇐⇒
(X, Y ) ∈ σp(πA(C)) ⊓⊔

The requirement on p can seem very strong but it is necessary. In order to be able
to perform the selection after the projection, the projection must not remove too much
information from the collection. For instance, if the selection is defined by p(X, Y ) =
(D ∈ X) (i.e., select the concepts containing attribute D), then this selection does not
commute with the projection π{A,B,C}. Indeed, after this projection the information
whether a concept contained attribute D is no longer available. There is a similar
behavior with selection and projection defined on relational tables. If the selection uses
an attribute which is suppressed by the projection, the two operations do not commute.

5.4 Duality

In the two previous sections, we defined the projection of a collection of concepts on a
set A of attributes. In a dual manner, we can define another projection on a set O of
objects. The dual equivalence relation of the A-equivalence (Def. 1) can be defined as
follow: two concepts (X, Y ) and (X ′, Y ′) are O-equivalent iff Y ∩ O = Y ′ ∩ O. Then
we have the dual of theorems 1 and 2.

5.5 Algorithms

In this section, we present the algorithms to actually perform the selection and projec-
tion on the graph representation of the collection.

To perform the projection of a collection of concepts C with respect to a set of
attributes A, we need to be able to test if a concept is minimal in its A-equivalence
class. However, this is not always possible without additional information: it is possible
that the collection C does not contain all the concepts belonging to an equivalence class,
in this case, we could find a minimum concept in this equivalence class in C which is
not the least element of this equivalence class in Concepts(Db).

For instance, suppose C contains all the concepts of Fig. 2 (before projection) except
concept (D, 12345). Then, if we compute the projection of this collection with respect
to {A, B, C}, we must be able to detect that (DE, 135) is not a least element of an
equivalence class. Without additional information, it is not possible without a possibly
expensive check in the data.

This is the reason why we add some information in our graph representation. Given
a collection C of concepts, we add into the graph the concepts that are ”just outside”
of the collection. By just outside, we mean the concepts that are either predeces-
sor or successor of a concept belonging to the collection. These additional concepts
are marked and are not linked to ⊤ and ⊥ (they are inserted in the graph with the



insert marked vertex function), they are linked only to the concept(s) of the collec-
tion which is (are) their predecessor or successor. Of course, when doing selection or
projection operations, this additional information must be maintained.

The algorithm to perform the projection is given in Alg. 6. For all vertex X, the
algorithm computes le[X] which is the least element of the A-equivalence class of X.
If this least element is not in the collection, then le[X]=NIL. The least elements of the
equivalence classes are inserted in the new graph G′ and the edges are added to G′. In
the algorithm, we use the notation proj(X,Y) to denote (X ∩ A, Y ).

Algorithm 4: selection AM

Input: A graph G representing a collection C of concepts and an
anti-monotonic selection predicate p

Output: A graph G′ representing the collection σp(C)
G′ = empty graph
insert vertex(⊤, G′)
insert vertex(⊥, G′)
E = ∅ // E is a global variable

explore(⊥)
return G′

In the general case, to compute the selection of a collection of concepts with respect
to a predicate p, we must traverse the graph representing the collection and test p on
all concepts.

However, when p is monotonic or anti-monotonic, it is not necessary to traverse the
whole graph. A predicate p is anti-monotonic iff (¬p(X, Y ) ∧ ((X, Y ) � (X ′, Y ′))) ⇒
¬p(X ′, Y ′) and monotonic iff (¬p(X, Y ) ∧ ((X ′, Y ′) � (X, Y ))) ⇒ ¬p(X ′, Y ′). There-
fore, if p is anti-monotonic, the graph can be explored bottom up (from ⊥ to ⊤) and if
a concept X that does not satisfy p is found, it is not necessary to explore its successors
(see Alg. 4). Dually, for a monotonic constraint, the graph is explored top down.

Procedure explore(vertex V )

E = E ∪ {V } // E is a global variable

forall X ∈ predecessor(V ) and X marked do
insert marked vertex(X, G′)
insert edge(X → V , G′)

link to top = true
forall X ∈ successor(V ) do

if p(X) and X not marked then
link to top = false
if X 6∈ E then

insert vertex(X, G′)
explore(X)

insert edge(V → X, G′)
else

insert marked vertex(X,G′)
insert edge(V → X, G′)

if link to top then
insert edge(V → ⊤)



Algorithm 6: projection

Input: A graph G representing a collection C of concepts and a set A of
attributes

Output: A graph G′ representing the collection πA(C)
forall X ∈ C, X not marked do

le[X]= X

forall X ∈ C, X not marked, in topological order do
if le[X] = X then // X is perhaps in LEA

if ∃Y ∈ predecessor(X), Y marked and class(Y ) = class(X) then
// X is not in LEA

le[X] = NIL
else // X is in LEA

insert vertex(proj(X), G′)
forall X ′ marked ∈ predecessor(X) do

insert marked vertex(proj(X ′), G′)
insert edge(proj(X ′) → proj(X), G′)

forall Y unmarked ∈ successor(X) do
if class(Y ) = class(X) then

le[Y ] = le[X]

forall edge X → Y in G, X and Y unmarked do
insert edge(proj(le[X]) → proj(le[Y ]), G′)

6 Conclusion

In this article, we made an original study on how to represent and query collections of
concepts. We proposed to store these collections using a graph representation and we
defined two kinds of operators: selection and projection.

We want to extend this work in several directions. First, it would be interesting to
study the scalability of our representation on real datasets and make comparison with,
for instance, automata representations. Studying the relationships between the size of
the representation and the characteristics of the datasets from which it was extracted
would also be interesting.

Second, our representation using a graph is efficient for querying but is could be
more compact. One could use two representations of the collection of concepts: a very
compact one for long term storage (on disk) and another one (the graph) for querying.

Finally, several works have been done on generalization of concepts and on cluster-
ing of concepts. It would be interesting to study if it is possible to define an aggregation
operator (a kind of “group by” operator) on the graph to support these generalization
facilities..

7 Acknowledgments

This work is partially funded by the french ACI ”masse de données” (Bingo project).



References

1. J. Besson, C. Robardet, J.-F. Boulicaut, and S. Rome. Constraint-based concept
mining and its application to microarray data analysis. IDA, 9(1):59–82, 2005.

2. J.-F. Boulicaut, M. Klemettinen, and H. Mannila. Modeling KDD processes within
the inductive database framework. In DaWaK, volume 1676 of LNCS, pages 293–
302, 1999.

3. J. F. Boulicaut and C. Masson. Data mining query languages. In The Data Mining
and Knowledge Discovery Handbook, pages 715–727. Springer, 2005.

4. B. Catania and A. Maddalena. Pattern Management: Practice and Challenges,
pages 280–317. Processing and Managing Complex Data for Decision Support.
Idea Group Publishing, 2006.

5. B. Catania, A. Maddalena, M. Mazza, E. Bertino, and S. Rizzi. A framework for
data mining pattern management. In PKDD, volume 3202 of LNCS, pages 87–98,
2004.

6. C. T. Diop, A. Giacometti, D. Laurent, and N. Spyratos. Computation of min-
ing queries: An algebraic approach. In Constraint-Based Mining and Inductive
Databases, volume 3848 of LNCS, pages 102–126, 2005.

7. R. L. Grossman, S. Bailey, A. Ramu, B. Malhi, P. Hallstrom, I. Pulleyn, and
X. Qin. The management and mining of multiple predictive models using the pre-
dictive model markup language (PMML). In Information and Software Technology,
volume 41, pages 589–595, 1999.

8. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Comm. ACM, 39(11):58–64, 1996.

9. T. Mielikäinen. An automata approach to pattern collections. In KDID, volume
3377 of LNCS, pages 130–149, 2004.

10. Panda. Patterns for next-generation database systems (2001-2004). FET/IST-
2001-33058.

11. K. Parsaye. From datamagement to pattern management. DM Rev. Mag., 1999.
12. L. D. Raedt. A perspective on inductive databases. SIGKDD Explorations, 4(2):69–

77, 2002.
13. L. D. Raedt, M. Jaeger, S. Lee, and H. Mannila. A theory of inductive query

answering. In ICDM, pages 123–130, 2002.
14. A. Soulet and B. Crémilleux. An efficient framework for mining flexible constraints.

In PAKDD, volume 3518 of LNCS, pages 661–671, 2005.
15. A. Tuzhilin and B. Liu. Querying multiple sets of discovered rules. In SIGKDD,

pages 52–60. ACM, 2002.
16. R. Wille. Concept lattices and conceptual knowledge systems. Comp. math. ap-

plied, 23(6-9):493–515, 1992.
17. R. Wille. Formal Concept Analysis: Mathematical Foundations. Springer, 1999.
18. M. J. Zaki, N. Parimi, N. De, F. Gao, B. Phoophakdee, J. Urban, V. Chaoji, M. A.

Hasan, and S. Salem. Towards generic pattern mining. In Proc. of the Conference
on Formal Concept Analysis, volume 3403 of LNCS, pages 1–20, 2005.


