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Abstract. The potential of in-line digital holography to locate and measure
the size of particles distributed throughout a volume (in one shot) has been
established. These measurements are fundamental for the study of particle
trajectories in fluid flow. The most important issues in digital holography today
are: the poor depth positioning accuracy, the transverse field of view limitation,
border artifacts and the computational burden. We recently suggested an “inverse
problem” approach to address some of these issues for the processing of particle
digital holograms. The described algorithm improves axial positioning accuracy,
gives particle diameters with sub-micrometer accuracy, eliminates border effects
and increases the size of the studied volume. This approach for processing particle
holograms pushes back some classical constraints. For example, the Nyquist
criterion is no longer a restriction for the recording step and the studied volume
is no longer confined to the field of view delimited by the sensor borders. In this
paper we present a review of limitations commonly found in digital holography.
We then discuss the benefits of the “inverse problem” approach and the influence
of some experimental parameters in this framework.

PACS numbers: 07.05.P, 42.40, 06.30.G

Keywords: digital holography; in-line holography; inverse problem; ghost images;
border effects; signal to noise ratio;

Submitted to: Meas. Sci. Technol.



DH: benefits of the “inverse problem” approach 2

1. Introduction

Digital in-line holography is a 3D imaging technique which has been widely developed
during the past decades. This technique achieves the 3D reconstruction of volume
objects from a 2D image and reaches accuracies in the range of - or smaller than -
the wavelength [1, 2, 3]. Digital holography can solve two types of problems: (P1) the
3D reconstruction of object surfaces (P2) the 3D localization of micro objects spread
throughout a volume.

Advances made in fluid mechanics, especially in digital methods make simulations
of complex flows possible and generate a real need for experimental techniques which
can analyze 3D flows. In this context, digital holography is one of the best suited
techniques for the tracking of particles throughout a volume (P2). It has been
demonstrated that in-line holography (see figure 1) is adapted to this kind of problem
[4, 5], in particular thanks to its insensitivity to vibration and thanks to the simplicity
of its setup.

Past few years, numerous algorithms for analysis of micro-particle holograms
have been proposed (see for example research contributions in special issues [2, 6]).
They are mostly based on a common approach for hologram processing (hereafter
denoted as the classical approach): digital reconstruction based on the simulation of
the hologram diffraction. They suffer from artifacts intrinsic to holography: twin-
image contamination of the reconstructed images, image distortions for particles
located close to the hologram borders. The analysis of the reconstructed planes
is therefore penalized by these defects. In contrast with this approach, the inverse
problem perspective does not transform the hologram and performs particle detection
by matching a model of the hologram. This technique extracts more information from
the hologram and solves two essential problems in particle digital holography: the
improvement of the axial localization accuracy of a particle and the enlargement of
the studied field beyond the physical limit of the sensor size. The drawbacks of this
approach is a computation load heavier than that of the classical techniques, especially
in the case of a large number of particles and this approach is also restricted to particles
modeled by few geometrical parameters.

We have recently described this novel approach and proved its feasibility to
process experimental holograms of water droplets [7, 8]. We propose in this paper
to study the benefits of the “inverse problem” approach. For that purpose, in section
2, we introduce a review of the classical approach for hologram 3D reconstruction.
Its drawbacks are summed up and constraints on the experimental setup revisited.
In section 3, we recall the principle of the approach based on “inverse problem” and
introduce some mathematical notations. Finally we discuss in section 4 benefits of
the “inverse problem” approach in the light of the new influence of some experimental
parameters. We explain why the Nyquist criterion is no longer a restriction and why
the pixel integration has to be taken into account. We also analyze the benefit of the
cleaning step to the signal to noise ratio.

2. Hologram-diffraction based approaches and their limitations

In this section, we summarize hologram diffraction-based approaches used in in-line
particle holography and their limitations. We then present, in more detail, some of
their drawbacks and point out some of the work in the literature that describe them.
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Figure 1. The in-line holography setup

2.1. Presentation of these methods

The classical 3D reconstruction of digital holograms is performed in two steps. The
first step is based on a numerical simulation of the optical reconstruction. A whole
volume is obtained by computing the diffracted field in planes located at increasing
distances from the hologram (see figure 2). Different techniques to simulate diffraction
under Fresnel approximation have been used (Fresnel transform [9], Fractional Fourier
Transform [10, 11] or wavelets transform [12, 13]). The second step consists in
localizing and sizing each particle in the obtained 3D image. The best focusing plane
for each particle has to be detected. Various criteria are suggested in the literature.
Some are based on the local analysis of the gray level of the reconstructed volume.
For example, one searches for the minimum of the gray level on the z-axis crossing
the particle center [14] or computes the barycenter of the labeled particle image after
thresholding of the 3D reconstructed image [15]. Some authors use the imaginary
part of the reconstructed field [16]. Other approaches are based on an analysis of the
object’s 3D image. Liebling uses the criterion of the sparsity of wavelets coefficients
[17]; and Dubois uses the minimization of the integrated reconstructed amplitude [18].
Hologram-diffraction based approaches, can suffer from various limitations:

(i) the depth accuracy is weak (section 2.3);

(ii) the field of view is limited and, in practice, must be restricted to the center of
the reconstructed images to reduce the border effects (section 2.4);

(iii) spurious twin-images of the particles get reconstructed;

(iv) multiple focusing can occur around the actual depth location of each particle [19];

(v) under-sampled holograms can lead to ghost images (section 2.2);

(vi) algorithms of this approach are often time-consuming (section 2.5);

(vii) the analysis of reconstructed planes is possible only for low concentrated
holograms.

We recall in the next subsections some of these limitations.

2.2. Ghost images

Due to technological constraints, digital holography suffers from the bad resolution of
digital cameras (about 50 times worse than holographic plates). For a correct sampling
of the image, the maximal frequency is imposed by the pixel sampling (∆ξ). When the
Nyquist criterion is not fulfilled (signal frequency higher than the Nyquist frequency),
an aliasing phenomenon appears. In the in-line holography case, where the recorded
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Figure 2. Reconstruction illustration.

signal is a convolution of the aperture of the object by a 2D chirp function (Fresnel
function), aliasing produces ghost images in the reconstructed images [20, 21, 22, 23].
These ghost images can lead to false detections. In most cases the windowing of the
Fresnel function by the diffraction envelope of the particle (defined as J1c(x) = J1(x)/x
where J1 is the Bessel function of the first order) reduces ghost images amplitude to
below that of the true image. Nevertheless, these ghost images can be mistaken for
small particles in a classical approach.

Some solutions have been proposed to overcome this problem. Onural and Stern
[21, 23] suggest a filtering of these ghost images in the reconstructed planes (in the case
of known location of the “true” particle). Jacquot [20] presents an over-sampling of
the hologram and Coupland [22] suggests removing ghost images by using an irregular
sampling of the signal, which involves a decrease of the amplitude of these images
compared to the real ones. Let us notice that these last two methods require some
heavier experimental setups.

To avoid ghost image occurrence in the hologram, the Nyquist criterion must be
respected. For a particle located on the optical axis at a distance z from the hologram,
the following inequality must be satisfied [5]:

z > zmin =
L∆ξ

λ
(1)

where L is the width of the sensor and λ is the laser wavelength. This imposes
either to use a high resolution sensor (small ∆ξ) or have the particles at a distance
greater than zmin. For a given pixel size, the camera cannot be positioned too close
to the particles. This may result in excessive blurring of the interference fringes (their
contrast decreases when the camera-particles distance increases).

2.3. Accuracy

In optics, the resolution is defined by the Rayleigh criterion as the minimum separation
distance between two points - located at a given distance from the imaging system
- to be spatially resolved [24]. In the case of an optical system containing a square
aperture, and under the Fresnel approximation, two points that are located close to
the optical axis are imaged distinctly, when the center of the sinc function generated
by a point corresponds exactly to the first zero of the sinc function generated by the
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second point. Under this condition, the lateral resolution δx of an imaging system of
aperture L is given by:

δx =
λ z

L
(2)

where z corresponds to the distance aperture - image plane. In the same way, the
axial resolution is closely linked to the depth of the 3D reconstructed images. The
z-resolution of an imaging system is given [25] by:

δz =
λ z2

L2
(3)

Let us notice that in digital holography of particles, the recording model of
a hologram (see section 3.1) is not valid when particles are close to each other
(the interferences between particles as well as the reference wave distortion are not
negligible). However this case is unlikely in digital holography of particles (the number
of particles is limited by the Royer criterion [26]). Rayleigh criterion is therefore not
the most discerning to define the accuracy in digital holography particle tracking
velocimetry, which is a detection problem rather than an imaging problem.

The accuracy is more relevantly defined as a statistical measure of the difference
between the true value and its measure (typically the standard deviation of the
error for unbiased measure). The accuracy of the measure depends on the depth
of field, but can be many times fainter. It depends also on the sensor definition,
the quantization, the particles concentration as well as the transverse location of the
particles. The last point is a consequence of the borders artifacts (generated by the
classical reconstruction, see section 2.1) which worsens the measured accuracy. This
multi-parameter dependency explains why accuracy in digital holography is always
given according to experimental settings [16, 14, 27, 28, 29, 30].

2.4. Border effects

A drawback which can prove embarrassing within the framework of metrology is
the appearance of some artifacts in the reconstructed 3D image due to hologram
truncation. This problem is all the more important since digital camera sensors
are small compared to holographic plates (their surface is a hundred times less).
In holography, the signal of each particle is spread over a large surface. The loss
of the fringes outside of the sensor is at the origin of the artifacts named “border
effects”. This phenomenon distorts the particle reconstruction in the 3D space and
so generates errors in the positioning and the estimation of the particles’ diameters.
This phenomenon is illustrated in figure 3. This figure shows the distortion of a
particle located on the border of an experimental hologram of water droplets on several
consecutive reconstructed planes (see section 3.4 for experimental setup description).

Hologram diffraction-based techniques require an expansion of the hologram
outside its boundaries. The hologram can either be zero-padded, periodized or mirror-
extended. In each case, the recorded fringes are completed by erroneous values
outside the hologram. This leads to distorted and low-contrasted 3D images in the
reconstructed planes (figure 3). These artifacts, generating a loss of accuracy in the
3D reconstruction, restrict the usability of these reconstruction approaches to the
area located in the center of the hologram (where interference patterns are slightly
truncated). Several methods have been proposed to reduce the border effects. Dubois
suggested a technique to extend the hologram so as to suppress the truncation effect
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Figure 3. Illustration of artifacts appearing during the numerical reconstruction
due to the truncation of diffraction rings on the hologram border: (a) experimental
hologram of droplets (b) numerical reconstructions at different depths z. The
images represented in (b) correspond to the square area drawn on the hologram
(a).

on the border [31]. Cuche proposed a windowing method based on a weighting of
the hologram border by a cubic spline. This allows for the reduction of the border
effects in the central part of the field of view, at the cost of a loss of contrast close to
the borders [32]. These methods improve the field border reconstruction but do not
facilitate accurate out-of-field detections.
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2.5. Computation complexity

The processing time is often a limiting factor in the implementation of algorithms
as many applications require a real-time processing. In digital holography, heavy
computations are necessary and hologram analysis is, therefore, often postponed.
When temporal series of holograms are considered, the computational load becomes
very heavy. Within the framework of classical 3D reconstruction, the processing time
depends on the 3D image reconstruction step and the segmentation step. The 3D
image reconstruction can be performed by computing one 2D-FFT (Fast Fourier
Transform) for each depth. As we saw in section 2.1, the segmentation step can
be realized via numerous algorithms. So the complexity of this part can be more
or less important and can depend on many parameters (complexity of algorithm
used, image size, number of particles, ...) according to the chosen method. The
complexity of hologram processing, bounded by that of the 3D reconstruction step,
remains time-consuming for an industrial framework use. Recently, some solutions as
parallel computing [33] or even some implementations in dedicated circuits as FPGA
(Field-Programmable Gate Array) [34] have been proposed in order to reduce this
problem. Direct processing approaches that do not require 3D reconstruction were
also suggested to quickly extract the mean particle size [35] or the distribution of
directions of fibres [36].

3. Review of the “inverse problem” approach

In this section we review a method based on an “inverse problem” approach for digital
hologram analysis. We first describe the recording model of the hologram which is
used in this method and introduce mathematical notations used in section 4. Then
we review the “inverse problem” approach and the iterative algorithm used to setup
this approach. Finally we sum up the main benefits of this approach.

3.1. Recording model of the hologram

We consider an in-line holographic setup (see figure 1) where studied particles are
illuminated by the laser beam and both reference wave and object wave interfere and
are recorded by the camera. In this section we describe the model of the hologram
under Fresnel’s diffraction approximation for spherical particles. This model is the
basis for our “inverse problem” approach. The resulting hologram expression is a sum
of terms depending on the location and size of each particle. In the case of digital
holography of spherical micro-particles, each particle is described by few parameters
{xk, yk, zk, rk}: x, y, z represent the spatial coordinates and r the radius. The
notations and coordinate system we use are summarized in figure 4. The simplified
model of hologram intensity measured by the detector can be written as follows [8]:

I(x, y) = I0 −

n∑

k=1

αk gk(x − xk, y − yk) + Ibg(x, y) (4)

where αk is an amplitude factor of the diffraction pattern of the k-th particle, I0

represents the incident intensity on the sensor and Ibg the background noise. The
function gk(x, y) represents the diffraction pattern of one particle and is given by the
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Figure 4. Notations used in the hologram model.

following equation:

gk(x, y) =
π r2

k

λzk

J1c

(

2π rk

√

x2 + y2

λzk

)

sin

(
π(x2 + y2)

λzk

)

(5)

where λ is the laser wavelength. Let us notice that the speckle noise (due to second
order interference terms) is negligible compared to the amplitude of the diffraction
patterns of the other particles (Meng [37]). We therefore neglect this noise. The
background noise (Ibg(x, y)) comprises the noise due to experimental setup, due to
the electronic noise and due to the quantization noise.

The detector is a matrix of size (Ni,Nj), thus the intensity is only known on
discrete values (i,j). The recorded data (4) on the pixel [i, j] are:

d[i, j] = I0 −
n∑

k=1

αk gk[i, j] + Ibg[i, j] (6)

where gk[i, j] = gk(x − xk, y − yk) with x − xk = i∆ξ and y − yk = j∆ξ. This model
of a hologram is an additive model: the hologram intensity consists of the sum of the
diffraction-patterns of the n particles plus a remaining background noise Ibg.

3.2. Inverse problem formulation

We saw in section 2, the description of the classical approaches. These methods are
based on the diffraction of the hologram. In the field of particle holography, hologram
processing amounts to a detection problem for which the most relevant domain is
that of signal processing. The reconstruction of a 3D image then appears unnecessary
and the problem of particle detection can be reformulated as a problem of diffraction-
pattern detection. The expression of the diffraction-pattern of a particle with given
size and location is well-known and therefore easy to compute (direct problem) (see
section 3.1). Let us consider a population of particles characterized by their parameters
{xk, yk, zk, rk}k=1,...n. The 4D reconstruction of the set of particles (locations and
sizes) that corresponds to a given hologram is a much more complex problem (inverse
problem). The analysis of a particle hologram requires solving such an inverse problem
[7, 8]. We recall in the following paragraph how the hologram analysis problem can
be formulated as a minimization problem.
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The experimental hologram d[i, j] is modeled by a parametric model m[i, j]
based on a diffraction-pattern model (5) which depends on a set of parameters
{xk, yk, zk, rk}k=1,...n corresponding to the location and size of each of the n particles:

m[i, j] = I0 −

n∑

k=1

αk gk[i, j] (7)

The problem of particle detection can be expressed as a global optimization
problem. It consists of finding the optimal set of parameters which minimizes the
penalty function P of weighted least squares defined by:

P =

Ni∑

i=1

Nj∑

j=1

w[i, j] (m[i, j] − d[i, j])
2

(8)

where w[i, j] is a weight matrix taking into account the truncation effect and possible
dead pixels and can be defined as:

w[i, j] =

{
1 if the pixel (i,j) is measured,
0 otherwise.

In the following section, we describe the iterative algorithm we suggested in
reference [7]. It reaches the minimum of the penalty function P and therefore locates
and sizes the particles recorded in the hologram.

3.3. Iterative particle detection

The algorithm performs the detection on a particle per particle basis. Parameter sets
of the particles are obtained in an iterative manner by local optimization. At iteration
ℓ, the parameters {xℓ, yℓ, zℓ, rℓ} of the ℓ-th particle are determined by minimization
of the weighted least-squares penalty function Pℓ:

Pℓ =

Ni∑

i=1

Nj∑

j=1

w[i, j] (mℓ[i, j] − dℓ[i, j])
2

(9)

where mℓ[i, j] corresponds to the intensity contribution of the ℓ-th particle and dℓ[i, j]
represents the centered residual data at the ℓ-th step. It can be detailed from equations
(6) and (7) as follows:

dℓ[i, j] = d[i, j] +

ℓ−1∑

k=1

αk gk[i, j] + aℓ (10)

where aℓ corresponds to the centering constant. Each iteration can be broken down
into three steps:

• Global detection step
The penalty function is sampled and the minimum gives a first estimate of the
parameters {xℓ, yℓ, zℓ, rℓ} of the ℓ-th particle [8].

• Local optimization step
It is achieved by minimizing the penalty function Pℓ (9). The parameters
{xℓ, yℓ, zℓ, rℓ} are refined.

• Cleaning step
The model of the ℓ-th particle of optimal parameters {xℓ, yℓ, zℓ, rℓ} is subtracted
from the hologram resulting in residual data.
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Let us notice that the order of particle detection corresponds roughly to a decrease
of particle energy. Let us call the energy of the ℓ-th particle signal the “particle energy”

defined as:

Ni∑

i=1

Nj∑

j=1

w[i, j]m2
ℓ [i, j].

3.4. Main results

This approach removes some limitations of classical methods. Firstly, by expressing
the detection problem directly in the hologram plane (8), we get rid of some artifacts
that appear in holographic reconstruction (twin-image problem, multiple focusing).
Secondly, due to the cleaning step, our algorithm is able to detect particles with faint
energy. Thirdly, the truncation outside the borders of the hologram is modeled by
the weight matrix. This suppresses the bias due to the truncation of diffraction
rings. This is of interest value for fluid mechanics measurements as it allows to
largely increase (from less than 1cm2 to a few cm2) the upper limit of the scale
of observable phenomena. Finally, let us notice two drawbacks: this approach is
limited (due to computational complexity) to simple particle models (i.e. parametric
models depending on few variables) and is more time consuming than the classical
approaches. The computational burden of our algorithm is greater than for most
classical approaches as it requires as many volumetric reconstructions (based on 2D-
FFT) as the number of detected particles [8]. The computation time of the 2D-FFT
depends on the hologram size; and for out-of-field particles detection, the size of the
hologram has to be strongly increased as can be seen in figure 5.

These results have been validated on both simulated and real data [7, 8]. Figure
5 shows the results of the processing of one experimental hologram (1024×1024, pixel
size of 6.7µm× 6.7µm, wavelength of 0.532µm) of water droplets (diameter of 90µm)
injected by a piezoelectric injector located at 250mm from the sensor (figure 3). We can
see in figure 5a, in the center, the camera sensor field which contains hologram data. It
should be noted that only four particles have projections located on the sensor, while
the whole image represents the studied field of view where 16 particles can be located.
This means that the surface of the effective field of view has been increased by a factor
of 16 compared to the sensor surface. The figure 5b displays a 3D reconstruction of 200
holograms. These results show that the algorithm is insensitive to the experimental
noise. A study of the accuracy for the location and size estimation of particles has
been realized on simulations (using parameters comparable to the experimental ones).
It shows that the accuracy has been greatly improved. The transverse location (x y)
has a standard deviation of 1/20 pixel (0.3µm) and does not depend on the particles’
location. The accuracy along the depth direction has a standard deviation of 1/7
pixel (0.9µm); that is much better than the optical resolution in the experimental
conditions. It becomes comparable to the transverse accuracy. The estimation of the
diameter has also been improved (standard deviation of 0.4µm).

4. Benefits of the “inverse problem” approach

The parameters of the experimental setups have to fulfill different influences on 3D
reconstruction depending on the method used for hologram analysis. In this part,
we compare the influence of recording parameters in the classical approach with their
influence in the “inverse problem” approach. We discuss the classical limitation on the
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Figure 5. Illustration of droplets detection located out-of-field: (a)
superimposition of one hologram of the series and the model of this hologram
calculated from 16 detected particles (including 12 out-of-field); (b) represents
the 3D jet flow obtained by detecting all particles located in a field corresponding
to more than 16 times the hologram surface. The surface corresponding of the
sensor is represented in gray. The droplets detection is realized without significant
bias even for particles located far away from the sensor.

recording distance imposed by Nyquist criterion and show that the low-pass filtering
effect due to the fill-factor is no longer negligible in our approach. Finally, we analyze
the signal to noise ratio of a particle in the hologram and investigate the improvement
brought by the cleaning procedure.

4.1. Ghost images

The diffraction-pattern is composed of two main terms: the frequency modulation
(included in sin function) and the amplitude modulation (included in J1c function).
This amplitude modulation of the signal decreases the energy of ghost images which
could be mistaken for small particles in a classical approach (section 2.2).

In the “inverse problem” framework, ghost images are less of a problem for two
reasons. First, we search the best fit between the hologram pattern and a model of
the diffraction pattern which is sampled in the same way and thus contains the same
aliasing artifacts (ghost images). Secondly, at the cleaning step, the whole pattern
(ghost images) is subtracted from the hologram. Furthermore, the order in which the
particles are removed corresponds to a decrease of the particle energy, and a ghost
image should thus not be detected before its real image is detected.

However, to get it work, the envelope of the J1c has to decrease the energy of ghost
images in a significant way. The decrease depends on the J1c

(
2π r ρ

λz

)
function (where

ρ =
√

x2 + y2). The center of the first ghost image is located where the frequency (of
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(a) (b)

Figure 6. (a) Simulation of a hologram of one “out-of-field” particle. The
rectangle corresponds to the numerical sensor limits. (b) Zoom on the sensor area
(the visualization dynamics has been enhanced).

the sinc function) is equal to twice the Nyquist frequency: ρ
λz

= 1
∆ξ

. The decrease

of the ghost image in it center is thus: J1c

(
2π r
∆ξ

)

. For a decrease greater than 20%,

the following inequality has to be satisfied: 2r
∆ξ

> 0.42. In most experimental cases,
the particle diameter is larger than the width of the pixel sensitive area, then the
signal amplitude of ghost images is much lower than that of the real image. The ghost
images cannot thus be mistaken for real particles.

In the experimental results summarized in 3.4 (see figure 5) where 2r
∆ξ

≃ 13, 1560

particles patterns (out of 3000 detected particles) do not fulfill the Nyquist criterion.
An illustration of this phenomenon is given in figure 6. Figure 6a shows the hologram
simulation of one out-of-field particle. The rectangle corresponds to the numerical
sensor limits. A magnified image of the sensor part is presented in figure 6b with
a gray level dynamic chosen so as to enhance the modulation of the signal. Moiré
patterns can be seen in figure 6b.

In conclusion, the aliasing phenomenon may occur. As the sampling used for
the model is the same as that of the experimental hologram, Moiré patterns can be
considered as part of the signal. They are removed at the cleaning step. Note that the
pixel integration must then be taken into account as shown in the next paragraph.
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4.2. Pixel integration

An important parameter for digital sensors is the fill-factor that characterizes the
effect of pixel integration. It is defined by the ratio of the sensitive surface to the
pixel surface. Depending on the technology used (CCD or CMOS with or without
micro-lenses) the fill factor may vary in large proportions. Each pixel of the sensor
acts as a low-pass filter on the signal. This filter depends on the pixel size and on
the fill factor. Under the hypothesis of small particles and square pixels, the recorded
hologram expression given in equation (5) becomes [38]:

gk(x, y) =
π r2

k

λz
J1c

(

2π rk

√

x2 + y2

λzk

)

sin

(
π(x2 + y2)

λzk

)

sinc

(
π κ∆ξ x

λzk

)

. sinc

(
π κ∆ξ y

λzk

) (11)

where sinc is represented by sinc (x) = sin(x)/x and where κ corresponds to the
ratio of the width of the sensitive surface to the width of the total pixel surface (κ2

corresponds to the fill factor) and ∆ξ represents the pixel size.
As shown in equation (11), the signal is windowed by a sinc function. Its first

zero is located at a distance d = λzk

κ∆ξ
from the center of the diffraction pattern. For

a particle located in the classical field (restricted by the sensor size), the first zero
is always located beyond the sensor borders when the Nyquist criterion is fulfilled
(z > zmin). For a particle located on the optical axis for z = zmin and κ = 1, the
magnitude of the signal is reduced by (1 − sinc(π/2) ≃ 36%) by the sinc function on
the sensor borders. The pixel integration is thus ignored in classical approaches [38].

In our approach the field of view size is no longer restricted to the size of the
sensor. Besides, as we saw in section 4.1, the Nyquist criterion is no longer a constraint.
These two associated facts make the pixel integration no longer negligible. The sinc
function due to pixel integration has two effects: (1) it produces a decrease in the signal
amplitude in the recorded high frequencies (this reduces the energy of the recorded
particles especially for out-of-field ones) and (2) it changes the shape of the particle
model. If this effect is not taken into account, the modeling errors can result in false
detections. These two effects are discussed in the following paragraphs.

Figure 7a shows the sinc function (with parameters: z = zmin and κ = 0.5)
for a particle located on the border of a field of view two times larger (2L) than
the hologram size (L). The bright part represents the low energy attenuation
(1 − sinc(π/4) ≃ 10%) and conversely the dark part corresponds to high energy
attenuation (1 − sinc(3π/4) ≃ 70%). Figure 7b represents a line profile along the
dash-dotted line in figure 7a. The vertical lines define the sensor boundaries. That
shows that contrary to in-field particles, the reduction due to pixel integration cannot
be ignored for out-of-field particles.

The distortion due to the sinc function is comparable to that of the J1c function.
More precisely, the fill factor effect becomes comparable when the first zero of the sinc
function function is close to the first zero of the J1c function. Hence, we can establish
the following relationship between the fill factor and the diameter of the particles when
both have a similar influence. The first zero (xJ1c

) of the J1c function is:

xJ1c
=

1.22λ z

2r
, (12)
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Figure 7. (a) Sinc function generated by the pixel integration, simulated for
z = zmin (respect with the Nyquist criterion) and κ = 0.5. It shows the shape
deformation and decrease of the signal amplitude for a particle located out-of-field
(on the borders of a field of view two times larger the sensor). Low reduction is
represented in white and high reduction in black. (b) Line profile along the dotted
line on figure (a). Sensor borders are represented by vertical lines.

whereas the first zero (xsinc) of the sinc function is:

xsinc =
λ z

κ∆ξ
. (13)

And because we consider xJ1c
= xsinc, combining (12) and (13) leads to:

2r = 1.22κ∆ξ. (14)

If the particle diameter is lower than or close to the width of the pixel sensitive
area, the pixel integration effect is as important as the J1c function effect. Thus, if

2r ≫ 1.22κ∆ξ the effect of the integration over the pixel has little influence

compared to the J1c function effect. Otherwise the pixel integration effect

is no longer negligible and can thus induce an error on the measurement of

the particle diameter. Indeed, during the detection step, the diameter is estimated
thanks to the amplitude modulation (due to the diffraction envelope of the particle
(J1c)). The pixel integration which modifies this amplitude modulation can thus bias
the measurement of the particle diameter.

We can reduce the effect of the pixel integration by taking it into account in our
model. That will take the shape distortion into account but the loss of information
due to the reduction of the signal dynamics and the quantization problem will remain.

4.3. Signal to noise ratio in the hologram

Noise is a major problem in holography. It has been studied by some authors [26, 37].
A hologram is exploitable if the recorded signal of a given particle is high enough with
respect to the noise. In this section, we propose to study the signal to noise ratio
(SNR) in the hologram with and without cleaning. For that purpose we choose to
work in the hologram data. Thus we define a SNR measuring the relative influence
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of the signal of a given particle in the hologram with respect to the surrounding noise
on this hologram. Other definitions of the SNR can be proposed (for example in the
reconstruction plane) in order to take into account the particle detection process but
we prefer in this study to use a simpler approach independent of the detection and/or
reconstruction used. In this approach, we consider that the noise can be broken down
into two components: (1) the sum of the signal of each particle and (2) the background
noise defined in section 3.1.

4.3.1. Definition of the signal to noise ratio in the hologram Without a cleaning step,
the signal amplitude of particles decreases according to the distance from the particle
to the hologram center, while the noise level remains constant. The SNR therefore
decreases according to the transverse distance. In our approach, the cleaning effect on
the noise has to be taken into account. Actually, the noise level decreases as particles
are removed. Nevertheless the signal amplitude of particles also decreases according to
the distance from the particle to the hologram center, especially for particles located
close to the border or out-of-field.

To quantitatively study this SNR level in hologram analysis, we define it as the
ratio of the variance of the ℓ-th particle signal to the variance of the two noise terms.
Let us write the hologram dℓ (10) as a sum of the diffraction pattern of the ℓ-th particle
Csℓ, the other diffraction patterns Cpℓ, and the background noise Cbg:

dℓ[i, j] = I0 − αℓ gℓ[i, j]
︸ ︷︷ ︸

Csℓ(i,j)

−

(
n∑

k=ℓ+1

αk gk[i, j]

)

︸ ︷︷ ︸

Cpℓ(i,j)

+ Ibg[i, j] + aℓ
︸ ︷︷ ︸

Cbg(i,j)

(15)

Note that the noise term Cpℓ has the same spectrum as the signal Csℓ and is therefore
not reduced in our match-filter detection approach. As the two noise term Cpℓ and
Cbg can be considered as independent, the signal to noise ratio can be defined as:

SNRℓ =
Var[Csℓ]

Var[Cpℓ] + Var[Cbg]
(16)

where Var[Csℓ] =
1

N

∑

i,j

(Csℓ(i, j) − E(Csℓ))
2
,

with E(Csℓ) =
1

N

∑

i,j

Csℓ(i, j),

where N is the number of pixels.

4.3.2. Study of the SNR in the hologram as a function of the iteration step In
order to study the signal to noise ratio evolution in our algorithm, we simulated
holograms and the iterative cleaning. To simplify the study, we consider particles with
constant radius r0. Particles are randomly distributed under a uniform probability
law throughout a volume centered on the optical axis and located at the distance
z0. The hologram simulations (example in figure 8a) are realized with a sensor of
1024×1024 (pixels size of 6.7×6.7µm) placed at about z0 = 250mm from the studied
volume. Figure 8b illustrates the transverse distribution of 2000 particles (diameter
of 100µm) throughout the volume of 27.44× 27.44× 50mm: 125 particles are located
on the sensor (dark gray rectangle), 500 out-of-field particles are located on the white
rectangle (4 times the sensor surface), and 1500 particles are located in the light gray
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(a) (b)

Figure 8. (a) Example of a hologram simulation (1024× 1024) made with 2000
particles (diameter of 100µm) spread throughout a volume of 27.44×27.44×50mm

located at z0 = 250mm. The pixel size is 6.7 × 6.7µm and the laser wavelength
is 0.532µm. The hologram is coded on 8 bits depth. (b) Illustration of the
distribution of particles throughout the volume: 125 particles are located on the
sensor (dark gray area of width L), 500 out-of-field particles are located on the
white area (4 times the sensor area), and 1500 particles are located around the
white area (in the light gray part) which corresponds to the background noise.

part. These latter particles are not detected by our algorithm (since they are outside
of the explored field of view). They therefore contribute to the noise. The light gray
rectangle corresponds to the projected surface of the volume (16 times the sensor
surface). The laser wavelength is 0.532µm. Ten holograms (one of them shown in
figure 8a) (8 bits depth) have been processed.

During the iterative process, particles are detected in decreasing order of energy.
Let us notice that, in the case of mono-disperse particles, the ones of higher energy
are located on the optical axis and that their energy decreases with the distance to
the axis. We measure at iteration ℓ, the signal to noise ratio of the ℓ-th particle
and represent (figure 9) its evolution as a function of the distance from the detected
particle to the hologram border (negative for in-field particles, positive for out-of-field
particles, the transition is represented by the vertical line). Figure 9(a,c) presents a
comparison between signal to noise ratio variation in an approach without cleaning
(plotted with ×) and in an iterative cleaning approach (plotted with +). Figure 9a
shows the results obtained in one hologram while figure 9c displays a mean of the
results obtained in 10 holograms. Let us notice that the dispersion observed in figure
9a is due to the sensor geometry (square); the diffraction patterns corresponding to
a given distance from the border are not the same when the particle is located in a
corner or on one edge. According to this figure 9a, it appears that as the distance
to the nearest border increases (that means also the number of remaining particles
decreases), the SNR increases as long as particles are located on the sensor. For out-
of-field particles, the SNR sharply decreases. This decrease corresponds to the normal
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decrease that we can notice on the curve of the SNR without removing particles.
For out-of-field particles both curves have approximately the same evolution but are
shifted up by an offset.

Figure 9b shows the ratio of the SNR of the approach using the cleaning compared
to the SNR of the approach without cleaning (figure 9d shows a mean ratio computed
over ten holograms). Let us notice that the SNR with the iterative cleaning is greatly
improved compared to the SNR of the method without particle removal whatever
the distance from the border (figure 9d). The SNR of out-of-field particles is greatly
improved and the detection of these particles becomes easier. As a consequence, it is
possible to increase the size of the field of view.

To conclude, we observe that the SNR in the hologram of the iterative cleaning
method for out-of-field particles can be equivalent to the SNR of the approach without
cleaning for particles located on the sensor. That allows an increase of the size of
the allowed region of interest. And for out-of-field particles the signal to noise ratio
decreases but is always largely higher in the conditions considered in the numerical
simulations than the SNR without removing particles (see figure 9d). The influence
of the background noise is presented in the following subsection.

4.3.3. Study of the SNR in the hologram as a function of noise level In this section,
we study the effect of the cleaning as a function of noise level. The noise is generated
by the 1500 particles located around the studied volume (see figure 8b) and by an
additional white Gaussian noise with variance increasing from 0% to 25% of the
hologram amplitude. This white noise corresponds to a background noise higher than
the noise of the 1500 particles in the hologram. Simulations (figure 10a) are realized in
a hologram generated with the same parameters of the example in figure 8a to which
we add a Gaussian noise. The depth dynamic is adjusted as a function of the noise
variance. Figure 10a shows the curves of the evolution of the SNR with respect to the
iteration step in the case of the cleaning approach and for different levels of background
noise. The cleaning has less effect when the background noise level is high (the curve
with cleaning is almost like the curve without cleaning). In figure 10b, the SNR ratio
is represented for each level of noise (ordinate axis in logarithmic scale). The benefit
of the cleaning, though always present, decreases with growing noise levels. The
increase of this ratio is mainly limited by the background noise. The ratio converges
asymptotically to the value (V ar[Cp0] + V ar[Cbg])/V ar[Cbg]. Cp0 corresponds to the
noise generated by all the particles. The convergence occurs when the variance of the
particles becomes negligible compared to the variance of the background noise (usually
when particles are far away from the optical axis - out of the sensor - and their energy
is faint).

To conclude, the effect of the cleaning is limited by the background noise contained
in the image. In the case of holograms with a high concentration of particles (with
respect to the Royer criterion) and low background noise, the cleaning is efficient
and provides a better measurement of particle parameters. Conversely the cleaning
has less effect when the background noise level is high compared to the signal of the
particles.

5. Conclusion

The “inverse problem” approach to particle hologram analysis introduced in [7, 8]
improves detection accuracy, allows out-of-field particle detections and changes the
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Figure 9. (a) Evolution of the SNR in the hologram during the detection of the
particle. The curve plotted with × shows the evolution for an approach without
particle cleaning. The curve plotted with + shows the evolution of the SNR for
an approach with an iterative particle cleaning (described in section 3.3). (c)
represents the mean curve of (a) over 10 simulations. (b) Ratio of the SNR of
the iterative cleaning approach to the SNR without cleaning. (d) represents the
mean curve of (b) over 10 simulations. The vertical dash-dotted line on all figures
represents the transition between in-field and out-of-field particles.

(a) (b)

Figure 10. (a) Representation of the evolution of the SNR for the cleaning
approach with different background noise level. (b) Ratio of the SNR of the
iterative cleaning approach to the SNR without cleaning for the different curves
plotted on (a). The vertical axis of this last curve is in logarithmic scale.
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range of acceptable parameter settings. It modifies the classical constraints of digital
holography of particles and suppresses spurious artifacts of the hologram diffraction
approaches.

In this article, we show how the strongest limitations of the classical methods
(aliasing which yields a minimal detection distance and edge effects which reduce
the usable field of view) are removed by the “inverse problem” approach. Some
experimental parameters as the fill factor have a negligible effect in the classical
processing must however be taken into account.

Image processing is very often limited by the camera specifications and it is
important to take into account two recording effects: the sampling phenomenon
and the pixel integration. On the one hand, in the classical approach, the most
limiting parameter is the signal sampling (Nyquist). The aliasing induced by signal
under-sampling generates an aliasing phenomenon. In our case (see section 4.1), this
phenomenon is less a constraint as it is possible to take it into account in our model
(we can work over the Nyquist criterion). On the other hand, in the classical approach,
the pixel integration has a small influence on the recording as the Nyquist criterion is
a stronger limit. In our case, the pixel integration becomes important especially for
out-of-field particles (see section 4.2). The low-pass filter due to pixel integration has
two consequences: the distortion of the signal which can produce a loss of accuracy
on the estimation of the particle sizes and the reduction of the signal magnitude on
the sensor which reduces the SNR. Let us emphasize that the distortion phenomenon
can be taken into account in the model in an “inverse problem” approach.

Finally, a study of the cleaning effect on the SNR (in the hologram) was carried
out. The iterative cleaning improves the SNR of particles of faint energy (especially
the ones that are located out-of-field). The background noise is a source of SNR
degradation and can limit the capability to detect faint particles (i.e. small and/or
out-of-field particles) and therefore can restrain the studied field. The detailed analysis
of the detection limits achievable with the inverse problem approach is to be considered
in further work.

References

[1] Marquet P, Rappaz B, Magistretti P J, Cuche E, Emery Y, Colomb T, and Depeursinge
C. Digital holographic microscopy: a noninvasive contrast imaging technique allowing
quantitative visualization of living cells with subwavelength axial accuracy. Optics letters,
30(5):468–470, 2005.
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three-dimensional-two-components particle tracking velocimetry. Measurement Science &
Technology, 15(4):699–705, 2004.

[16] Pan G and Meng H. Digital holography of particle fields: reconstruction by use of complex
amplitude. Applied Optics, 42:827–833, 2003.

[17] Liebling M and Unser M. Autofocus for digital fresnel holograms by use of a fresnelet-sparsity
criterion. Journal of the Optical Society of America A, 21(12):2424–2430, 2004.

[18] Dubois F, Schockaert C, Callens N, and Yourassowsky C. Focus plane detection criteria in digital
holography microscopy by amplitude analysis. Optics Express, 14(13):5895–5908, 2006.

[19] Fournier C, Ducottet C, and Fournel T. Digital in-line holography: influence of the
reconstruction function on the axial profile of a reconstructed particle image. Measurement
Science & Technology, 15(4):686–693, 2004.

[20] Jacquot M and Sandoz P. Sampling of 2d images : prevention free from spectrum overlapping
and ghost detection. Optical Engineering, 43(1):214–223, 2004.

[21] Onural L. Sampling of the diffraction field. Applied Optics, 39(32):5929–5935, 2000.
[22] Coupland J M. Holographic particle image velocimetry: signal recovery from under-sampled

ccd data. Measurement Science & Technology, 15:711–717, 2004.
[23] Stern A and Javidi B. Analysis of pratical sampling and reconstruction from fresnel fields.

Optical Engineering, 43(1):239–250, 2004.
[24] Goodman J W. Introduction to Fourier Optics. Mc Graw-Hill, 1996.
[25] Born M and Wolf E. Principles of Optics. Cambridge University Press, 7ème edition, 1999.
[26] Royer H. An application of high-speed microholography: the metrology of fogs. Nouvelle Revue

d’Optique, 5:87–93, 1974.
[27] Murata S and Hidaka N. Evaluation of the accuracy of the particle displacement measurement

based on digital holography. In The fifth JSME-KSME Fluids Engineering Conference, pages
1–5, Nagoya, Japan, 2002.
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