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A tabular pruning rule in tree-based fast NearestNeighbor Searh algorithmsJose Onina1, Frank Thollard2, Eva Gómez-Ballester1, Luisa Mió1, andFraniso Moreno-Seo1

1 Dept. Lenguajes y Sistemas InformátiosUniversidad de Aliante, E-03071 Aliante, Spain{onina,eva,mio,pao}�dlsi.ua.es
2 Laboratoire Hubert Curien (ex EURISE) - UMR CNRS 551618 rue du Prof. Lauras - 42000 Saint-Étienne Cedex 2, Franethollard�univ-st-etienne.frAbstrat. Some fast nearest neighbor searh (NNS) algorithms usingmetri properties have appeared in the last years for reduing omputa-tional ost. Depending on the struture used to store the training set,di�erent strategies to speed up the searh have been de�ned. For in-stane, pruning rules avoid the searh of some branhes of a tree in atree-based searh algorithm. In this paper, we propose a new and simplepruning rule that an be used in most of the tree-based searh algorithms.All the information needed by the rule an be stored in a table (at pre-proessing time). Moreover, the rule an be omputed in onstant time.This approah is evaluated through real and arti�ial data experiments.In order to test its performane, the rule is ompared to and ombinedwith other previously de�ned rules.1 IntrodutionNearest Neighbor Searh (NNS) tehniques aim at �nding the nearest point ofa set to a given test point using a distane funtion [4℄. The naïve approah issome times a bottlenek due to the large number of distanes to be omputed.Many methods have been developped in order to avoid the exhaustive searh(see [3℄ and [2℄ for a survey). Tree-based strutures are very popular in mostof the proposed algorithms [6, 5, 10, 1, 9℄, as this struture provides a simple wayto avoid the exploration of some subsets of points. Among these methods, onlysome of them are suitable for general metri spaes, i.e., spaes where the objets(prototypes) need not to be represented as a point, and only require a properlyde�ned distane funtion. The most popular and refereed algorithm of suh atype was proposed by Fukunaga and Narendra (FNA) [6℄. This algorithm is verysuitable for studying new tree building strategies and new pruning rules [7, 8℄ asa previous step for extending the new ideas to other tree-based algorithms.In this paper a new pruning rule is presented. The two keypoints in favor ofthis rule are its simpliity (only a table of "distanes" is stored) and its e�ieny(it allows a onstant time pruning). The new rule may be used with the FNA



algorithm in any metri spae (even in a vetor spae with an appropiate distanemetri). In a lassial way, the FNA algorithm will serve as a baseline for theomparison with other tehniques.The paper is organized as follow: we will �rst introdue the basi algorithm(setion 2). We introdue the di�erent pruning rules that were used in the ex-periment in setion 3 and 4. We will provide a omparative experiment on eitherarti�ial and real world data (setion 5). We then onlude suggesting somefuture works (setion 6).2 The basi algorithmThe FNA is a fast searh method that uses a binary tree struture. Eah leafstores a point of the searh spae. At eah node t is assoiated St, the set of thepoints stored in the leaves of t sub-tree. Eah node stores Mt (the representativeof St) and the radius of St, Rt = maxx∈St
d(Mt, x).The tree is generally built using reursive alls to a lustering algorithm. Inthe original FNA the c-means algorithm was used. In [7℄ some other strategieswere explored: in the best method, namely the Most Distant from the Father tree(MDF), the representative of the left node was the same than the representativeof its father. Thus, eah time an expansion of the node is neessary, only one newdistane must be omputed (instead of two), reduing the number of distanesomputed. As the pruning rules apply on any tree, in the following, the tree willbe built using the MDF method.In algorithm 1, a simpli�ed version of FNA is presented; only the Prune_FNRfuntion all must be hanged when onsidering another pruning rule. In orderto make the pseudo-ode simpler, the dmin and nn are onsidered global variable.Also, only binary trees with one point on the leaves are onsidered.The use of the Fukunaga and Narendra Rule (FNR) for pruning internalnodes is detailed in [6℄.When a new sample point x is given, its nearest neighbor nn is searhed inthe tree using a depth-�rst strategy. At a given level, the node t with a smallerdistane d(x, Mt) is explored �rst. In order to avoid the exploration of somebranhes of the tree the FNA uses the FNR rule.3 A review of pruning rulesFukunaga and Narendra Rule (FNR)The pruning rule de�ned by Fukunaga and Narendra for internal nodes onlymakes use of the information in the node t to be pruned (with representant Mtand radius Rt) and the hyperspherial volume entered in the sample point xwith radius d(x, nn), where nn is the nearest prototype onsidered up to themoment.Rule: No y ∈ St an be the nearest neighbor to x if d(x, nn)+Rt < d(x, Mt).



Algorithm 1: searh(t,x)Data: t: a node tree ; x: a sample point;Result: nn: the nearest neighbor prototype; dmin: the distane to nn;if t is not a leaf then
r = right_child(t); ℓ = left_child(t);
dr = d(x, Mr) ; dℓ = d(x, Mℓ);update dmin and nn;if dℓ < dr thenif not Prune_FNR(ℓ) thensearh(ℓ, x);if not Prune_FNR(r) thensearh(r, x);elseif not Prune_FNR(r) thensearh(r, x);if not Prune_FNR(ℓ) thensearh(ℓ, x);The Sibling Based Rule (SBR)Given two sibling nodes r and ℓ, this rule requires that eah node r stores thedistane between the representative of the node, Mr, and the nearest point, eℓ,in the sibling node ℓ (Sℓ).Rule: No y ∈ Sℓ an be the nearest neighbor to x if d(Mr, eℓ) > d(Mr, x) +

d(x, nn)Unlike the FNR, SBR an be applied to eliminate node ℓ without omputing
d(Mℓ, x), avoiding some extra distane omputations at searh time.Generalized rule (GR)This rule is an iterated ombination of the FNR and the SBR (see [8℄ for moredetails). Given a node ℓ, a set of prototypes {ei} is de�ned in the following way:

G1 = Sℓ

ei = argmaxp∈Gi
d(p, Mℓ)

Gi+1 = {p ∈ Gi : d(p, Mr) < d(ei, Mr)}where Mr is the representative of the sibling node r, and Gi are auxiliary setsof prototypes.At preproessing time, the distanes d(Mr, ei) are stored in eah node ℓ. Thisproess is repeated similarly for the sibling node.



Rule: No y ∈ Sℓ an be the nearest neighbor if there is an integer i suhthat:
d(Mr, ei) ≥ d(Mr, x) + d(x, nn) (1)

d(Mℓ, ei+1) ≤ d(Mℓ, x) − d(x, nn) (2)Cases i = 0 and i = s are also inluded not onsidering equations (1) or (2)respetively. Note that ondition (1) is equivalent to SBR rule when i = s andondition (2) is equivalent to FNR rule when i = 0.4 The table rule (TR)This rule prunes by taking the urrent nearest neighbor as a referene. In orderto do so the distane from a prototype p to a set of prototypes S is de�ned as
d(p, S) = miny∈S d(p, y). At preproess time, the distanes from eah prototypeto eah node set St in the tree are omputed and stored in a table, allowing aonstant time pruning. Note that the size of this table grows with the square ofthe number of prototypes sine, as the tree is binary, the number of nodes is twotimes the number of prototypes.

t

nnxd(nn,S )

t: node
x: sample point
nn: current nearest neighbor

t

Fig. 1. Appliation of the table ruleRule: Figure 1, Present a graphial view of the table rule.Proposition 1 (Table Rule) Given the table rule (2d(x, nn) < d(t, nn)), noprototype ei in node t an be nearest to the test sample x than nn, i. e.
∀ei ∈ t, d(x, ei) ≥ d(x, nn)Proof:Let ei ∈ St. By the de�nition of the distane between a point and a node

d(nn, St) = minei∈St
d(ei, nn)



and thus
d(nn, St) ≤ d(ei, nn)Moreover, by the triangle inequality, we have:

d(ei, nn) ≤ d(ei, x) + d(x, nn)Combining these inequalities, we have:
d(nn, St) ≤ d(ei, nn) ≤ d(ei, x) + d(x, nn)

⇒ d(ei, x) ≥ d(nn, St) − d(x, nn)using the table rule, we �nally have:
d(ei, x) ≥ 2d(x, nn) − d(x, nn) = d(x, nn)whih ompletes the proof.5 ExperimentsAs seen in the proof of the orretness of the table rule, it is only required that

d is a true distane. In partiular, on the ontrary to other tehniques suh asthe well known kd-tree algorithm, a vetor spae is not needed in order to applythe table rule.In order to evaluate the power of the table rule, the performane of thealgorithm has been measured in real and arti�ial data experiments using themost signi�ative ombinations of the pruning rules.In the arti�ial data set up, the prototypes where obtained from a 5 and10-dimensional uniform distribution in the unit hyperube.A �rst experiment was performed using inreasing size prototypes sets from
1, 000 prototypes to 8, 000 in steps of 1, 000 for 5 and 10 dimensional data.Eah experiment measures the average distane omputations of 16, 000 searhes(1, 000 searhes over 16 di�erent prototypes sets). The samples were obtainedfrom the same distribution.Figures 2 and 3 show the results for some ombinations of the pruning ruleswhere �f�, �s�, �g� and �t� stand for the �Fukunaga�, �sibling�, �generalized� and�table� pruning rules respetively. Standard deviation of measures is also inluded(though with value almost negligible).As it an be observed, the table pruning rule, when applied alone, an ahieve
∼ 50% distane omputations redution, although additional redution (up to
∼ 70%) an be ahieved when ombined with �f�, �fs� or �g� pruning rules.In these three ases the di�erenes are not notieable. Obviously, as the timeomplexity of the generalized pruning rule is not onstant, the ombinationswith �f� or �fs� are more appealing.To show the performane of the algorithm with real data, some tests werearried out on a spelling task. A database of 38, 000words of a Spanish ditionarywas used.
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Fig. 2. Pruning rules ombinations in a uniform distribution 5-dimensional spae.The input test of the speller was simulated distorting the words by meansof random insertion, deletion and substitution operations over the words in theoriginal ditionary. The edit distane was used to ompare the words. In theseexperiments, the values of the weighting operations osts of the edit distane (in-sertion, deletion and substitution) were �xed to 1. This makes the edit distanea mathematial distane whih makes the table rule appliable. Please note thatsome fast NN searh tehniques (i.e. kd-tree) ould not be applied here as thedata ould hardly be represented in a vetor spae.Ditionaries of inreasing size (from 1, 000 to 8, 000) were obtained extratingrandomly words of the whole ditionary. The test points were 1, 000 distortedwords obtained from randomly seleted ditionary words. To obtain reliable re-sults the experiments were repeated 16 times. The averages and the standarddeviation are showed on the plots.The experiment performed in Figures 2 and 3 for arti�ial data (average num-ber of distane omputations using inreasing size prototype sets) were repeatedin the spelling task. Results are shown in Figure 4.The experiments show a redution in the number of distane omputations(around 40%) for the table rule when ombined with "f", "fs" or "g" pruningrules.On the ontrary to the arti�ial data ase, the table rule alone does notperform better than the generalized rule. Nevertheless, this is not problematias ombining the table rule with the two onstant time pruning rules � namelythe Fukunaga and/or the Sibling rule � outperforms the generalized rule perfor-manes.
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Fig. 3. Pruning rules ombinations in a uniform distribution 10-dimensional spae.6 Conlusions and Further worksTo summarize, a new pruning rule has been de�ned that an been applied in tree-based searh algorithms. To apply the rule, a distane table should be omputedand stored in preproess time. This table rule stores the distanes between eahprototype in the training set and every node of the tree; its spae omplexity istherefore quadrati in the size of the training set.As the experiments suggest, this rule save the omputation of 70% of dis-tanes in the ase of 10-dimensional data and 40% in the ase of strings withtraining set around 8, 000 points when ompared with the generalized rule.In future works, a more exhaustive study of the rule will be performed. Inpartiular, the idea is to study on the one hand whih is the better ombinationof rules (with the minor ost), and on the other hand, what is the ondition andorder where eah rule an be applied.Other problem that should be explored is how to redue the spae omplexityof the table rule.7 AknowledgmentsThe authors thank the Spanish CICyT for partial support of this work throughprojets DPI2006-15542-C04-01, TIN2006-14932-C02, GV06/166, the IST Pro-gramme of the European Community, under the PASCAL Network of Exellene,IST�2002-506778.
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