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Abstract 

Since VEGF-A is involved in mechanically-induced bone gain and because vegf exists 

under 6 isoforms exerting various biological effects, we studied vegf isoforms expression 

and VEGF protein production in osteoblastic cells (rat Ros17/2.8 and human osteoblasts) 

submitted to 4 mechanical regimens. Mechanical regimens (1% stretch deformation) 

were designed with a fixed number of cycles (450) delivered at various frequencies (0.05 

to 5 Hz). We found a negative correlation (R2= 0.76, p<0.0001) between production of 

soluble VEGF and mechanical stretch frequency and a positive correlation (R2= 0.99, 

p<0.0001) between production of matrix-bound VEGF and mechanical stretch frequency.  

mRNA expressions of soluble VEGF isoforms (121,165) were specifically expressed under 

low frequency while matrix-bound VEGF isoforms (206, 189, 165, 145) were specifically 

expressed under high frequency in human osteoblasts. As F-actin stress fibers formation 

was significantly increased selectively in high frequencies conditions, we disrupted actin 

fibers in Ros17/2.8 and found that immobilisation of VEGF was abolished. Conversely, 

jasplakinolide treatment which increases stress fibers formation was able to mimic high 

frequency stretch-induced immobilisation of VEGF. Thus, we speculate that the stretch-

induced increase in cell tension is responsible for matrix-bound vegf isoform production. 

Mechanically-induced selection of soluble or matrix-bound VEGF production may modify 

osteoblast and endothelial cells crosstalk crucial during osteogenesis and fracture 

healing. 
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Introduction 

Mechanical strain plays a critical role in bone formation (46) ((29, 50) by stimulating 

osteoblastic activities (29) (24) but also by inducing the production of pro-angiogenic 

factors such as vascular endothelial growth factor A (VEGF) (57). VEGF in cooperation 

with the fibroblast growth factor (FGF) family, insulin growth factor-1 (IGF-1), epidermal 

growth factor (EGF), platelet-derived growth factor-A (PDGF-A), and the transforming 

growth factor-ß (TGF-ß) family, are all involved in bone angiogenesis (19) (40) (16) (25) 

(12). In a previous work, we demonstrated the absolute necessity of VEGF signaling for 

bone gain under mechanical strain as mechanically-induced bone gain was fully 

prevented by a treatment with neutralizing VEGF antibodies (60). Alternative splicing of 

primary transcript from a single VEGF pre-mRNA produces at least five different isoforms 

of which three (VEGF-121, 165 and 189) are more prevalent in human (15) (56) (61). 

VEGF-121 is totally released in the supernatant whereas 70% of VEGF 165 can remain 

trapped into the matrix (26) according to matrix amount. VEGF-145, 189 and 206 are 

completely sequestered into the matrix (26) (41). VEGF isoforms have different biological 

activities.  For example in epiphyseal cartilage, Maes et al. (37) showed that the longer 

VEGF isoforms produced by hypertrophic chondrocytes and sequestered in the cartilage 

matrix will be release by proteases and act upon endothelial cells, 

chondroclasts/osteoclasts, and osteoblasts, thereby coupling metaphyseal 

vascularization, cartilage resorption, and bone formation. When the epiphyseal cartilage 

exceeds a critical size during development, the midst of the growth plate becomes 

hypoxic, triggering VEGF expression in immature chondrocytes. Soluble VEGF isoforms 

are critical to diffuse to the perichondrium and stimulate outgrowth of the epiphyseal 

vascular network and subsequent vascular invasion preceding secondary ossification. The 

murine VEGF188 (human VEGF189) isoform is insufficient for these functions, due to 

restricted diffusion capacities. 

Along with chondrocytes and endothelial cells, osteoblast lineage has to be considered as 

an important source of VEGF (57) and vegf is a well known mechanosensitive gene (55). 

The transcriptional upregulation of VEGF has been shown to be mediated by the binding 

of hypoxia-inducible factor-1 (HIF-1) to the hypoxia-response element in the 5'-flank 

region (17). Under several conditions, HIF-1 escapes from the degradation process and is 

transported to the nucleus to transactivate the VEGF gene.  

At the molecular level, both VEGF and mechanical signals are known to regulate common 

elements such as polymerisation of actin and FAK and PI3K activation (1) (45) (11). 

Cytoskeleton integrity is a prerequisite to mechanosensitivity (5) (49) and thus drugs 

able to modulate f-actin polymerisation can be used to manipulate osteoblast 

mechanosensitivity.  
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In this context, we hypothesise that quantitative and qualitative production of VEGF by 

osteoblasts could be modified as a function of mechanical regimens modalities. To 

address this question, we designed four mechanical regimens delivering the same energy 

but varying the frequency of application. We applied 450 cycles of stretch at frequencies 

ranging from 0.05 to 5 Hz, with relaxation times varying respectively from 0.1 to 20 s 

between stretch episodes. We analyzed VEGF isoforms expression and release and we 

quantified actin stress fibers number as predictor of cellular tension. We used 

LatrunculinA and Jasplakinolide treatment to manipulate this tension with the perspective 

to identify a potential link between cellular tension and VEGF isoforms expression. 

We found that mRNA expressions of soluble VEGF isoforms (121,165) were specifically 

expressed under low frequency while matrix-bound VEGF isoforms (189, 165, 145) were 

specifically expressed under high frequency. Disruption of actin fibers abolished 

entrapment of VEGF into matrix. Jasplakinolide treatment which increases stress fibers 

formation was able to mimic high frequency stretch-induced immobilisation of VEGF. 

Thus, we speculate that the stretch-induced increase in cell tension is responsible for 

matrix-bound vegf isoform production.  
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Materials and Methods 

 

Biological material  

- Cell Line: Osteoblastic rat osteosarcoma cells, ROS17/2.8 (American Type Culture 

Collection, Rockville, MD) were maintained in T75-flask, in alpha modified Eagle's 

medium (aMEM) supplemented with 10% fetal calf serum (FCS) (ATGC Biotechnologie, 

Marne la Vallée, France), 2 mM L-Glutamine, and antibiotics (50 U/ml penicillin and 

50µg/ml streptomycin) in a humidified atmosphere of 5% CO2 at 37°C. 

- Primary cells: Human osteoblasts were extracted from children explants (tibia and 

calcaneum) and collected in sterile conditions at a surgical unit. Briefly, after removing 

soft tissues, bones chips were reduced to 5-mm-thick fragments. Samples were 

submitted to a 20-min enzymatic digestion with 1 mg/ml collagenase with 10% trypsin at 

room temperature. Then the supernatant was collected and in MEM medium and 

collagenase was neutralized with medium supplemented with 15% fetal calf serum (FCS). 

After a centrifugation, Human primary cells were resuspended with culture medium and 

maintained in T75-flask, in Dubelcco’s modified Eagle's medium (DMEM-Ham F12) 

supplemented with 10% fetal calf serum (FCS) (ATGC Biotechnologie, Marne la Vallée, 

France), 2 mM L-Glutamine, antibiotics (50 U/ml penicillin and 50µg/ml streptomycin) 

and 10% ultroser G (Pall BioSepra, Cergy St Christophe, France) in a humidified 

atmosphere of 5% CO2 at 37°C. 

 

Cultures conditions 

After reaching a subconfluent state, Ros17/2.8 or primary osteoblasts were trypsinized 

with 1x trypsin-EDTA and plated, at 5x104 cells/cm2, onto flexible, type I collagen-coated 

silicon-bottomed 6-well Bioflex® plates (Dunn Labortechnik, Germany) and grown with 

2 ml of medium per well for 24 hrs.  

12 hrs after the end of mechanical treatments, culture medium were collected and stored 

at -20°C. For protein content determination, 300µl of lysis buffer containing 0.5% 

Nonidet 40, 1% PIC (proteases inhibition cocktail, Sigma, St Quentin fallavier, France) 

were used. For VEGF determination by ELISA, supernatants were collected or cell 

monolayers were lysed with 0.1% triton-x100 in PBS. Supernatants and lysates were 

stored at -20°C. Before use, lysates were centrifuged (5 min, 5000 rpm, 4°C) and 

supernatants were collected. 

 

Mechanical stretching 

Starting 24 hours after seeding cells were subjected to mechanical deformation induced 

with a Flexcell Strain Unit Fx-3000 (Flexcell Corp., Hillsborough, NC, US) (3), which 

consists in a vacuum manifold regulated by solenoid valves controlled by a computer 
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timer program. Each plate is inserted over six flat-topped plastic buttons in the Bioflex® 

loading station. Application, through an air pump, of a negative pressure of 80 

kilopascals stretches horizontally the bottom of the culture plate over the plastic button. 

Thus, 85 percent of the flexible well surface is submitted to a known rate of isometric 

elongation (maximum 1%). The membranes are then released to their original size. As 

stretched cells remained adherent in these experiments, the deformation of the 

membrane was directly transmitted to cells. Unstretched cells grown on Bioflex plates 

were used as controls. All cultures prior and subsequent to the Flexcell regimen were 

maintained in a humidified atmosphere of 95% air and 5% CO2 at 37°C. 

Several regimens were used in this study (Figure 1). Osteoblasts were stretched to 1% 

deformation at different frequencies (square signal) from 0.05Hz to 5Hz during 450 

cycles. Each mechanical regimen delivered identical total quantity of mechanical energy. 

Consequently, duration of strain application varied from 1.5 to 150 minutes in order to 

accommodate a range of relaxation times (from 0.1s to 19.9s) between two 

deformations. We defined relaxed modes for low frequencies (0.05 to 0.25 Hz) and 

pulsed modes for high frequencies (2.5 to 5 Hz). 

Twelve hours after the end of the strain, cells from stretched and unstretched control (C) 

cultures were either harvested and extracted to quantify mRNA expression by RT-PCR, or 

collected along with supernatants for ELISA assay. 

In all graphs, values are expressed as percent of controls "C" (100%) after normalisation 

by cyclophilin for RT-PCR and total protein amounts for ELISA. 

 

RNA extraction and RT 

Total RNA was isolated from the cultured cells 12 h after treatments using the kit RNeasy 

Mini Kit (Qiagen, Inc., Valencia, CA). Complementary DNA (cDNA) was synthesized from 

2µg of total RNA with the 1st strand cDNA synthesis Kit for RT-PCR (AMV, Roche, Hague 

Road, Indianapolis). 8µl of cDNA mixture diluted 1:20 in water were subjected to real-

time PCR using SYBR Green I dye (Lightcycler faststart DNA master SYBR green I, 

Roche,Penzberg, Germany). Reactions were performed in 20 µl PCR mixture containing 

4µl 5x Master Mix (dNTP mixture with dUTP instead of dTTP, MgCl2, SYBR Green I dye, 

Taq DNA Polymerase and reaction buffer), 2µl of 10µM primers (sense and anti-sense: 

localisation found Fig. 1) and sequences and sources indicated in Table 1 and 6µl PCR 

grade water. In rats, uncertain determination of sequences in exon 6a and 7 implied that 

rat vegf188+164 or vegf144+188 were detected together. Only vegf120 (exclusively 

soluble) and 188 (exclusively matrix-bound) can be detected by appropriate sets of 

primers (Table 1). PCR was performed in a Light Cycler 3.0 Instrument. A typical 

protocol included a denaturation step at 95°C for 480s followed by 40 cycles at 95°C for 
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15s, Tm°C annealing for 10s and 72°C for extension for 20 s. Gene expression levels 

were normalized using cyclophilin reference and control corresponded to 100%.  

 

 

Determination of total protein content 

Protein concentration was determined by spectrophotometry using the bicinchoninic acid 

(BCA) protein assay kit (Interchim, Pierce). 25µl of sample were mixed with 200µl of 

working buffer for 30 min at 37°C. The absorbency was read with a spectrophotometer 

(940 KONTRON) at 562 nm using a blank reference and protein concentration determined 

from the calibration curve. 

 

VEGF-A sandwich ELISA 

Sandwich Elisa was designed to analyze amount of VEGF-A in culture medium and cell 

lysates. ELISA assays were performed using the duoset VEGF ELISA kit (R&D Systems, 

Minneapolis, MN) according to the manufacturer’s instructions. General cross-reactivity 

for all VEGF isoforms is specified in the ELISA description of the manufacturer. Assays 

were performed in triplicate, and the readings were compared to standard curves 

obtained with human recombinant VEGF-A, provided with the kit. 

 

Modulation of actin polymerisation 

We used two modulators of stress fibers formation; jasplakinolide and latrunculin A  

known respectively to induce or inhibit actin polymerisation, (54) ; (53) ; (4) ; (21). 

Drugs were added in the medium at 0.1 µM for 1 hour and cells were washed with fresh 

medium prior to mechanical stimulation. 

 

Quantification of actin fiber spacing 

Ros 17/2.8 cells seeded on the collagen-coated silicon membrane were analyzed by 

fluorescence microscopy and quantitative immunomorphology for determining actin 

stress fibers number. 12h after mechanical strain culture medium was removed. Cells 

were rinsed with phosphate buffered saline (PBS) and fixed in 4% paraformaldehyde for 

10 min at room temperature. Samples were washed with PBS and permeabilized with 

0.1% triton-x100 buffer for 3 min then washed with PBS. A rhodamine-phalloidin 

(Interchim, Monluçon, France) stock solution (1:50 dilution) was prepared in a 10% FCS 

solution in PBS and cells were incubated for 45 min at 37°C. By means of fluorescence 

microscopy (DMRB, Leica, Bensheim, Germany) f-actin was imaged by a 40 objective at 

a resolution of 650 × 515 pixels. 

Image processing was achieved via an autocorrelation algorithm. The autocorrelation of 

an image volume is computed in order to find average repetitive structures within the 
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image (39); (47), such as aligned stress fibers. We used the freely available program 

ImageJ (http://rsb.info.nih.gov/ij/index.html) implemented with the 2D fast Fourier 

transformation and autocorrelation plug-ins (http://rsb.info.nih.gov/ij/plugins/acf.html). 

30 cells per conditions were evaluated. Selections of 128x128 pixels were used for 

autocorrelation calculation, allowing cell by cell fiber detection (Fig. 4). Representative 

images of fast Fourier transformation are inserted in Figure 4C and 4D. The profile plot of 

the autocorrelation image generated a typical autocorrelation curve. The distance 

between the two first maximum indicates the typical spacing between the fibrils. As the 

spacing increased the fibrous pattern became undetectable. 

 

Preservation of matrix-bound VEGF 

In order to remove osteoblastic cells without removing matrix and entrapped VEGF, we 

applied 3 successive cycles of freezing/defrosting (-80°C/37°C) on cellularized 

membrane. PBS was used as washing buffer in each step.  

 

VEGF localisation after stretches 

Matrices were washed with PBS and fixed in 4 % paraformaldehyde for 10 min at room 

temperature. After rinsing in PBS, samples were incubated for 60 min at 37°C with 

mouse primary antibodies directed against human VEGF (Chemicon UK, MAB3734) 

diluted 1/50 in PBS with 10% FCS. Samples were rinsed with PBS and incubated for 60 

min at 37°C with goat anti-mouse alexa-fluor-488, diluted 1/200. A Hoescht solution 

(1:100 dilution) was prepared in a 10% FCS solution in PBS and cells were incubated for 

5 min at room temperature. Cells were examined using a fluorescence equipped 

microscope (DMRB, Leica, Bensheim, Germany) and imaged by a 20 objective at a 

resolution of 650 × 515 pixels. 

 

Statistical analysis 

Statistical analysis was performed with the STATISTICA6 software (StatSoft Inc., Tulsa, 

OK, USA). All data were analyzed by one-way analysis of variance (ANOVA). When F 

values for a given variable were found to be significant, comparisons among individual 

samples were assessed by the post hoc method of Scheffe. Results were considered to be 

significantly different at p<0.05. Pearson correlation analysis was performed to 

determine relationship between frequency of mechanical regimens and VEGF expression 

or production. All data are presented as means ± SD. 
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Results  

 

Low and high frequencies had opposite effect on release or immobilisation of 

VEGF 

We compared, in Ros17/2.8, our 4 regimens in their ability to increase mRNA expressions 

of Hif1α, 6 hours post-stretch, (Fig. 2A) and VEGF-A, 12 hours post-stretch (Fig. 2B). 

Surprisingly, we observed that all mechanical strains increased significantly Hif1α 

expression (about 1.5 folds compare to control). We found comparable results for total 

VEGF-A (1.4 to 1.6 fold increased as compared to control). In order to confirm the results 

obtained on VEGF-A gene, we quantified VEGF proteins amount by ELISA. ELISA of VEGF 

protein was performed on supernatants of Ros17/2.8 cultures to quantify soluble VEGF 

proteins and in cell/matrix lysates to quantify matrix-bound VEGF. The two lowest 

frequencies (largest relaxation time: relaxed mode) increased soluble VEGF protein, 

assayed on the supernatant (1.5 and 1.2 fold at 0.05Hz and 0.25Hz, respectively) (Fig. 

2C). The highest frequency regimen, 5Hz (shortest relaxation time = pulsed mode), 

decreased soluble VEGF protein amounts while the 2.5Hz regimen had no significant 

effect on soluble VEGF release. The release of soluble VEGF was thus negatively 

correlated to mechanical frequency (R2= 0.76, p<0.0001). In contrast, matrix-bound 

VEGF amounts increased in a frequency-dependant manner (Fig. 2D), while 0.05Hz 

frequency regimen did no differ significantly from C, 0.25Hz, 2.5Hz and 5Hz regimens 

increased insoluble VEGF 1.1, 1.4 and 1.6 fold respectively. A high positive correlation 

was found between non soluble VEGF and mechanical stretch frequency (R2= 0.99, 

p<0.0001). These results could be explained by a selective expression of VEGF isoforms. 

 

Difference between soluble and non-soluble VEGF production reflected 

differential isoform expression 

In order to test the hypothesis that VEGF alternative spicing is modulated by mechanical 

stretch frequency we performed Real time-PCR on Ros17/2.8 of soluble and matrix-

bound vegf isoforms respectively vegf120 and vegf188 (Fig. 3A) We found a specific 

upregulation of vegf120 isoform under low frequency stretch and a specific upregulation 

of vegf188 under high frequency stretch. In order to confirm the results obtained on 

sarcoma cells, we performed, RT-PCR on primary human osteoblasts, 12h post-stretch 

(relaxed mode versus pulsed mode) following specifically the 5 major human vegf 

isoforms. We found that soluble isoform 121 was significantly upregulated (1.7 fold) 

under relaxed mode and that matrix-bound isoforms 206, 189 and 145 were upregulated 

(2.5, 2.4 and 2.3 fold respectively) under pulsed mode. We found also that isoform 165 

was significantly upregulated under both modes (Fig. 3B). These results were confirmed 

by VEGF protein expression. We found a significant release of VEGF under 0.05Hz in 
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primary human osteoblasts and not for 5Hz stretch (Fig. 3C) and a significant increase in 

cell-matrix immobilisation of VEGF under 5Hz not found for 0.05Hz stretch (Fig. 3D). 

These results are in accordance with results obtained in Ros17/2.8. That release of VEGF 

in the supernatant was not increased under pulsed mode indicated that human VEGF165 

was immobilized under high stretching frequency. The use of human osteoblast allowed 

us to appraise HiF1α protein stability 12h post-stretch. We found that HIF1α production 

was still elevated (3 fold increase; Fig. 3E) in human cell submitted to 0.05Hz stretch 

and modestly but significantly elevated in 5Hz stretch condition suggesting HIF-

dependent upregulation of VEGF under our conditions of stretch. To address the question 

of VEGF localization, relaxed or pulsed membranes were submitted to cycles of 

freezing/unfrezzing to carefully remove cells. After that membranes were processed for 

immunoassaying of VEGF and Hoechst staining to attest for the absence of cells. In these 

conditions we found that VEGF was only detectable in the pulsed stretch condition (5Hz; 

Fig. 3F). This experiment strongly suggested that immobilization of VEGF was into 

matrix.  

 

Activation of stress fibers formation was correlated with production of matrix-

bound VEGF   

In Fig. 4A (C, 0.05Hz and 0.25Hz frequency regimens, respectively) only few actin fibers 

were observed in Ros17/2.8 under stretch and the spacing was high, not different from 

controls. In Fig. 4D and E (2.5 and 5Hz frequency) well developed fibers were observed 

and fiber spacing was low. Autocorrelations analysis (Fig. 4F) indicated significantly 

difference in fiber spacing for pulsed regimens (frequency: 2.5 and 5Hz) as compared to 

control, demonstrating that only pulsed modes were able to induce or maintain actin 

polymerisation 12h post-stretch. As pulsed modes had a stabilising effect on the 

cytoskeleton, we tested whether these results could be mimicked using drugs targeting 

the actin cytoskeleton.  

 

Increase in cellular tension was necessary for matrix trapping of VEGF  

As expected a large number of stress fibers were formed (Fig. 5A) (comparable to 5Hz 

regimen results, Fig. 4A 5Hz) when Ros17/2.8 cells were treated with Jasplakinolide. 

Latrunculin A treatment (Fig. 5A) led to the loss of central stress fibers. We first 

observed that Jasplakinolide upregulate vegf188 isoform expression (Fig. 5B) and had 

no effect on vegf120 isoform (Fig.5C). Concomitantly, we observed that Jasplakinolide 

increased significantly insoluble VEGF protein amount (1.5 fold) but had no effect on 

soluble VEGF protein amount (Fig. 5D). Surprisingly LatrunculinA (Fig. 5E) had no effect 

on matrix-bound nor soluble VEGF protein secretion despite the significant decrease 

observed for the vegf188 isoform expression (Fig. 5B). These results led us to the 
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conclusion that cellular architecture was a mediator of matrix-bound VEGF production but 

did not regulate the release of VEGF under stretch. In order to demonstrate that 

mechanically induced-stress fibers formation was responsible for immobilisation of VEGF 

into the matrix, we pre-treated cells with LatrunculinA before relaxed or pulsed 

mechanical stimulation. 12h post-stretch at 0.05Hz, actin was significantly depolymerised 

(Fig. 6A), similar to cells treated with LatrunculinA (Fig. 5A). In contrast, 12h post-

stretch at 5Hz (Fig. 6A), actin polymerisation returned to control levels although stress 

fibers were not detectable. Interestingly, despite the fact that actin polymerisation was 

still impaired after 0.05Hz+LatA mechanically induced release of VEGF was not abolished 

(1.5 fold increase vs C) confirming that cell tension was not involved in stretch-induced 

VEGF secretion (Fig. 6C). 12h post-stretch at 5Hz, we did not find any increase in the 

amount of VEGF in cell/matrix lysates (Fig. 6D). Absence of VEGF immobilisation under 

5Hz stretch was supported by the specific abolition of the vegf188 upregulation found in 

5Hz stretched cells, furthermore the release of VEGF found under relaxed stretch 

(0.05Hz) is supported by the specific upregulation of vegf120 isoform despite the Lat.A 

treatment (Fig. 6B). All together these results indicated that actin polymerisation (i.e. 

increased cell tension) was necessary for VEGF immobilisation and not for VEGF release. 
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Discussion 

 

In this study, we show that mechanical strain differentially regulates production of VEGF-

A isoforms by osteoblasts (rat sarcoma cells and human primary cells), according to the 

frequency of the applied signal.  Moreover, we show that mechanical information 

delivered in a pulsed mode leads to actin polymerisation which induces matrix-bound 

VEGF production.  

 

Our guideline for the choice of the mechanical stimulation regimens was to apply the 

same total amount of energy, but delivered at increasing frequencies in order to reduce 

cell-relaxation time. We provide evidence that a short time of relaxation between loads 

does not impair ROS 17/2.8 cells and primary human osteoblast mechanosensitivity. 

These results were in accordance with those of Rubin (20) and Klein-Nulend  groups (2). 

We fixed the signal amplitude at 1% stretch, as we previously demonstrated that 

osteoblasts were sensitive to this degree of deformation in the Flexercell-3000 system 

(7). A longer time of mechanical stimulation delivered in pulsed mode detached cells and 

a shorter time in relaxed mode failed to upregulate Hif-1a or VEGF expressions (data not 

shown). 

 

In vivo mechanical information is delivered to bone cells through various types of stimuli 

(i.e.: compression, tension, fluid-flow piezoelectric currents) all characterized by various 

amplitudes and frequencies of application.  In rat tibiae, when resting periods are 

inserted between loading bouts, periosteal bone formation is enhanced as compared to 

an uninterrupted loading regimen, suggesting the existence of a refractory period in the 

mechanotransduction signalling cascade of bone cells (44). Indeed, in vitro studies 

demonstrated that bone cells present a refractory period to fluid flow-induced calcium 

waves (13) and to electrical field (9). These results lead to the conclusion that periods of 

recovery between two periods of mechanical stimulations are necessary for osteoblasts to 

restore their complete mechanosensitivity (8). However, recent studies from CT Rubin's 

group (32) suggest that bone cell activities could benefit from high frequencies of 

stimulation (20-90 Hz), if their amplitudes are very low. Thus, osteoblast 

mechanosensitivity is not clearly defined in terms of refractory period as relaxation time 

between loading bouts may vary from milliseconds to hours depending on the system 

studied. The ultimate source of confusion is that the total mechanical energy delivered to 

cells is not kept constant (the increase in frequency being not compensated by a 

reduction in duration of application).  
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In osteoblasts, Hif1 alpha has been shown to transactivate target genes such as Vegf 

(57) and mechanical strain was already shown to induce both Hif1 alpha and Vegf 

expression in other cell types (23) (38) (43) (34). In this study, Hif1 alpha is 

systematically upregulated at the mRNA level by all mechanical regimens applied to 

osteoblastic cells, despite their different design and Hif1 alpha is still present at the 

protein level 12 hours post-stretch. Hif1 alpha upregulation might explain why VEGF 

expression is stimulated. Interestingly,  Hif1 alpha and subsequently VEGF induction 

were shown to occur in the nonhypoxic myocardium under mechanical stress (34). In our 

cell culture under standard conditions (i.e., 20% O2), cells were not hypoxemic and it is 

plausible that VEGF induction might result from non hypoxic Hif1 alpha. Under non 

hypoxic conditions, NO donors (33) have been described to increase Hif1 alpha 

expression. As NO is known as a key regulator in mechanotransduction (36), we can 

speculate that in our mechanical stretch conditions, Hif1 alpha is maintained elevated via 

NO upregulation.  

 
Mechanically-induced upregulation of VEGF has been already described in several cell 

types (42) (52) including osteoblasts (55) (51) and for a wide range of mechanical 

stimulation. The correlation we found between VEGF secretion and mechanical 

frequencies is explained by a selective expression of VEGF isoforms. To our knowledge, 

only one study (42) reported frequency-dependent VEGF isoform expression. These 

authors showed that tendon fibroblasts produce VEGF 121 and 165 when stimulated at 

1Hz but not at 0.5Hz. It has been shown that the vegf gene has two start codons (AUG 

and CUG) (27) (6) which are responsible for the different isoforms production. We 

hypothesize that the relaxed mode strain activates the CUG start codon, inducing vegf 

121, while the pulsed mode strain shifts expression to the AUG start codon, leading to 

the production of vegf 189. This might also explain the production of vegf 165 under both 

modes, as this splice variant is produced equivalently by CUG and AUG start codons.  

 

Both VEGF and mechanical stimuli regulate stress fibers formation (28) (22). We found 

that 12 h post-stretch, pulsed mode strain induces a sustained actin polymerisation, as 

quantified by image analysis. The relaxed mode failed to maintain stress fibers, 

demonstrating that this process is frequency-dependent. The modulator of cell tension, 

jasplakinolide, binds to pointed ends of actin filaments (F-actin) thereby stabilizing the 

binding interface between adjacent actin monomers (G-actin) (10) (18) (35) which 

inhibits filament depolymerisation (58) and favors nucleation and polymerisation. We 

show that Jasplakinolide-induced stress fibers result in an increase of non soluble VEGF 

protein amounts, with no effect on soluble VEGF production. Jasplakinolide is thus acting 
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as a mechano-mimetic. Cells treated with latrunculin A which disrupts microfilament 

organisation without obvious effects on the organization of the microtubular system, do 

not display any VEGF production. However, when cells pretreated with latrunculin A are 

submitted to a relaxed mechanical regimen, soluble VEGF is produced. Importantly, no 

stimulation of non soluble VEGF was detected under pulsed regimen. We thus conclude 

that active f-actin polymerisation is required for matrix-bound VEGF production under 

mechanical stress. It has been reported that PI3K activity, an important modulator of 

actin polymerisation (31), is required for VEGF expression (14). Other works show that 

latrunculin A decreases PTEN, the natural inhibitor of PI3K (30). The maintenance of PI3K 

activity and the intense peripheral f-actin polymerisation may explain why soluble VEGF 

is produced in latrunculin A treated cells under relaxed mode strain.  

 

Thus, if cell contraction is impaired, as in latrunculin A treated cells, matrix-bound VEGF 

cannot be produced. Since Jasplakinolide treatment was able to mimic pulsed induced 

osteoblast response we conclude that cell contractility, and not only f-actin 

polymerisation, is essential for the storage of VEGF into matrix. We hypothesize that 

RhoGTPase, especially the RhoA/ROCK pathway, (48) (59) controls this process.  

 

In conclusion, we show that mechanical stretch regulates, in a frequency dependent 

manner, the expression of VEGF variants by osteoblasts, and thus the integration of this 

crucial messenger molecule into the matrix. This study increases our knowledge on the 

role of VEGF as an osteogenic/angiogenic factor and might offer new potential by which 

critical angiogenic factors can be release in a spatio-temporally mechanical controlled 

manner to help vascularization of cellularized bone scaffolds or bone repair.    
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Tables 
 
Table 1 
DNA sequences of sense and anti-sense primers 
 

Target Species Primers Tm (°C) Product size (pb) Source 

Hif-1a  Rat  forward  5’-TCAAGTCAGCAACGTGGAAG-3’ 

 reverse  5’-TATCGAGGCTGTGTCGAGTG-3’ 

 60 

 62 

 198  NM_024359 

VEGF-A  Rat  forward  5’-TTTACTGCTGTACCTCCACC-3’ 

 reverse  5’-ATCTCTCCTATGTGCTGGCT-3’ 

 60 

 60 

 316  NM_031836 

VEGF-188  Rat  forward  5’-CGAGGAAAGGGAAAGGGTCA -3’ 

 reverse  5’-TTAACTCAAGCTGCCTCGCC -3’ 

 62 

 62 

 178  NM_031836 

VEGF-120  Rat  forward  5’-TTTACTGCTGTACCTCCACC-3’ 

 reverse  5’-CAATGATGAA TGAACAAGGC-3’ 

 60 

 56 

 269  NM_031836 

Cyclophilin  Rat  forward  5’-AGCACTGGGGAGAAAGGATT-3’  

 reverse  5’-TTCACCTTCCCAAAGACCAC-3’ 

 60 

 60 

 281  M19533 

VEGF-206  Human  forward  5’- GGCCCCCATCCCTGTGGGCC -3’  

 reverse  5’- CTCCTGCCCGGCTCACCGCC -3’ 

 72 

 72 

 173  NM_003376 

VEGF-189  Human  forward  5’-CCTGGAGCGTTCCCTGTGGG-3’  

 reverse  5’-CTCCTGCCCGGCTCACCGCC-3’ 

 68 

 72 

 176  NM_003376 

VEGF-165  Human  forward  5’-CAAGAAAATCCCTGTGGGCC-3’  

 reverse  5’-CTCCTGCCCGGCTCACCGCC-3’ 

 57 

 72 

 175  NM_003376 

VEGF-145  Human  forward  5’-GGACATCTTCCAGGAGTACC-3’  

 reverse  5’-CTTGTCACATACGCTCCAGG-3’ 

 62 

 62 

 328  NM_003376 

VEGF-121  Human  forward  5’-GGACATCTTCCAGGAGTACC-3’  

 reverse  5’-GGCTTGTCACATTTTTCTTG-3’ 

 62 

 62 

 258  NM_003376 

Cyclophilin  Human  forward  5’-AGCTGTTTGCAGACAAAGTT-3’  

 reverse  5’-CCAAAGACCACATGCTTGCC-3’ 

 56 

 62 

 322  AF022115 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure captions 
 
Figure 1: (A) Design of experimental protocol: design of 4 mechanical stretches varying 
in time and frequency (excitation time is not at scale). For a constant number of cycles 
applying a 1 % deformation (square), applied frequencies ranging from 0.05Hz to 5 Hz 
with a respective decreasing time of 150 min to 1.5 min. Analysis were performed 12h 
post stretch (if not stated). (B) Diagram of the VEGF isoforms and location of primers. 
 
Figure 2: (A and B) Effects of mechanical stretches frequency on Hif-1α and VEGF-A 
gene expressions in Ros17/2.8 cells. (A) Effect of mechanical stretches on Hif-1α gene 
expression 6 hours post stretch (B) Effect of mechanical stretches on VEGF-A gene 
expression 12 hours post stretch. Expressions were normalized on the basis of cyclophilin 
expression and the data were expressed as percentage of the control value (C, 100%). 
Results were obtained from 4 independent experiments (n= 8). * p<0.01 (Scheffe test) 
vs. “C”. (C and D) Production or immobilisation of VEGF 12H post stretch in Ros17/2.8. 
(C) Soluble VEGF; VEGF protein amount determined by specific ELISA in supernatant of 
culture for mechanical stretch varying in frequency. (D) VEGF immobilisation, VEGF 
protein amount determined by specific ELISA in cell and matrix lysates. Values are 
expressed as percentage of control production (“C”, 100%). Experiments were conducted 
at least three times on 6 samples in each group. * p<0.01 vs “C”. (Scheffe test). 
 
Figure 3: VEGF specific isoforms expressions according to mechanical stretch frequency. 
(A) vegf isoforms expression (120 and 188) were quantified on Ros17/2.8 osteoblast at 
0.05Hz and 5 Hz. (B) vegf isoforms expression (121, 145, 165, 189 and 206) were 
quantified on primary human osteoblast at 0.05Hz and 5 Hz. Soluble vegf isoforms were 
indicated with grey bars and matrix-bound vegf isoforms using black bars. Expressions 
were normalized on the basis of cyclophilin expression and the data were expressed as 
percentage of the control value (C, 100%). n= 4, *p<0.01 (Scheffe test) vs. “C”. (C-D) 
Production or immobilisation of VEGF 12 hours post stretch in human primary 
osteoblasts. (C) Soluble VEGF; VEGF protein amount determined by specific ELISA in 
supernatant of culture for mechanical stretch at 0.05 and 5 Hz. Values are expressed as 
percentage of control production (“C”, 100%). (D) VEGF immobilisation, VEGF protein 
amount determined by specific ELISA in cell and matrix lysates. Experiments were 
conducted at least three times on 6 samples in each group. * p<0.01 vs C. (Scheffe 
test). (E) Effect of mechanical stretches on Hif-1α protein production 12 hours post-
stretch on primary human osteoblasts. Data were expressed in ng/ml. Results were 
obtained from 2 independent experiments (n=6). *p<0.01 (Scheffe test) vs. “C”. (F) 12 
hours post stretches (0.05 and 5 Hz), primary human osteoblast were removed from 
silicone membrane by using freezing/unfreezing cycles and double staining of VEGF and 
Hoechst was performed to determine the presence of matrix-bound VEGF as well as 
absence of cells. Scale bar: 40µm. “C”: static control. 
 
Figure 4: Effect of different mechanical stretch regimens on actin stress fiber formation 
in Ros17/2.8 cells. (A) Cells cultured onto flexible type I collagen-coated membrane were 
fixed and stained for f-actin (Rhodamine-phalloidin) 12H after stretches ranging from 
0.05 to 5Hz or static condition “C”. Scale bar = 20µm. Stretch regimens with highest 
frequencies presented numerous f-actin stress fibers. (B) Quantification of fiber spacing 
by way of autocorrelation demonstrated that high frequency regimens significantly induce 
stress fiber formation. Typical ROI analysed were indicated by blank squares and 
respective autocorrelation images were inserted in bottom left corner, a diffuse pattern 
was indicative of absence of fibers (0.25Hz) and a striated pattern indicative of presence 
of fibers (2.5 Hz). See details in methods section. n=30, * p<0.01 vs. “C” (Scheffe test). 
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Figure 5: Effect of actin polymerisation manipulation in Ros 17/2.8 on VEGF isoform 
expression and release or immobilisation into matrix. (A) Visualisation of stress fibers by 
f-actin staining using phalloidin. Cells were treated either with Jasplakinolide “Jasp.” or 
Latrunculin A “Lat.A” or untreated “C”. (B) vegf isoform expression 188 (matrix-bound) 
was assessed on Ros17/2.8 after Lat.A and Jasp. treatments (black bars) as compared to 
untreated cells (white bars). (C) vegf isoform expression 120 (soluble) was assessed on 
Ros17/2.8 after Lat.A and Jasp. treatments (black bars) as compared to untreated cells 
(white bars). Expressions were normalized on the basis of cyclophilin expression and the 
data were expressed as percentage of the control value (C, 100%). n= 4, *p<0.01 
(Scheffe test) vs. “C”. VEGF protein amount were quantified in supernatant (SN) and 
cell/matrix lysates (LYS) after Jasp. treatment (D) or Lat.A treatment (E). Jasplakinolide 
treatment increased significantly upregulation of matrix-bound vegf188 isoform and 
immobilisation of VEGF indicating that actin polymerisation is necessary for VEGF 
immobilisation. LatrunculinA had no effect on VEGF release or immobilisation. n= 8, * 
p<0.01 (Scheffe test) vs. “C”.  
 
Figure 6: Effect of actin depolymerisation in Ros17/2.8 on mechanically induced-VEGF 
release or immobilisation. (A) Visualisation of stress fibers by f-actin staining using 
phalloidin Cells were treated with LatrunculinA “Lat.A” or untreated “C” prior to 
mechanical stretch episode at 0,05 “Lat.A+0.05Hz” and 5 Hz “Lat.A+5Hz”. (B) vegf 
isoforms expression (120 and 188) were quantified on Ros17/2.8 osteoblast at 0.05Hz 
and 5 Hz following a pre-treatment with Lat.A. grey bars corresponded to vegf120 
isoform and black bars to vegf188 isoform. Expressions were normalized on the basis of 
cyclophilin expression and the data were expressed as percentage of the control value 
(C, 100%). n= 4, *p<0.01 (Scheffe test) vs. “C”. VEGF protein amount was quantified in 
supernatant (C) and cell/matrix lysates (D). LatA. treatment did not block the release of 
VEGF at 0,05Hz but completely abolished VEGF immobilisation. n= 8, * p<0.01 (Scheffe 
test) vs. C.  
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