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A tabular pruning rule in tree-based fast NearestNeighbor Sear
h algorithmsJose On
ina1, Fran
k Thollard2, Eva Gómez-Ballester1, Luisa Mi
ó1, andFran
is
o Moreno-Se
o1

1 Dept. Lenguajes y Sistemas Informáti
osUniversidad de Ali
ante, E-03071 Ali
ante, Spain{on
ina,eva,mi
o,pa
o}�dlsi.ua.es
2 Laboratoire Hubert Curien (ex EURISE) - UMR CNRS 551618 rue du Prof. Lauras - 42000 Saint-Étienne Cedex 2, Fran
ethollard�univ-st-etienne.frAbstra
t. Some fast nearest neighbor sear
h (NNS) algorithms usingmetri
 properties have appeared in the last years for redu
ing 
omputa-tional 
ost. Depending on the stru
ture used to store the training set,di�erent strategies to speed up the sear
h have been de�ned. For in-stan
e, pruning rules avoid the sear
h of some bran
hes of a tree in atree-based sear
h algorithm. In this paper, we propose a new and simplepruning rule that 
an be used in most of the tree-based sear
h algorithms.All the information needed by the rule 
an be stored in a table (at pre-pro
essing time). Moreover, the rule 
an be 
omputed in 
onstant time.This approa
h is evaluated through real and arti�
ial data experiments.In order to test its performan
e, the rule is 
ompared to and 
ombinedwith other previously de�ned rules.1 Introdu
tionNearest Neighbor Sear
h (NNS) te
hniques aim at �nding the nearest point ofa set to a given test point using a distan
e fun
tion [4℄. The naïve approa
h issome times a bottlene
k due to the large number of distan
es to be 
omputed.Many methods have been developped in order to avoid the exhaustive sear
h(see [3℄ and [2℄ for a survey). Tree-based stru
tures are very popular in mostof the proposed algorithms [6, 5, 10, 1, 9℄, as this stru
ture provides a simple wayto avoid the exploration of some subsets of points. Among these methods, onlysome of them are suitable for general metri
 spa
es, i.e., spa
es where the obje
ts(prototypes) need not to be represented as a point, and only require a properlyde�ned distan
e fun
tion. The most popular and refereed algorithm of su
h atype was proposed by Fukunaga and Narendra (FNA) [6℄. This algorithm is verysuitable for studying new tree building strategies and new pruning rules [7, 8℄ asa previous step for extending the new ideas to other tree-based algorithms.In this paper a new pruning rule is presented. The two keypoints in favor ofthis rule are its simpli
ity (only a table of "distan
es" is stored) and its e�
ien
y(it allows a 
onstant time pruning). The new rule may be used with the FNA



algorithm in any metri
 spa
e (even in a ve
tor spa
e with an appropiate distan
emetri
). In a 
lassi
al way, the FNA algorithm will serve as a baseline for the
omparison with other te
hniques.The paper is organized as follow: we will �rst introdu
e the basi
 algorithm(se
tion 2). We introdu
e the di�erent pruning rules that were used in the ex-periment in se
tion 3 and 4. We will provide a 
omparative experiment on eitherarti�
ial and real world data (se
tion 5). We then 
on
lude suggesting somefuture works (se
tion 6).2 The basi
 algorithmThe FNA is a fast sear
h method that uses a binary tree stru
ture. Ea
h leafstores a point of the sear
h spa
e. At ea
h node t is asso
iated St, the set of thepoints stored in the leaves of t sub-tree. Ea
h node stores Mt (the representativeof St) and the radius of St, Rt = maxx∈St
d(Mt, x).The tree is generally built using re
ursive 
alls to a 
lustering algorithm. Inthe original FNA the c-means algorithm was used. In [7℄ some other strategieswere explored: in the best method, namely the Most Distant from the Father tree(MDF), the representative of the left node was the same than the representativeof its father. Thus, ea
h time an expansion of the node is ne
essary, only one newdistan
e must be 
omputed (instead of two), redu
ing the number of distan
es
omputed. As the pruning rules apply on any tree, in the following, the tree willbe built using the MDF method.In algorithm 1, a simpli�ed version of FNA is presented; only the Prune_FNRfun
tion 
all must be 
hanged when 
onsidering another pruning rule. In orderto make the pseudo-
ode simpler, the dmin and nn are 
onsidered global variable.Also, only binary trees with one point on the leaves are 
onsidered.The use of the Fukunaga and Narendra Rule (FNR) for pruning internalnodes is detailed in [6℄.When a new sample point x is given, its nearest neighbor nn is sear
hed inthe tree using a depth-�rst strategy. At a given level, the node t with a smallerdistan
e d(x, Mt) is explored �rst. In order to avoid the exploration of somebran
hes of the tree the FNA uses the FNR rule.3 A review of pruning rulesFukunaga and Narendra Rule (FNR)The pruning rule de�ned by Fukunaga and Narendra for internal nodes onlymakes use of the information in the node t to be pruned (with representant Mtand radius Rt) and the hyperspheri
al volume 
entered in the sample point xwith radius d(x, nn), where nn is the nearest prototype 
onsidered up to themoment.Rule: No y ∈ St 
an be the nearest neighbor to x if d(x, nn)+Rt < d(x, Mt).



Algorithm 1: sear
h(t,x)Data: t: a node tree ; x: a sample point;Result: nn: the nearest neighbor prototype; dmin: the distan
e to nn;if t is not a leaf then
r = right_child(t); ℓ = left_child(t);
dr = d(x, Mr) ; dℓ = d(x, Mℓ);update dmin and nn;if dℓ < dr thenif not Prune_FNR(ℓ) thensear
h(ℓ, x);if not Prune_FNR(r) thensear
h(r, x);elseif not Prune_FNR(r) thensear
h(r, x);if not Prune_FNR(ℓ) thensear
h(ℓ, x);The Sibling Based Rule (SBR)Given two sibling nodes r and ℓ, this rule requires that ea
h node r stores thedistan
e between the representative of the node, Mr, and the nearest point, eℓ,in the sibling node ℓ (Sℓ).Rule: No y ∈ Sℓ 
an be the nearest neighbor to x if d(Mr, eℓ) > d(Mr, x) +

d(x, nn)Unlike the FNR, SBR 
an be applied to eliminate node ℓ without 
omputing
d(Mℓ, x), avoiding some extra distan
e 
omputations at sear
h time.Generalized rule (GR)This rule is an iterated 
ombination of the FNR and the SBR (see [8℄ for moredetails). Given a node ℓ, a set of prototypes {ei} is de�ned in the following way:

G1 = Sℓ

ei = argmaxp∈Gi
d(p, Mℓ)

Gi+1 = {p ∈ Gi : d(p, Mr) < d(ei, Mr)}where Mr is the representative of the sibling node r, and Gi are auxiliary setsof prototypes.At prepro
essing time, the distan
es d(Mr, ei) are stored in ea
h node ℓ. Thispro
ess is repeated similarly for the sibling node.



Rule: No y ∈ Sℓ 
an be the nearest neighbor if there is an integer i su
hthat:
d(Mr, ei) ≥ d(Mr, x) + d(x, nn) (1)

d(Mℓ, ei+1) ≤ d(Mℓ, x) − d(x, nn) (2)Cases i = 0 and i = s are also in
luded not 
onsidering equations (1) or (2)respe
tively. Note that 
ondition (1) is equivalent to SBR rule when i = s and
ondition (2) is equivalent to FNR rule when i = 0.4 The table rule (TR)This rule prunes by taking the 
urrent nearest neighbor as a referen
e. In orderto do so the distan
e from a prototype p to a set of prototypes S is de�ned as
d(p, S) = miny∈S d(p, y). At prepro
ess time, the distan
es from ea
h prototypeto ea
h node set St in the tree are 
omputed and stored in a table, allowing a
onstant time pruning. Note that the size of this table grows with the square ofthe number of prototypes sin
e, as the tree is binary, the number of nodes is twotimes the number of prototypes.

t

nnxd(nn,S )

t: node
x: sample point
nn: current nearest neighbor

t

Fig. 1. Appli
ation of the table ruleRule: Figure 1, Present a graphi
al view of the table rule.Proposition 1 (Table Rule) Given the table rule (2d(x, nn) < d(t, nn)), noprototype ei in node t 
an be nearest to the test sample x than nn, i. e.
∀ei ∈ t, d(x, ei) ≥ d(x, nn)Proof:Let ei ∈ St. By the de�nition of the distan
e between a point and a node

d(nn, St) = minei∈St
d(ei, nn)



and thus
d(nn, St) ≤ d(ei, nn)Moreover, by the triangle inequality, we have:

d(ei, nn) ≤ d(ei, x) + d(x, nn)Combining these inequalities, we have:
d(nn, St) ≤ d(ei, nn) ≤ d(ei, x) + d(x, nn)

⇒ d(ei, x) ≥ d(nn, St) − d(x, nn)using the table rule, we �nally have:
d(ei, x) ≥ 2d(x, nn) − d(x, nn) = d(x, nn)whi
h 
ompletes the proof.5 ExperimentsAs seen in the proof of the 
orre
tness of the table rule, it is only required that

d is a true distan
e. In parti
ular, on the 
ontrary to other te
hniques su
h asthe well known kd-tree algorithm, a ve
tor spa
e is not needed in order to applythe table rule.In order to evaluate the power of the table rule, the performan
e of thealgorithm has been measured in real and arti�
ial data experiments using themost signi�
ative 
ombinations of the pruning rules.In the arti�
ial data set up, the prototypes where obtained from a 5 and10-dimensional uniform distribution in the unit hyper
ube.A �rst experiment was performed using in
reasing size prototypes sets from
1, 000 prototypes to 8, 000 in steps of 1, 000 for 5 and 10 dimensional data.Ea
h experiment measures the average distan
e 
omputations of 16, 000 sear
hes(1, 000 sear
hes over 16 di�erent prototypes sets). The samples were obtainedfrom the same distribution.Figures 2 and 3 show the results for some 
ombinations of the pruning ruleswhere �f�, �s�, �g� and �t� stand for the �Fukunaga�, �sibling�, �generalized� and�table� pruning rules respe
tively. Standard deviation of measures is also in
luded(though with value almost negligible).As it 
an be observed, the table pruning rule, when applied alone, 
an a
hieve
∼ 50% distan
e 
omputations redu
tion, although additional redu
tion (up to
∼ 70%) 
an be a
hieved when 
ombined with �f�, �fs� or �g� pruning rules.In these three 
ases the di�eren
es are not noti
eable. Obviously, as the time
omplexity of the generalized pruning rule is not 
onstant, the 
ombinationswith �f� or �fs� are more appealing.To show the performan
e of the algorithm with real data, some tests were
arried out on a spelling task. A database of 38, 000words of a Spanish di
tionarywas used.
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Fig. 2. Pruning rules 
ombinations in a uniform distribution 5-dimensional spa
e.The input test of the speller was simulated distorting the words by meansof random insertion, deletion and substitution operations over the words in theoriginal di
tionary. The edit distan
e was used to 
ompare the words. In theseexperiments, the values of the weighting operations 
osts of the edit distan
e (in-sertion, deletion and substitution) were �xed to 1. This makes the edit distan
ea mathemati
al distan
e whi
h makes the table rule appli
able. Please note thatsome fast NN sear
h te
hniques (i.e. kd-tree) 
ould not be applied here as thedata 
ould hardly be represented in a ve
tor spa
e.Di
tionaries of in
reasing size (from 1, 000 to 8, 000) were obtained extra
tingrandomly words of the whole di
tionary. The test points were 1, 000 distortedwords obtained from randomly sele
ted di
tionary words. To obtain reliable re-sults the experiments were repeated 16 times. The averages and the standarddeviation are showed on the plots.The experiment performed in Figures 2 and 3 for arti�
ial data (average num-ber of distan
e 
omputations using in
reasing size prototype sets) were repeatedin the spelling task. Results are shown in Figure 4.The experiments show a redu
tion in the number of distan
e 
omputations(around 40%) for the table rule when 
ombined with "f", "fs" or "g" pruningrules.On the 
ontrary to the arti�
ial data 
ase, the table rule alone does notperform better than the generalized rule. Nevertheless, this is not problemati
as 
ombining the table rule with the two 
onstant time pruning rules � namelythe Fukunaga and/or the Sibling rule � outperforms the generalized rule perfor-man
es.
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Fig. 3. Pruning rules 
ombinations in a uniform distribution 10-dimensional spa
e.6 Con
lusions and Further worksTo summarize, a new pruning rule has been de�ned that 
an been applied in tree-based sear
h algorithms. To apply the rule, a distan
e table should be 
omputedand stored in prepro
ess time. This table rule stores the distan
es between ea
hprototype in the training set and every node of the tree; its spa
e 
omplexity istherefore quadrati
 in the size of the training set.As the experiments suggest, this rule save the 
omputation of 70% of dis-tan
es in the 
ase of 10-dimensional data and 40% in the 
ase of strings withtraining set around 8, 000 points when 
ompared with the generalized rule.In future works, a more exhaustive study of the rule will be performed. Inparti
ular, the idea is to study on the one hand whi
h is the better 
ombinationof rules (with the minor 
ost), and on the other hand, what is the 
ondition andorder where ea
h rule 
an be applied.Other problem that should be explored is how to redu
e the spa
e 
omplexityof the table rule.7 A
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