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Abstract 

 

While responses of bone to increased loading or exercise are well studied, understanding of 

the effects of decreased usage of the skeleton has been limited by the scarcity of suitable 

models. Such models should ideally not affect bone innervation, which appears to be a 

mediator of physiological responses of bone to unloading. MyoD-/- / Myf5-/- (dd/ff) mice 

lack skeletal muscle, so the fetuses develop without any active movement in utero and die 

soon after birth. We used micro-CT and histology to analyse their bone development and 

structure during endochondral ossification in parallel with the establishment of bone 

innervation. Long bones from mutant mice were profoundly different from controls, with 

shorter mineralised zones and less mineralisation. They lacked many characteristics of adult 

bones – curvatures, changes in shaft diameter, and traction epiphyses where muscles originate 

or insert, that were evident in the controls.  Histologically, dd/ff mice showed the same degree 

of endochondral development as wild type, but presented many more osteoclasts in the newly 

layed bone. Innervation and the expression pattern of semaphorin-3A signaling molecules 

were not disturbed in the mutants. Overall, we have found no evidence for a major defect of 

development in dd/ff mice, and specifically no alteration nor delay in endochondral 

ossification and bone innervation. The altered morphological features of dd/ff mice and the 

increased bone resorption show the role of muscle activity in bone shaping and the 

consequences of bone unloading. 
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Introduction 

 

Bone is a dynamic tissue that can adapt its mass and architecture to external mechanical loads. 

While responses of bone to increased loading or exercise are well studied (if still incompletely 

understood), understanding of the effects of decreased usage of the skeleton has been limited 

by the scarcity of suitable models.  Experiments using limb casting (Uhthoff & Jaworski, 

1978), showed the principle of bone’s atrophy in response to disuse, that were confirmed in 

humans very effectively by studies of bed rest and astronauts in free fall (Whedon, 1984; Vico 

et al., 2000).  However, the most widely used animal model for disuse has been surgical 

section of the sciatic nerve in rodents, which has the added complication of alterations to 

autonomic supply to the limb (Weinreb et al., 1989).  In the light of the recent discoveries of 

the role of the nervous system in regulation of bone mass/architecture (Chenu, 2004; Elefteriou 

& Karsenty, 2004), it was necessary to devise a model in which the innervation remained 

intact. In addition, the rationale for studying interactions between the skeleton and the nervous 

system is strong. The existence of a functional innervation of the bone tissue is well known 

(Gronblad et al., 1984; Hohmann et al., 1986; Bjurholm et al., 1988; Serre et al., 1999) and 

neural influences on bone growth, remodelling and repair are also clear (Edoff et al., 1997; 

Sandhu et al., 1987; Cherruau et al., 1999). Furthermore, the mechanisms behind leptin-

dependant regulation of bone mass have been determined to be via a hypothalamic relay to the 

autonomic nervous supply to the skeleton (Ducy et al., 2000; Takeda & Karsenty, 2001). 

Recent studies show that mechanical loading locally increases bone innervation (Wada et al., 

2001), and the adrenergic part of the sympathetic nervous system appears as a mediator of the 

physiological response of bone to unloading (Levasseur et al., 2003; Kondo et al., 2005). The 

mechanisms involved in the regulation of formation of the innervation of bone have not been 

determined. In the central nervous system, many studies have described families of proteins 
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involved in nerve guidance, among which are the Semaphorins, a large family of cell surface 

and secreted proteins. Since there is now a substantial literature on the expression and function 

in bone of molecules traditionally considered to be involved in central neurotransmission 

(Spencer et al., 2004; Bliziotes et al., 2002; Sisask et al., 1996; Sisask et al., 1995), this may be 

less of an iconoclastic finding than it first appears.  

 

The current experiments were initiated by the need to understand better the role of disuse in 

bone development.  For this reason, we chose to determine the effect of the absence of active 

movement of fetuses in utero on skeletal development. Previous human infant studies suggest 

that this would be a possible model for disuse, since it has been shown that children born with 

muscular dystrophies which affect fetal movement (fetal akinaesias), have bones that exhibit 

signs of disuse – thin cortices, and low mineralisation of the bone tissue (Rodriguez et al., 

1988; Chen et al., 1995).  Rudnicki et al. developed mice lacking the genes for the transcription 

factors Myo-D and Myf-5, which when interbred, produced offspring that were incapable of 

forming functional striated muscle (Rudnicki et al., 1993). Development of the muscles of 

these animals had been studied, but little skeletal analysis had been performed. Here we have 

analysed the skeletal phenotype of the double knockout mice more fully and established them 

as a good model for disuse in bone development.  Specifically, we have used the mice to 

determine whether the lack of embryonic movement exerts an influence on the development of 

bone innervation which could impact on skeletal development. We show that despite profound 

effects of developmental disuse on bone mass and architecture, and the major influence of the 

nervous system on the skeleton postnatally, the development of the innervation of bone is not 

different in the skeletons of mice that are incapable of movement. 
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Material and Methods 

 

Animals 

The Myo-D and Myf-5 mouse strains were provided by Dr Michael Rudnicki of McMaster 

University, Hamilton, Ontario, Canada. Both were on a C57B6 background. Myo-D null mice 

are phenotypically silent and can be bred as homozygotes successfully for many generations.  

The mice used in these studies have been bred for over 10 generations, so can be considered 

to be congenic.  Homozygous Myf-5 null mice are not viable at birth, because of truncations 

of the ribs and muscle abnormalities.  For this reason, the transgenic strain is maintained in 

heterozygotes, so each generation is genotyped to determine parents for the next offspring.  

For reasons that are not known, the vigour and viability of these mice diminishes with 

successive generations, and in order to perform these studies, a new C57B6 male was bred 

into the strain approximately every 15 generations. The mice were then bred for 3-4 

generations before crossing with Myo-D null mice to generate double heterozygotes.   

Pregnant females were killed by vertebral extension, in accordance with the local Ethical 

Committee recommendations and E14 and E18 fetuses were collected immediately post 

mortem. Tail samples were collected and processed for genotyping. Whole embryos or 

excised limbs were fixed in 4% formaldehyde in 0.1M phosphate buffer, pH 7.3 at 4°C for 

24h (McKee et al., 1991). 

 

Genotyping 

DNA was extracted from tail samples with a DNAesy kit (Qiagen). Polymerase chain 

reaction was performed in order to detect the PGK-NEO cassette inserted in exon I of Myf5 

(Forward primer: CCAAGGTGGAGATCCTCAGG; Reverse primer: 

TCATAAAGTGGCAAGACAGT) and to attest the absence of MyoD (Forward primer: 
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CTTCTATGATGATCCGTGTTTCAGC; Reverse primer: 

CTGGACACCTTCGATGTAGCG). The number of the different genotypes represented in 

generations of Myf-5 +/- intercrosses, Myo-D -/- Myf-5 +/- crosses and the final double 

heterozygote crosses was recorded and compared with the expected Mendelian ratios. 

 

Whole mount preparation 

The pups were skinned and eviscerated, fixed in 90% ethanol for seven days, and then stained 

in 0.1M Alcian Blue solution in ethanol containing 20% glacial acetic acid for 3 days at room 

temperature.  After rehydration in graded ethanol, the pups were stained in alizarin red 

solution (0.025M) for 3 days, and then cleared in 1% KOH until the skeletons were visible. 

 

Skeletal morphometry 

The size of two traction epiphyses were measured. The deltoid tuberosity is the skeletal site of 

origin of the brachialis muscle, which is responsible for flexion of the elbow joint. The 

olecranon is the proximal end of the ulna where the triceps muscle inserts to extend the 

elbow, a function vital for weight support in quadrupeds.  The deltoid tuberosity size was 

measured by taking measurements of the humeral diameter immediately above and below the 

tuberosity and of the distance from the most prominent extent of the tuberosity to the opposite 

side of the humerus.  The mean humeral diameter was subtracted from the measurement of 

the tuberosity plus the humerus.  The protrusion of the olecranon was assessed by holding the 

elbow joint so that the humerus and ulna were at 90o to each other, and capturing a lateral 

image of the limb.  Using image analysis, the distance from a line drawn on the caudal aspect 

of the humerus to the proximal extent of the olecranon was measured.  Bone lengths and 

diameters measures were made of the left forelimb bones using a precision engineering 

micrometer (Mitutoyo, Japan). Diameters were measured in the antero-posterior plane. 
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High resolution µCT 

Fixed and ethanol-dehydrated whole embryos and hind limbs were scanned with a high 

resolution µCT (Viva CT40, Scanco Medical, Bassersdorf, Switzerland). Data were acquired 

at 45 KeV with a 10µm cubic resolution. Three-dimensional reconstructions of femurs were 

generated using the following parameters: Sigma: 1.2, Support: 2, Threshold: 150. After 

reorientation, virtual transverse and longitudinal sections were performed on femur 3D 

reconstructions. Femoral width at mid-diaphysis was measured on medial longitudinal 

sections. Cortical thickness was calculated by integration of the value on each transverse 

section. Linear attenuation coefficient was averaged on the whole femur reconstruction and on 

an area restricted to the bone collar, as subtracted by an iterative ROI-generation procedure.  

 

Tissue processing 

For histology, undecalcified embryos were embedded in methylmethacrylate and longitudinal 

coronal slices of the limbs were cut with a Jung model K microtome (Carl Zeiss, Heidelberg, 

Germany). Eight μm thick sections were used for modified Goldner staining, Von Kossa 

staining of mineral, with neutral red counter staning (O'Shea et al., 2003) and TRACP 

enzymatic staining of osteoclasts, not counter-stained (Janckila et al., 1978). For 

immunnocytochemistry, excised limbs were decalcified in di-sodium ethylenediamine-tetra-

acetic acid (EDTA) for 2 (E14) to 6 (E18) weeks before dehydratation through a graded 

ethanol series, soaking in methylcyclohexan, and then paraffin embedding. 

 

Osteoclast quantification 

TRACP-labelled osteoclasts were counted under a Leica DMRB microscope (Leica, Paris, 

France) on approximately longitudinal and non successive sections of individual tibia and 
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fibula, and the number normalized on the total area of the bone section measured with the 

Biocom image analysis software (Explora Nova, La Rochelle, France). The data from 4 to 8 

sections were averaged for each bone sample.  

 

Immunocytochemistry 

Sections of paraffin blocks were on a Leica RM2145 microtome (Leica instruments, 

heidleberg, Germany) and laid on silanized slides to dry overnight at 37°C. After two baths of 

methylcyclohexan and rehydratation, sections were treated for 15min with 100mM glycine 

and 50mM ammonium chloride in 50mM tris buffer, pH 7.6, in order to saturate free 

aldehydic groups. Endogenous peroxydase activity was inhibited by 15min incubation with 

1% sodium azide and 1.5% H2O2 in 50% methanol. Sections were incubated overnight with 

primary antibody diluted in Tris Buffer Saline (TBS: Tris-HCl 50mM, pH: 7.6, 0.9% NaCl, 

0.01% BSA) Goat polyclonal antibodies were purchased from Santa-Cruz (Santa-Cruz, CA, 

USA) and used at final dilutions of 1/25 (anti human Plx-A2 sc-10144), 1/50 (anti rat Sema-

3A sc1148, anti human NP-1 sc-7240, anti human Plx-A3 sc-10134), 1/100 (anti human Plx-

A1 sc-10139) or 1/500 (anti mouse VIP sc-7841). A rabbit anti human PGP9.5 polyclonal 

antibody-(AB5925) was purchased from Chemicon (Temecula, CA, USA) and used at 

1/4000. Controls were incubated with non-immune goat or rabbit serum. Labelling with goat 

primary antibodies was followed by a 30min incubation with a rabbit anti-goat IgG  (Dako, 

Copenhagen, Denmark). Antibody/antigen complexes were then detected with a rabbit Dako 

EnVision+ K4002 kit (Dako, Copenhagen, Denmark). Labeling was revealed with 3-3' 

diaminobenzidine tetrahydrochloride (DAB) vectastain SK4100 (Vector Laboratories, 

Burlingame, CA, USA). All washing were done with TBS containing 0.04% Tween 20. 

Sections were dehydrated, mounted in XAM, and then observed on a Leica DMRB 

microscope (Leica). 
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Statistical analysis 

Morphometry and μCT data were analysed using the Mann-Whitney U test. Osteoclast 

densities were assessed with 2 way (genotype and bone type) ANOVA with Bonferroni post-

test. All results are given as Mean±SEM of data from 3 to 6 fetuses. 
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Results 

 
Incidence of dd/ff offsprings 

The comparison of numbers of predicted and actual genotypes of Myf-5+/- offspring was not 

easy.  If the dams were disturbed soon after parturition, they were inclined to eat their 

offspring, both the dead homozygous null mice and the other viable ones.  However, it 

appeared that Mendelian ratios were preserved, with 1 +/+:2+/-:1-/- in the litters.  Similar 

problems were experienced in the Myf-5 +/- Myo-D -/- crosses but again there was not large 

deviation from expected equal numbers of double heterozygotes and Myf-5+/+ Myo-D+/- 

offspring. As the final double heterozygote crosses were not allowed to proceed to term, we 

obtained good data on the exact numbers of the different genotypes of offspring.  Instead of 

the expected 1:16 ratio, we obtained only 6 dd/ff offspring out of a total of 298 pups, a ratio 

of 1:50. After these early parts of the work, it became apparent that normal rib development 

could be used as a marker to exclude most of the unwanted genotypes, so we only genotyped 

animals with abnormal ribs.  Additional data were not collected on numbers subsequently, but 

the incidence of dd/ff pups was not noticeably different.   

 
 
Skeletal morphometry 

There were no significant differences in the length of the humerus and radius of the wild-type 

(WT) and dd/ff mice (Table 1).  The ulnae of the dd/ff mice were significantly shorter by 

approximately 10% (Table 1) but this difference was due entirely to reduction in the length of 

the olecranon, and not the shaft of the bone between elbow and carpal joints.  The diameters 

of the ulnae and radii were not significantly different between the WT and dd/ff mice 

although the bones of the dd/ff mice appeared to be smoother and had fewer surface features.  

We could not find a way to assess this objectively.  The humeral diameters of the two groups 

were different though.  The humeri of the WT mice had the characteristic sigmoid shape when 
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viewed laterally, with flared proximal and distal metaphyses to provide wide joint surfaces 

and a relatively narrow midshaft diameter.  In contrast, the dd/ff mice had humeri that did not 

vary significantly between the proximal middle and distal regions of the bone and lacked the 

curvatures of the WT bones.  

 

µCT analysis  

Images of whole mount preparations of pups as well as 3D μCT reconstructions of the whole 

skeleton of E18 mice clearly show that dd/ff mutants are smaller in size and shorter limbed 

than WT mice and lack almost completely the ribs (figure 1). Skull bones also appear to be 

less mineralized or less developed in mutants. Images of longitudinal and transverse section 

of femurs were generated by spatial reorientation of the original 3D reconstructions. As 

shown on Figure 2A, the images show the smaller size of mineralized femoral shaft. The 

cortical area of E18 femurs encompasses an outer, porous area and an inner, denser layer 

which can be identified as the original bone collar (Figure 2A, arrows). Maximal width at 

midshaft was measured on longitudinal sections while cortical thickness was assessed on 

thresholded 3D reconstructions of long bones. As shown on Figure 2B, both parameters were 

significantly higher in mutants than in wild-type mice, findings consistent with the analysis of 

forelimb morphology. The linear attenuation coefficient of scanned structures is an index of 

their degree of mineralization. We measured those parameters in the whole reconstructed 

femur and in a volume restricted to the bone collar. In both genotypes, the degree of 

mineralization was higher in the bone collar; whole femur and bone collar mineralization 

were significantly lower in dd/ff mice (table 2). 
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Bone tissue development and activity 

Histology did not show any structural difference or developmental delay in bone formation at 

E14, when only cartilage condensations were present in limbs (data not shown). Similarly, at 

E18, chondrocyte hypertrophy in the phalanx was as developed in dd/ff than in WT mice 

(figure 3A, B). Goldner-stained leg sections confirmed that muscles are effectively absent in 

dd/ff compared to WT mice (figure 3D). However, ossification was equally developed and 

structured in the long bones of either genotype. Enzymatic staining for TRACP, a specific 

marker of osteoclasts, and counting of positive cells revealed that, on average, mutant mice 

have 2 to 4 time more osteoclasts in limb bones than WT mice (figure 3E, F and D). 

 

Bone innervation 

At E14, both dd/ff and WT mice showed the same pattern for nerve marker labeling in terms 

of either extent of positive labeled areas or details of cell specific expression. Labeling for 

PGP 9.5, a general neuronal marker, revealed nerves fibers in the periosteum facing the 

hypertrophic chondrocytes (figure 4A, doted line circles). Nerves fibers were also present in 

association with blood vessels (arrows) and intimately with osteoblasts (arrowheads). 

Vasoactive intestinal peptide (VIP) expression was also used to identify nerves. VIP is often 

conveyed by sympathetic nerve fibres. VIP immunoreactive nerve fibers were clearly present 

in the periosteum, in association with blood vessels (figure 4B, arrows). Similarly to E14, we 

could not detect any major difference in innervation at E18 between WT and dd/ff mice. In 

the metaphysis and the diaphysis (figure 4C and D respectively), PGP 9.5 was expressed in 

blood vessels (arrows). In both areas nerves fibers were densely present around bone cells 

lining bone trabeculae under the growth plate and in the endosteum. In the metaphysis, PGP 

9.5 was also strongly expressed in contact with periosteal osteoblasts and in the periosteum 

(figure 4C), while VIP was detected in blood vessels (Figure 4F, arrows) and labeled strongly 
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nerves fibers surrounding bone cells under the growth plate. In the diaphysis, VIP was 

strongly expressed on and around bone cell lining bone trabeculae (Figure 4G). 

All Sema-3A-signaling molecules were found to be expressed with the same pattern in WT 

and dd/ff mice. At E14 Sema-3A (figure 5A) and its receptor NP-1 (not shown) were 

expressed in hypertrophic chondrocytes as well as in resting chondrocytes in the forelimb. 

Co-receptors Plx-A1 and A2 were not detected at this stage. Plx-A3 was detected in blood 

vessels (data not shown). At E18, in the metaphysis, Sema-3A was still expressed by 

hypertrophic chondrocytes (not shown), by most cells under the growth plate, and in the 

periosteum (figure 5B). In the diaphysis Sema-3A was found in blood vessels (figure 5C, 

arrows), osteoblasts (short arrows) and nerves (arrowheads). In the metaphysis, most cells 

under the growth plate were stained for NP-1 (figure 5D). In the diaphysis NP-1 was present 

in some osteoblasts (figure 5E, short arrows) and in blood vessels (encart). Plx-A1 was 

present in most bone cells and osteocytes; it was also expressed in the periosteum (figure 5F) 

and in blood vessels (figure 5G, arrows). Plx-A2 was found in blood vessels (figure 5H and I, 

arrows) and in some osteoblasts in the diaphysis (short arrows) and metaphysis, it was also 

found to be expressed by nerve fibers (arrowheads). Plx-A3 was expressed in blood vessels 

(figure 5J and K, arrows) and the staining formed a network around bone cells as do typically 

nerve markers. In summary, expression of markers of innervation and Sema3A signaling was 

identical in terms of pattern and intensity in both genotypes.  
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Discussion 

 

While this paper was being prepared, Rot-Nikcevic and coworkers (Rot-Nikcevic et al., 2006) 

published a detailed anatomical description of the skeleton of dd/ff mice. In addition to the 

same changes in long bone shape, morphometry and features described here, their work 

documents and discusses extensively the effects of the mutations on cranial and ribcage 

morphology. The study highlights the fusion of several cervical vertebrae, smaller and cleft 

sternum and heteromorphic clavicles in the dd/ff mutants. Interestingly, these authors 

observed little change of the neurocranium, while the viscerocranium (face) of the mutants is 

much affected. They describe a retrognatia with shorter zygomatic arches and mandible, as 

well as unfused and cleft palate which can be directly attributed to the lack of striated muscles 

(in the latter case, in the tongue). Our own study focused on the appendicular skeleton of dd/ff 

mice, and is the first work scrutinizing endochondral development as well as mineralization, 

cellular dynamics and innervation of long bones in the absence of striated muscles. 

The large difference between predicted and actual numbers of offspring of the double 

heterozygote matings suggests that dd/ff pups are not able to develop normally to term.  

Because even the predicted ratio of 1:16 means that it is unlikely that any single mating will 

result in more than one affected pup, a full study of this phenomenon will require a substantial 

breeding programme to acquire uteri at various stages of pregnancy if the cause of this is to be 

known.  We can only speculate that some process after fertilisation requires the function of 

both Myo-D and Myf-5.  The relatively normal ratios of other matings suggest that either 

gene can substitute for this function, whatever it may be. 

The effect of the dd/ff genotype was profound. In pups taken from uteri post mortem, 

movement was seen in most pups before they were euthanased.  However those that later 

were shown to have abnormal ribs and the dd/ff genotype did not move, and had a wasted 
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appearance due to the lack of any bulk of muscle tissue under the skin.  Because movement, 

wasted appearance and rib abnormalities were such good predictors of genotype, in later 

studies only a subset of the pups were retained and genotyped to save time and costs. 

In the initial papers describing the phenotypes of the Myo-D and Myf-5 homozygous deletion 

mice, there was significant note taken of the lack of development of the distal parts of the ribs 

in Myf-5 -/- mice.  When the first dd/ff mice were generated in the muscle studies by the 

originators of the strains, it was assumed that the dd/ff were not viable because their Myf-5 

genotype was causing the same abnormal rib development as in mice with at least one Myo-D 

allele.  Here we suggest that the rib phenotype is much more severe in dd/ff than in Myf-5 -/- 

mice as there is almost complete absence of the ribs in dd/ff.  This aberrant rib development 

was initially thought to reflect a role for the myotome in skeletal patterning. It has been 

shown since that mice with knock-in or CRE-driven inactivations of the myf5 gene have 

apparently normal ribs -pending a thorough analysis of their skeletal phenotype (Kaul et al., 

2000). This is in contrast with the homozygous deletion used in the present study, in which 

lack of ribs may reflect a distal effect of this specific mutation on one or several unknown 

genes (Kaul et al., 2000). 

The absence of functional skeletal muscle in the dd/ff mice is clear and unequivocal.  The 

effect this has on the skeleton is equally profound, as demonstrated by the different analyses 

we have made. Although mutant mice are smaller in size; the individual bony elements of the 

entire skeleton and well defined joints are recognizable and identifiable because of their 

anatomic form. However this form is not normal. Skull bones appear to be less mineralized 

and less developed in mutants; long bones have a shorter mineralized shaft and are much less 

curved than in WT mice, suggesting that function in utero is responsible for many anatomical 

features evident at birth. Perhaps unsurprisingly, the deltoid tuberosity, which is a significant 

feature of the humerus, is hard to detect in the dd/ff, and its reduction in size is highly 
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significant. The olecranon is less profoundly affected, but clearly the lack of movement 

during development is associated with significant reduction in growth of the proximal ulna. 

This reduction in these traction epiphyses is particularly strong evidence for the bone 

phenotype of dd/ff mice being an effect of altered mechanical loading rather than any other 

indirect effect of the deletion.  It has been accepted for decades or even centuries that traction 

epiphyses develop in response to pull from the muscles during development (Wolff, 1892), 

but our own work is the first direct evidence for this. While we measured only the deltoid 

tuberosity and olecranon, there were similar effects on traction epiphyses in the hind limb. 

That the long bones were straighter is another phenomenon known to be an effect of disuse 

(Lanyon, 1980; Biewener & Bertram, 1994). Because this effect was different in the different 

long bones we could not devise an objective measure of straightness, but the images of the 

humeri provide clear illustration of this difference.  

In contrast to morphological effects, the pace of long bone development, as assessed by 

histological observations, was not altered on dd/ff fetuses. However, a strong increase in 

numbers of TRACP positive cells was observed in dd/ff mice. Stimulation of bone resorption 

is largely documented for limb unloading in the literature (Grano et al., 2002), although to our 

knowledge we are the first to describe it in developing fetal bone. Structural and quantitative 

study of dd/ff femur 3D reconstructions surprisingly revealed an increase in total width and 

cortical thickness, which are generally decreased in bone unloading models (Wronski & 

Morey, 1982; Basso et al., 2005; Yonezu et al., 2004), as well as a decrease in matrix 

mineralization. Few studies have been devoted so far to the effects of hypogravity 

(Kawashima et al., 1995) or hypokinesis (Hosseini & Hogg, 1991) on fetal bone development. 

Curarized rat fetuses, a model of Fetal Akinesia Deformation Sequence (FADS), are subjected 

to loss of mobility and partial loss of muscle strain. Fetuses treated from E17 and analysed at 

E21 have a decrease in body weight and size, as well as reduced femoral cross section, 
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femoral cortical area, and diaphyseal perimeter (Palacios et al., 1992). The latter contrasts 

with our data, but it is not possible to exclude in these experiments a direct effect of D-

tubocurarine on bone cell activity (Walker et al., 2001). Amniotic liquid puncture, another 

model of FADS, did not induce any bone alteration (Palacios et al., 1992), suggesting that 

muscular strain more than kinesis is the main mechanical factor regulating fetal bone 

modelling. In dd/ff mice, the increased  cortical width suggests an acceleration of osteoblastic 

bone formation which may lead to the deposition of an altered, hypomineralized matrix as 

described for instance in Paget’s disease of bone (Schneider et al., 2002). This may be a real 

reflection of the adaptive response in the skeleton. The idea that loading induces bone 

formation and disuse resorption is very simplistic because adaptations to loads involve more 

complex effects. For example, in response to applied loading, the naturally curved rodent ulna 

first becomes straighter, as a result of cessation of modeling drifts (Mosley et al., 1997). In 

many parts of the bone this is seen as a reduction in width and thickness which would 

intuitively seem to be an inappropriate response. However the effect is either to increase the 

bone’s resistance to the specific loading being applied or improve the predictability of failure 

(Bertram & Biewener, 1988). So the apparently greater cortical thickness and width in the KO 

mice may be the “genetic baseline” mass and architecture that is modified in the wild type 

mice by the effects of activity. Admittedly other specific consequences of the mutation may 

also play a part here. While the absence of muscle tissue is unlikely to affect bone shortening 

or increased resorption, which are documented in other immobilisation models where the 

muscle mass is maintained (Pitsillides, 2006; Thompson & Rodan, 1988), a specific trophic 

effect on cortical bone growth, although very unlikely, cannot be ruled out. Also, a cis effect 

of the myf5 mutation on one or several unknown genes as described by Kaul et al (Kaul et al., 

2000) may have affected bone formation. In this respect, an analysis of the skeletal phenotype 

of other myf5-invalidating mutations would be interesting.   
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We have previously demonstrated the expression of the Sema-3A signaling molecules by rat 

bone cells and shown that their signaling precedes or coincides at the temporal but also spatial 

level with endochondral ossification and bone innervation in rats, suggesting a role for Sema-

3A in these processes (Gomez et al., 2005). In long bone, rat nerve fibers appear in the 

periochondrium of the diaphysis as early as E15 (approximately E13.5 for mice) and become 

functional at E18-19 (approximately E16-17.5 in mice) (Sisask et al., 1995; Sisask et al., 

1996). Immunocytochemical study revealed that Sema-3A and NP-1 are expressed in the 

same fashion in dd/ff and WT mice from E14 in the cartilage anlage to E18 in fully developed 

bones, where labeling of Sema-3A signaling molecules is abundant. Nerve markers PGP9.5 

and VIP were also expressed in the same fashion in dd/ff vs WT, only in the perichondrium at 

E14, and in all the bone tissue at E18. Expression patterns of those molecules were very 

similar to what we have previously described in rat (Gomez et al., 2005), although they 

seemed to be set at earlier developmental stages in mice. While confirming in another species 

that the Sema-3A signaling network is well positioned to regulate bone development and 

innervation in mice, our data do not show any influence of mechanical unloading on the 

development of bone innervation during fetal life at these stages of development, at least in 

terms of general nerve fiber density and distribution. However, an effect restricted to a 

specific subpopulation of nerve fibers would be too discrete to be detected with the general 

nerve markers used in our study. 

In summary, although we document an altered shape and increased cellular activity of long 

bones and a hypomineralization of the skeleton, we have not found any evidence for gross 

anatomical defects of bone development in dd/ff mice, and specifically no alteration nor delay 

in endochondral ossification and bone innervation. Some of the effects observed have been 

well characterized as consequences of bone unloading. Others, for instance morphological 

features of dd/ff mice, may reflect regulatory effects specific to bone development in 
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hypokinetic conditions which remain to be confirmed by more detailed studies. The lack of 

curvature and the uniform diameter of the humerus in dd/ff mice suggest that much of the 

basic shape of a bone element that was thought to be determined by genetic influences is 

influenced, in utero, by mechanical strain. The effect of movement and the bone strain 

induced by muscle activity appears to be to shape the metaphysis to make broader joint 

surfaces and to induce curvature which has benefits on predictability of failure (Bertram & 

Biewener, 1988). 
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Figure Legends 

 

Figure 1: Skeletal architecture at E18 of dd/ff and WT mice. A: Images of pups after 

removal of the skin over the thorax.  In dd/ff fetuses, the gaunt outline of the limb is striking 

because of the absence of the bulk of the leg musculature, and the characteristic appearance of 

the lung lobes is visible because of the absence of ribs; bar = 2mm. B: Whole mount 

preparation of forelimbs for skeletal morphometry; bar = 1mm. C: μCT 3D reconstruction of 

the skeletal architecture of wild type (WT ) and mutant (dd/ff) mice. 

 

Figure 2: Structural analysis of dd/ff and WT mouse femurs at E18. A: μCT 3D 

reconstruction and 2D longitudinal and transversal imaging (medial section) of mineralized 

femur shaft. B: Measurement of width (2D) and cortical thickness (3D) of femur shafts; *: 

p≤0.05 vs WT, Mann-Whitney U test. See Material and Methods for details. 

 

Figure 3: Development and cellular dynamics of the appendicular skeleton of dd/ff and 

WT mice at E18. A and B: Von-Kossa staining of digits in longitudinal section; arrows: 

hypertrophic chondrocytes in the second phalanx; arrowhead: incipient mineralization. C and 

D: Goldner’s trichrome of hindlimb femurs; stars: skeletal muscle location. E and F: 

Histoenzymology of TRACP in non counterstained sections of hindlimb tibia (T) and fibula 

(F). Dashed lines delimit the growth plates; double arrows locate the cortical envelopes; 

arrowheads: TRACP positive osteoclasts. All bars = 50μm. G: Quantification of osteoclasts 

on longitudinal sections of tibias and fibulas. **: p<0.01 vs WT, ANOVA2 with Bonferroni 

post-test. See Material and Methods for details. 
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Figure 4: Nerve marker expression during endochondral ossification of dd/ff and WT 

limb bones. A: dd/ff, E14, PGP 9.5 expression in the perichondrium, dotted line circle: nerve 

fibers. B: WT, E14 VIP expression in the perichondrium. C: WT, E18, PGP 9.5 expression in 

the periosteum and the metaphysis, D: dd/ff, E18, PGP 9.5 expression in the diaphysis. E: 

WT, E18, negative control (rabbit serum). F: WT, E18, VIP expression in the metaphysis. G: 

WT, E18, VIP expression in the diaphysis. Arrows: blood vessels, arrowheads: osteoblasts, C: 

Cartilage, P: Periosteum, PC: Perichondrium, PO: Periosteal osteoblasts. All bars = 20μm. 

 

Figure 5: Expression of Semaphorin-3A signaling molecules during endochondral 

ossification of dd/ff and WT limb bones. A: dd/ff, E14, Sema-3A expression in the forearm, 

RC: resting chondrocytes, HC: hypertrophic chondrocytes. B: dd/ff, E18, Sema-3A 

expression in the metaphysis. C: WT, E18, Sema-3A expression in the diaphysis. D: WT, 

E18, NP-1, metaphysis. E: dd/ff, E18, NP-1, diaphysis. F: WT, E18, Plx-A1, diaphysis. G: 

dd/ff, E18, Plx-A1, metaphysis. H: WT, E18, Plx-A2, diaphysis. I: dd/ff, E18, Plx-A2, 

metaphysis. J: WT, E18, Plx-A3, diaphysis. K: dd/ff, E18, Plx-A3, diaphysis. L: WT, E18, 

negative control (goat serum). Arrows: blood vessels, Arrowheads: nerve fibers, C: cartilage, 

P: periosteum, short arrows: osteoblasts. Bar = 50μm in A, 20μm in all others. 
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Table 1: Differences in forelimb bone dimensions of WT and 
dd/ffmice at E18. Values (in mm) are mean±SEM of 6 fetuses. 
Dimension WT dd/ff p1

Humerus length2 2.95 ± 0.13 2.9 ± 0.11 NS 
Humerus diameter3 0.43 ± 0.025 0.48 ± 0.02 <0.05 
Humeral diameter inc. DT4 0.65 ± 0.03 0.5 ± 0.02 <0.01 
Humeral head 0.7 ± 0.02 0.5 ± 0.02 <0.01 
Humeral condyles 0.7 ± 0.03 0.46 ± 0.02 <0.01 
Ulna total length 3.4 ± 0.14 3.0 ± 0.1 <0.05 
Ulna shaft length 3.1 ± 0.12 2.9 ± 0.2 NS 
Ulna diameter 0.29 ± 0.01 0.3 ± 0.01 NS 
Radius length 2.4 ± 0.1 2.3 ± 0.12 NS 
Radius diameter 0.27 ± 0.01 0.28 ± 0.01 NS 
Height T8 0.4 ± 0.02 0.36 ± 0.25 NS 
Deltoid tuberosity size 0.32 ± 0.01 0.04 ± 0.002 <0.01 
Olecranon length 0.3 ± 0.02 0.1 ± 0.01 <0.05 
1: Mann-Whitney U test.  2: Bone lengths are from one articular surface to the 
other except in the ulna where the length is from the olecranon to the distal 
articular surface. 3: Humerus diameter was taken below the position of the 
deltoid tuberosity; radius and ulna diameters were taken at midshaft. 4: DT: 
deltoid tuberosity, T8: eighth thoracic vertebra, NS: non significant. 
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Table 2: Linear attenuation coefficients of whole femur 
and cortical area in WT and dd/ff mice at E18. Values are 
Mean+SEM of 5 WT and 4 dd/ff fetuses. 
Region of interest: WT dd/ff p1

Whole Femur 1.92 ± 0.012 1.86 ± 0.012 <0.05 
Bone collar 2.13 ± 0.009 2.05 ± 0.027 <0.05 
p <0.01 <0.05  
1: Mann-Whitney U test.  
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