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Abstract 

Because a lack of mechanical information favors the development of adipocytes at the expense of 

osteoblasts, we hypothesized that the PPARγ-dependent balance between osteoblasts and 

adipocytes is affected by mechanical stimuli. We tested the robustness of this hypothesis in in vivo 

rodent osteogenic exercise, in vitro cyclic loading of cancellous haversian bone samples and cyclic 

stretching of primary stromal and C3H10T1/2 cells. We found that running rats exhibit a decreased 

marrow fat volume associated with an increased bone formation, presumably through recruitment 

of osteoprogenitors. In the tissue culture model, cyclic loading induced higher Runx2 and lower 

PPARγ2 protein levels. Given the pro-adipocytic and anti-osteoblastic activities of PPARγ, we studied 

the effects of cyclic stretching in C3H10T1/2 cells, treated either with the PPARγ activator, 

Rosiglitazone, or with GW9662, a potent antagonist of PPARγ. We found, through both 

cytochemistry and analysis of lineage marker expression, that under Roziglitazone cyclic stretch 

partially overcomes the induction of adipogenesis and is still able to favor osteoblast differentiation. 

Conversely, cyclic stretch has additive effects with GW9662 in inducing osteoblastogenesis. In 

conclusion, we provide evidence that mechanical stimuli are potential PPARγ modulators 

counteracting adipocyte differentiation and inhibition of osteoblastogenesis.  
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Introduction  

The differentiation of multipotent stem-cells of mesodermal origin results in the formation of 

adipocytes, chondrocytes, osteoblasts and myoblasts (1-3). A shift in differentiation and survival 

rates from osteoblastic to adipocytic lineage could lead to an altered ratio of fat to bone cells 

that may, eventually, alter bone mass (4). In humans osteoporosis and age-related osteopenia 

were shown to be associated with an increase in marrow fat tissue (5, 6). In some of these 

studies osteoblast numbers correlated negatively with the number of adipocytes (5, 7, 8), 

suggesting that adipocytes are generated at the expense of osteoblasts. This hypothesis is 

supported by the isolation from the bone marrow of single cell clones that can differentiate in 

vitro into either lineage (9).  

Essential to cellular commitment to a differentiation lineage is the activation of defined 

transcription factors (10), (11), (12). Osteoblastic differentiation is driven by runx2, followed by 

osterix, and then characterized by the expression of alkaline phosphatase, osteocalcin, and 

eventually by the mineralization of the extracellular matrix. Differentiation of adipocytes is 

initiated through C/EBPα and C/EBPβ that activate expression of peroxysome proliferator-

activated receptor γ (PPARγ) a member of the nuclear hormone receptor family (13), (14). PPARγ 

regulates adipocyte-specific gene expression and is critical for the formation of mature lipid-

filled adipose cells from pluripotent stem cells (15); it has also a central role in other processes 

such as, for example, inflammation and macrophage formation (16), (17). A recent study has 

demonstrated that use of the PPARγ ligands, thiazolidinediones (TZD) induces changes in bone 

mineral density (BMD) in elderly patients with type 2 diabetes (18), confirming the effect of 

TZDs (19) reported from animal models. 

 

Among the various osteopenic animal models in which an inverse relationship was previously 

reported between the amount of bone marrow fat tissue and trabecular bone density are 

ovariectomy (20), glucocorticoid treatment (21) and also immobilization (7). Focussing on the 
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latter case, we hypothesized that if lack of mechanical stimuli favors the development of 

adipocytes at the expense of osteoblasts, the opposite might happen when external mechanical 

stimuli are applied. We first studied whether an osteogenic physical exercise is able to reduce 

bone marrow adiposity in rats. We then tested our hypothesis on lamellar bone and away from 

the potential confounding influence of systemic factors, by culturing bovine bovine sternum 

samples in a recently developed bioreactor, the ZetOSTM, which allows ex vivo long term 

compression-loading and mechanical testing of perfused samples (22). It has been recently 

shown that manipulating cell tension regulates the commitment of human mesenchymal stem 

cells to adipocyte or osteoblast fate (23); we thus applied mechanical stretch known to alter cell 

tension to stromal cells extracted from the marrow of bovine bone cores and we compared their 

responses to the well characterized pluripotent mesenchymal stem cell line C3H10T1/2.  

We show that PPARγ2 activity is modulated by mechanical conditions, strongly enough to be 

still responsive to mechanical stimuli even when the cells are treated by with agonist or 

antagonist compounds. We also demonstrate that osteo/adipo-genesis control by mechanical 

stimuli is not restricted to a particular cell line, a unique mechanical regimen or specific 

experimental conditions, since our results comprise cells of bovine and murine origin, primary 

and immortalized, in vitro and in vivo.  
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Materials and Methods 

Cell culture products 

Insulin, all trans retinoic acid (tRA), DAPI, oil red O, L-ascorbic acid 2-phosphate, trypsin-

EDTA reagent, clostridium histolyticum neutral collagenase, p-nitrophenyl phosphate (PNP-p) 

were purchased from Sigma Aldrich (Lyon, France). DMEM-Ham's F-12 (DMEM/F12, 1:1, 

vol/vol), alpha MEM, DMEM was purchased from Eurobio (Courtaboeuf, France). Rosiglitazone 

and GW9662 were purchased from Interchim (Montluçon, France). Qiashedder and RNeasy mini 

kits were purchased from Qiagen (Courtaboeuf, France). First-strand cDNA synthesis kit for RT-

PCR (AMV), Light cycler-FastStart DNA Master, SYBR Green I, and Light Cycler Instrument were 

purchased from Roche Diagnostics (Meylan, France). Protein assay kit (bicinchoninic acid, BCA) 

was obtained from Interchim (Montluçon, France). 

Mesenchymal precursor cell isolation 

Bovine mesenchymal stem cells (bMSC) were isolated from sternum of young males (6-8 

months) and collected in sterile conditions at local slaughterhouse immediately after sacrifice. 

We received permission from our local ethic committee. Briefly, after removing soft tissues, 

sternums were reduced to 5-mm-thick fragments. The marrow was then flushed and submitted 

to a 15 min enzymatic digestion with 1 mg/ml clostridium histolyticum neutral collagenase at 37 

°C in alpha MEM medium. Collagenase was neutralized with medium supplemented with 15% 

fetal calf serum (FCS). After neutralization with 15% FCS, the marrow was resuspended in 

Eagle's medium supplemented with 10% FCS (Sigma Aldrich, Lyon, France), 2 mM L-Glutamine, 

and 1% antibiotics (50 U/ml penicillin and 50 µg/ml streptomycin) and plated at 5000 cells/cm². 

The medium was changed after the first 24 h to remove non-adherent cells. 
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Cell culture 

Cells were grown in tissue culture T75-flask (Elvetec, France) in 5% CO2 humidified 

atmosphere at 37 °C. The mouse pluripotent mesenchymal stem cell line C3H10T1/2 (clone-8, 

American Type Culture Collection, LGC Promochem, Molsheim, France) was cultured in α-

minimum Eagle's medium, whereas bovine mesenchymal stem cells (bMSC) were cultured in 

DMEM, supplemented with 10% FCS (PromoCell GMBH, Heidelberg, Germany), L-Glutamine, 

and antibiotics as above. After reaching a subconfluent state, cells were trypsinized with 1x 

trypsin-EDTA and plated onto flexible type I collagen-coated, silicon-bottom, six-well culture 

plates (Bioflex; Flexcell Corp., McKeesport, PA), at 2500 cell/cm² for C3H10T1/2 and 5000 

cell/cm² for BMSC and the medium was changed every other day. 

Mechanical stretching 

Starting 72 hours after seeding (referred to as Day 0) cells were subjected to daily 

mechanical deformation during 2 weeks. Mechanical deformation was induced with a Flexcell 

Strain Unit Fx-3000 (Flexcell Corp., Hillsborough, NC, US) (24), which consists of a vacuum 

manifold regulated by solenoid valves that are controlled by a computer timer program. Each 

plate is inserted over six buttons in the Bioflex loading station. Application, through an air pump, 

of a negative pressure of 80 kilopascals stretches horizontally the bottom of the culture plate 

over the plastic button. Thus, 85% of the surface of the flexible wells is submitted to a known 

percentage of uniform elongation. The membranes are then released to their original 

conformation (24). The experimental regimen used in this study delivered 4000 µε elongation at 

1Hz frequency (triangular signal) during 300 cycles per day. Stretched cells remained adherent, 

and the deformation of the membrane was directly transmitted to the cells. Unstretched cells 

grown on Bioflex plates were used as controls. Starting from Day 0 media were supplemented 

with 10% FCS (PromoCell GMBH, Heidelberg, Germany), 50 µg/ml ascorbic acid, 10-6M β-

glycerophosphate, 10-8 M all trans-retinoic acid, 10-8 M Dexametasone (Dex), 1% Insulin, 5.10-5 
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M 3-isobutyl-1-methylxanthine (IBMX) to create conditions inducing both osteoblastic and 

adipogenic cells. The differentiation into various cell lineages is regulated by factors such as 

cytokines and growth hormones, cAMP-elevating agents and ligands for members of the 

steroid/thyroid receptor-gene family of transcription factors (25), (26). Among these factors, all 

tRA has been reported to increase the expression of osteoblastic-related cell markers such as 

alkaline phosphatase (27), (28). 

PPARγ induction and inhibition 

To evaluate the involvement of PPARγ in the response to mechanical stretching, cells were 

treated during the culture period with 1µM (EC50; Kd 43 Nm) of a powerful agonist of PPARγ, 

BRL49653 or Rosiglitazone or DMSO as a vehicle. PPARγ activation was inhibited with 1 µM 

(EC50) of an antagonist of PPARγ, GW9662. The compounds were added to the culture medium 

at Day 0, and renewed every two days. 

Histochemical staining  

After 2% formaldehyde and rinsing, the activity of the plasma membrane-associated alkaline 

phosphatase was detected using an Alkaline Phosphatase Leukocyte Staining Kit (Sigma Aldrich, 

Lyon, France), according to the manufacturer’s protocol. The cultures were then rinsed three 

times for 5 min in deionized water and cytoplasmic triglyceride droplets were stained with oil-

red O (29). Nuclei were stained with DAPI. The percent of alkaline phosphatase and oil-Red O-

positive cells was determined by counting cells in 30 contiguous fields/well after random starts. 

Protein extraction 

Total proteins were extracted in 2 mL lysis buffer/well containing 10 mL/L Nonidet 40, 1.8 g/L 

Iodoacetamide, 3.5 mL/L PIC (proteases inhibition cocktail, Sigma Aldrich, Lyon, France) and 2 

µL/L β-mercaptoethanol. After centrifugation (5 min, 5000 rpm, 4°C), supernatants were stored 

at -20°C. Cytoplasmic and nuclear protein fractions were separated using a nuclear extraction 
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kit (Active Motif, Rixensart, Belgium). Briefly, cells were scrapped-collected in 3 ml ice-cold PBS-

Phosphatase Inhibitors cocktail, the material was kept at 4°C thereafter. The cell suspension 

was spun for 5 minutes at 500 rpm. The pellet was resuspended in 500 µl Hypotonic Buffer and 

incubated for 15 minutes on ice. Cell membranes were lysed with 25 µl detergent. The 

cytoplasmic protein fraction was collected after a 30 seconds spin at 14,000g. Nuclear pellets 

were resuspended in 50 µl lysis buffer then incubated for 30 minutes on ice on a rocking 

platform at 150 rpm. The suspension was then spun for 10 minutes at 14,000g and the nuclear 

fraction (supernatant) was collected in microcentrifuge tube. Aliquots were store at –80ºC. 

Protein concentration was measured using the bicinchoninic acid (BCA) protein assay kit (Pierce, 

Perbio Science France SAS, Brebières, France).  

Alkaline phosphatase assay 

Alkaline phosphatase activity (ALP) was measured by assessing the hydrolysis of p-

nitrophenyl phosphate (PNP-p) in inorganic phosphate (Pi) at 37°C. Briefly, the assay mixture 

consisted of 100-µl cell homogenate and 900-µl reaction mixture (2 mM PNP-p, 2 mM MgCl2, 2-

amino-2-Methyl-1-Propanol 95%, pH 10.5). The reaction was initiated by the addition of the cell 

extract and product amounts were read after 50 min at 412 nm on a spectrophotometer. ALP 

was expressed as nmol Pi/mg protein/min. 

Sandwich ELISA  

Sandwich ELISAS were designed in our laboratory to quantify PPARγ2, and Runx2 in protein 

extracts. A capture antibody [runx2; Rabbit anti-human (CBFA11-A, 4ADI, TEBU) and PPARγ; 

Rabbit IgG anti-mouse (PA1-824, ABR, TEBU)] is first coated on each well in 0.1M Bicarbonate 

buffer, pH 9.2, overnight at 4°C. The wells are then blocked for 60 min at room temperature in 

100 µl of 100 mM phosphate buffer, pH 7.2, 1% bovine serum albumin (BSA) and 0.5% Tween-

20). After 3 washes in wash buffer (100 mM phosphate buffer, 150 mM NaCl, 0.2% BSA and 
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0.05% Tween 20), samples or standards are added to the plates in 100 µl/well. Plates are then 

incubated at room temperature for one hour then overnight at 4°C. After wash, 100µl of the 

second antibody [runx 2; Goat anti-human (sc-12488, TEBU) and PPARγ; Goat anti-human (sc-

6284, TEBU)] are added to each well and incubated at room temperature for 4 hours. The plates 

are washed, and an ALP-labeled secondary antibody [Rabbit IgG anti goat (Zymed)] is added to 

each well and incubated at room temperature for 4 hours. After wash, fast pNP enzyme 

substrate (Sigma Aldrich, Lyon, France) is added to the wells and incubated for 30 minutes. 

Color intensities are measured at 412 nm with a spectrophotometer, using a blank reference. 

Antigen concentrations are determined from a calibration curve using serial dilution of an 

arbitrary sample as standards.  

PPARγ activity measurement 

DNA binding PPARγ activity was determined using the ELISA-based PPARγ activation 

TransAM™ kit (Active Motif, Rixensart, Belgium). PPARγ contained in nuclear extracts bind 

specifically to an oligonucleotide containing the Peroxisome Proliferator Response Element (PPRE 

5´-AACTAGGTCAAAGGTCA-3´) and are detected with an anti PPARγ antibody. A secondary 

antibody conjugated to horseradish peroxidase provides a sensitive colorimetric readout that is 

quantified by spectrophotometry at 405 nm.  

RNA extraction, RT and Real time PCR 

RNA extraction was performed on cells at various time points up to 14 days after the 

beginning of stimulation. Total RNA was isolated by guanidium isothiocyanate extraction using 

the RNeasy mini kit according to manufacturer's instruction. Briefly, the samples were disrupted 

in lysis buffer containing guanidium isothiocyanate and homogenized using Qiashedder. The 

samples were then applied to the RNeasy spin column and total RNAs bound to the membrane 

were eluted in water. Integrity of RNA was checked by electrophoresis, after ethidium bromide 
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staining. RNAs were reverse-transcribed into single-stranded cDNA using first strand cDNA 

synthesis kit for RT-PCR (AMV) from 2 µg total RNA in a 20 µl reaction mix containing 2 µl of 

10× reaction, 5 mM MgCl2, 20 mmol each of dNTP, 50 pmol of oligo-p(dT)15 primer, 50 U of 

RNase inhibitor, and 20 U of AMV reverse transcriptase. The reaction was incubated for 60 min 

at 42°C. The single strand cDNA was diluted 1:10 and 8µl were amplified with a LightCycler 

(Roche Diagnosticcs, Meylan, France) in 20µl PCR mixture containing 2µL of Light cycler-

FastStart DNA Master SYBR Green I, 3mM MgCl2, 0.5µM of 5’ and 3’ oligo-primers and water. A 

typical protocol included a denaturation step at 95°C for 10 min followed by 40 cycles with 95°C 

for 1 s, Tm°C annealing for A s, and Te°C extension for M s. The fluorescence product was 

detected at the end of the extension period after a 60s at 60°C. θm, A, Tm, D, M, X, E, primers 

and product length are summarized in Table 1. Quantified data were analyzed with the Light-

Cycler analysis software. Serial dilution of total RNA was performed from 16 ng to 0.25 ng, and 

used as standards. For realtime PCR assay, 2–4 ng of input RNA was used. Results were 

analyzed following the manufacturer's instructions: (a) checking the PCR products specificity 

and (b) calculating the variation in PCR products concentration between experimental groups, 

expressed as percentage of mean control values. 

Ex vivo studies 

Cancellous bovine bone was used because it presented similar architecture as human 

trabecular bone and have been successfully used as xenografts to repair bony defects (30). 

Cancellous bovine bone was isolated from sternum of young males (6-8 months), machined with 

high precision to cylindrical cores (10 mm diameter, 5 mm height) under sterile conditions, and 

inserted into the loading chambers of a ZetosTM bone perfusion system (22). Each core was 

maintained at 37°C and perfused with 5 ml DMEM Ham F12 (1:1), recirculating at a rate of 6 

ml/h. Half of the bone samples were subjected to 300 cycles daily mechanical compression at 

1Hz, 4000 µε amplitude (similar to FlexerCell protocol), the other half were unloaded controls. 
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Five loaded and five unloaded bones were collected at day 7, 14 and 21 and the protein fraction 

was collected (see protein extraction section). 

In vivo study 

Nine-week young adult male Wistar rats were used for the experiment. Animals were kept in 

the laboratory for one week before the experiment to allow acclimatization to the diet and new 

environment. The light/dark cycle was 12 h with lights on from 7:00 to 19:00 hours. The rats 

were allowed free access to water and chow diet. The rats were trained on a treadmill at 60% of 

maximal O2 consumption, 5 days per week. VO2max was determined on the open-flow system 

apparatus as described in Bourrin et al. (31). Briefly, the rats ran on a treadmill placed in a 

closed Plexiglas chamber with a controlled and measured air flow. After acclimatization to the 

new environment, the rats were trained to obtain a maximal exercise. The O2 and CO2 expired 

were measured and recorded every 3 minutes while the animal is exercising. On the first day, 

rats of the exercise group ran 15 minutes at a speed of 20m/minute on the treadmill being 

maintained horizontal. Thereafter, the duration of each training session was progressively 

increased until the animals ran 1 hour and 30 minutes per day at a speed of 20m/minute after 1 

week of training. By the fifth week of training, rats ran 1 hour and 30 minutes per day at a 

speed of 30m/min on the level. At the end of the experiment, rats were injected with 

fluorochromes twice (6 days apart) in order to measure the dynamic parameters of bone 

formation. The bone effects of this training program were published elsewhere (31). Tibiae from 

20 male Wistar rats, ten sedentary control rats and ten running animals from the study of 

Bourrin et al. (31) were analyzed by histology. The proximal tibia metaphysis were fixed in 4% 

formaldehyde solution, dehydrated in acetone and embedded in methylmethacrylate. 

Longitudinal frontal slices were cut from the embedded bones with a Jung Model K microtome 

(Carl Zeiss, Heidelberg, Germany). Six non-serial sections, 8 µm thick, were used for modified 

Goldner staining. The relative volume of fat in the marrow cavity (Ad.V/MV) was measured on 

Goldner sections using a manual counter and a hundred-point grid according to (32). 
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Statistical analysis 

Statistical analysis was performed using the STATISTICA software (StatSoft Inc., Tulsa, OK, 

USA). One way or two ways analysis of variance (ANOVA) was performed on protein and RNA 

data. When F values for a given variable were found to be significant, the sequentially rejecting 

Bonferroni-Holm test (33) was subsequently performed using the Holm's adjusted p-values 

taken from the t table. Results were considered to be significantly different at p<0.05. The 

Mann-Whitney U test was used to compare histomorphometry data. 

 12



Results 

Osteogenic physical exercise reduces marrow fat in male rat tibia metaphysis in vivo 

Over 5 weeks of training, treadmill-running rats at 60% of their maximal O2 consumption 

display a 33% increase of bone formation rate (Figure 1A) and a 18% decrease of bone 

resorption (not shown, see (31)). The mineral apposition rate relative to osteoblastic activity is 

unaltered (not shown), suggesting that osteoblastic recruitment is stimulated (31). Mechanical 

stimulation also decreases adipocyte number (Ad.Ar/T.Ar) by 39% in running rats (Figure 1B), 

showing that the balance between osteoblasts and adipocytes is modulated by mechanical 

stimulation.  

 

Cyclic mechanical compression increases Runx2 and decreases PPARγ2 protein levels 

in bovine cancellous bone cores cultivated ex vivo. 

We evaluated the effects of a loading regimen on Runx2 and PPARγ expression in sternum 

bovine cylindrical bone cores submitted to cyclic compression. We used an accurate mechanical 

loading system combined with a trabecular bone culture-loading chamber, the ZetosTM (22), 

which provides the ability to study trabecular bone under controlled culture and loading 

conditions over 3 weeks. We have previously shown that daily cyclic compression of cancellous 

bone in this device results in increased bone formation rate, leading to thicker trabeculae and 

higher Young’s Modulus (David et al., submitted). Here we show that daily cyclic mechanical 

compression increases Runx2 protein levels after 7 and 14 days (Figure 2A). In contrast, 

PPARγ2 levels decrease after 21 days in loaded samples as compared to baseline values (Figure 

2B). In unloaded control samples PPARγ2 protein expression remain stable over the 21-day 

culture period. 
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In vitro, mechanical stretching of multipotent mesenchymal progenitors results in 

more osteoblasts and less adipocytes  

When grown under static conditions, in permissive osteoblastic/adipocytic media, 45% of 

C3H10T1/2 cells become alkaline phosphatase positive and 27 % oil red O positive after 14 days, 

while the figures are 34% and 10%, respectively, in bMSC grown for 21 days.  

In bMSC, at day 21, mechanical stretching increases the percent of alkaline phosphatase-

positive cells (38±2.8% vs. 33±3.1%, p<0.05) and decreases the proportion of oil-redO-

positive cells (6±3% vs. 10±2.5%, p<0.05). Furthermore, at day 14, alkaline phosphatase 

activity is greatly increased in stretched bMSC cells, as compared to unstretched controls 

(Figure 3A). Daily mechanical stretching induces a strong increase in Runx2 protein amounts at 

day 7 and of osteocalcin protein content at day 14 (Figure 3B). Consistent with these findings, 

runx2 and osx transcripts are greatly increased at day 7 and 14 in stretched cells, as well as 

osteocalcin mRNA levels at day 14 (Figure 3C). In contrast, PPARγ2 protein levels (Figure 3B, 

day 14) and mRNA (day 7), as well as  aP2 mRNA (day 14)  decrease in stretched cultures 

(Figure 3C). 

PPARγ is involved in the mechanical-regulated balance between osteoblasts and 

adipocytes  

It has been shown that PPARγ insufficiency stimulates osteoblastogenesis from bone marrow 

progenitors (36). We evaluated the role of PPARγ in mechanically stretched C3H10T1/2 cells. 

Unstretched and stretched cells were treated either with Rosiglitazone, a potent PPARγ agonist 

or with GW9662, a selective PPARγ antagonist. As expected, Rosiglitazone  greatly increased and 

GW9662 reduced the number of differentiated adipocytes (oil-red O-positive cells) after 14 days 

(Figure 4A). Fourteen days of mechanical stretching increase osteoblast differentiation as 

assessed by the percent of alkaline phosphatase-positive cells (Figure 4B). Conversely, 

adipogenic differentiation is decreased in stretched cultures (Figure 4C). Interestingly, in 
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GW9662 treated cells, stretching increases the number of alkaline phosphatase-positive cells 

(Figure 4B), and is still able to decrease adipocyte numbers under rosiglitazone treatment 

(Figure 4C). This is reflected in marker expression. Mechanical stretch increases gene 

expression of Runx2 at day 3 (not shown), 7 and 14 (Figure 5A). Rosiglitazone and GW9662 

treatment decrease the expression of Runx2 markers in unstretched conditions. GW9662 at 

days 7 and 14 and rosiglitazone at day 7 do not impair stretch–induced Runx2 stimulation 

(Figure 5A). Rosiglitazone treatment increases gene expression of adipogenic markers such as 

ADD1/Srebp1 at day 7 (not shown), PPARγ2 at days 7 and 14 (Figure 5B) and aP2 at day 14 

(not shown). As expected, expression of these genes is inhibited under GW9662 treatment. 

Interestingly, mechanical stretch is still able to reduce PPARγ2 mRNA expression (Figure 5B), 

as well as ADD1/Srebp1, aP2 and adipsin expression (not shown), in both agonist and 

antagonist conditions. This suggests that mechanical stretch acts as a PPARγ antagonist. 

Mechanical stretch as PPARγ antagonist  

In order to better characterise the effect of mechanical stretch as a modulator of PPARγ 

action, we studied the location and activity of Runx2 and of PPARγ proteins. Fourteen days of 

mechanical stretch increase nuclear Runx2 protein content in C3H10T1/2cultures (Figure 6A). 

Rosiglitazone and GW9662 treatment do do not affect nuclear Runx2, but Rosiglitazone 

abolishes the effect of stretching, while GW9662 induces a 75% increase in Runx2 content 

above stretched controls (Figure 6A). Mechanical stretch decreases nuclear PPARγ2 protein 

content (Figure 6B) and PPARγ DNA binding (Figure 6C) after 7days, demonstrating the 

inhibitory effect of mechanical stimulation on PPARγ transcriptional activity. As expected, 7 days 

of Rosiglitazone treatment alone increase PPARγ2 protein expression (Figure 6B) and PPARγ 

DNA binding activity (Figure 6C). Interestingly, in Rosiglitazone-treated cells stretching 

decreases nuclear PPARγ amounts (Figure 6B) and significantly reduces PPARγ DNA binding 

(Figure 6C). Seven days of GW9662 treatment decrease PPARγ2 protein content in the 

cytoplasm, (not shown) and the nucleus (Figures 6B) as well as PPARγ DNA binding activity 
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(Figure 6C). Stretching of GW9662-treated cells induces a further decrease of PPARγ2 nuclear 

protein content (Figure 6B) while no additive effect of stretch is detected on the residual level 

of PPARγ DNA binding (Figure 6C).  
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Discussion 

Five weeks of osteogenic treadmill running induce in rats a higher bone formation resulting 

from increased mineralising surfaces, i.e. active osteoblasts, and mirrored by lower adipocyte 

numbers in the bone marrow. Similarly, in a bone core explant dynamic culture system, we 

found that Runx2 protein levels are enhanced in compression-loaded samples, whereas PPARγ2 

protein levels are decreased. Those results obtained on different species, with lamellar (bovine) 

and non-lamellar (rodent) bone and for different mechanical activities emphasize the fact that 

local mechanical signals are strong actors of the osteoblast/adipocyte balance. Very few studies 

have investigated the effects of mechanical stretch on uncommitted cells, whereas it has been 

shown that mechanical loading triggers an increase in intramedullary pressure as well as 

streaming potentials (37), therefore providing mechanical signals for multipotent progenitor in 

vivo (38). We thus applied mechanical stimuli to bMSC and the pluripotent mesenchymal stem 

cell line C3H10T1/2 grown under media permissive for both osteoblast and adipocyte 

differentiation. Our results show that mechanical stretch results in more osteoblasts both in 

primary bMSC. Up-regulation of protein and mRNA levels of Runx2 was seen in both models and 

Runx2 was also elevated in strained bovine cores. Runx2 was already reported to be stimulated 

by mechanical stress in several models such as human spinal ligament cells (39) and human 

preosteoblasts (40). The regulation of this transcription factor, expressed by mesenchymal stem 

cells prior to cell differentiation, by preosteoblasts, terminally differentiated osteoblasts and 

prehypertrophic chondrocytes (41) occurs as early as the third day of stretching, suggesting 

that early stages of culture might be also responsive to mechanical stimuli. Alkaline phosphatase 

activity, an early marker of the osteoblastic lineage, osterix which is expressed later and 

osteocalcin, a marker of mature osteoblasts, were all stimulated by mechanical stretching in a 

time course that matches osteoblastic differentiation kinetics. Furthermore, osteoblast numbers 

were higher in stretched than in static conditions.  
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Cyclic stretch has been recently shown to reduce adipocyte differentiation in the mouse 

preadipocyte 3T3-L1 cell line (42), providing the first evidence for a direct effect of mechanical 

stimuli on fat cells. Interestingly, this effect was the result of the down regulation of PPARγ2 by 

stretched-induced ERK activation. We (43) and others (44) previously showed that mechanical 

strain exerts its stimulating effects on osteoblasts through ERK activation. Thus, the MAPK 

signaling pathway appears as one of the potential molecular links modulating the 

osteoblast/adipocyte balance. We showed both in vivo and in vitro that lipid droplets, the 

hallmark of the adipocyte phenotype are decreased by mechanical stretch. The control of 

adipogenesis involves the interaction of a number of intracellular signaling pathways and the 

activation of numerous transcription factors (45), (46), particularly PPARγ (26). Mounting 

evidence indicates an important role of PPARγ in skeletal metabolism. Specifically, PPARγ 

haploinsufficient mice exhibit increased bone mass associated with increased osteoblastogenesis 

and decreased adipogenesis. Our experiments, both in vitro and ex vivo, indicate that inhibition 

of PPARγ2 -the most potent adipogenic isoform in vitro (47)- is part of the mechanism whereby 

mechanical stretch inhibits adipogenesis and stimulates osteoblastogenesis. In bMSC cultures, 

mechanical stretch reduced PPARγ2 and protein levels. Mechanical stretch-induced PPARγ2 

inhibition was followed by decreased expression of aP2, a late marker of adipocyte 

differentiation. Similar effects were found in C3H10T1/2 cells. In addition we found that the 

reduction in PPARγ2 amounts in nuclear and cytoplasmic fractions was paralleled by a reduction 

in PPARγ nuclear activity. That the expression of ADD1/SREBP1 was decreased in stretched 

conditions provides a plausible explanation for PPARγ loss of activity, as  transactivation of the 

PPARγ promoter depends on transcription factors such as add1/serbp1  (48). 

Thiazolidinediones (TZDs), a novel class of antidiabetic agents that acts as insulin sensitizers 

in vivo, bind PPARγ with high affinity. PPARγ regulates target gene transcription as an 

heterodimer with the retinoid X receptor, and this heterodimeric complex has been shown to be 

activated synergistically by TZDs and RXR-specific ligands (49). TZDs enhance adipogenesis in 
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stromal cells (50). Activation of PPARγ by Rosiglitazone has been shown to stimulate 

adipogenesis and inhibits osteoblastogenesis in murine bone marrow-derived clonal cell line (51) 

and in mice, with an associated bone loss (52), (19), an action that we confirm in the murine 

C3H10T1/2 cell line. Mechanical stretch applied to Rosiglitazone-treated cultures was able to 

counteract the increase of PPARγ expression and activity. Moreover, in Rosiglitazone-treated 

cells mechanical stretch was still efficient in promoting osteoblastogenesis. On the other hand, 

combining GW9662 treatment and mechanical stretching had additive effects on osteoblast 

numbers and Runx2 expression. These results emphasize the power of mechanical stretch in 

promoting osteoblastogenesis. Thus, mechanical signals are potential PPARγ modulators 

counteracting adipocyte overdifferentiation and osteoblastogenesis inhibition, as summarized in 

Figure 7. 
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Conclusions 

Overall, our findings show that mechanical stimuli have a pivotal role in modifying the 

osteoblasto-/adipo-genesis balance in different species, at the cell, tissue and organism levels, 

by challenging two key transcription factors, Runx2 and PPARγ, which are strongly 

interdependent in serving osteoblastogenesis or adipogenesis. These results provide new 

insights into a physiological mechanism by which physical exercise might promote bone 

formation. Controversial duality of PPARγ as a therapeutic target for obesity-associated insulin 

resistance on the one hand, and as an adipogenic determination factor that might lead to 

osteopenia on the other hand, has to be clarified. Nevertheless, our data suggest that 

osteoblastogenesis, when inhibited secondary to TZD treatment, could be in part restored by a 

cyclic mechanical regimen. 
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Figure legends 
 
Figure 1. 
Effects of physical exercise on bone formation rate [BFR] (A) and marrow adipocyte 
volume [Ad.Ar/T.Ar] (B) in the proximal tibia metaphysis of 5-week treadmill-
running trained rats. Animals were either sedentary controls (open boxes) or running 
(stripped boxes) in a treadmill. Values are box plots of 10 samples per group. *: 
p<0.05 vs. Sedentary, Mann-Whitney U test.  
 
Figure 2. 
Effects of cyclic mechanical compression of sternum bone cores in the ZetosTM 
organotypic system on Runx2 (A) and PPARγ2 (B) protein contents. Samples were 
either unloaded (open bars) or loaded once a day for 5 minutes (stripped bars). 
Values are mean ± SEM of 5 samples (bone cores) per group expressed as a 
percentage of unloaded control at day 7. *: p<0.05 vs matched unloaded; ‡, p<0.05 
vs unloaded at day 7, two-way ANOVA with post hoc Holm test. (See Materials and 
Methods section for details).  
 
Figure 3. 
Effects of cyclic mechanical stretching of bovine bone marrow stromal cells (bMSC) 
on Runx2 (A) and PPARγ2 (B) protein levels at indicated days. Samples were either 
unstretched (open bars) or stretched (stripped bars) for 5 min. every day. Values are 
mean ± SEM of 6 wells per group expressed as a percentage of unloaded control (U). 
*: p<0.05 vs. unstretched, Mann-Whitney U test.  
 
 
Figure 4. 
Effects of cyclic mechanical stretching, Rosiglitazone or GW9662 treatment on the 
differentiation of C3H10T1/2 cells. (A) Representative photomicrographs (x 20) of 
C3H10T1/2 cells stained for alkaline phosphatase (elongated cells, empty arrows) 
and oil red O (round cells with dropplets, black arrows). Do note that in non treated 
conditions alkaline phosphatase-positive cells are abundant only in stretched cultures; 
in Rosiglitazone treated cells, lipid droplets are much more abundant, especially in 
unstretched cultures; under GW9662 treatment very few lipid droplets are seen. (B) 
Number of alkaline phosphatase positive cells  and (C) number of oil red O positive 
cells  at day 14 in unstretched (open bars) or stretched (stripped bars) cultures, 
treated or not with either Rosiglitazone or GW9662. Values are mean ± SEM of 6 
wells per group. For clarity, only the most relevant significant differences (two-way 
ANOVA with post hoc Holm test) are labelled. *: p<0.05 vs matched unstretched 
cells; ‡: p<0.05 vs untreated and unstretched cells. 
 
Figure 5. 
Effects of cyclic mechanical stretching under Rosiglitazone or GW9662 treatment of 
C3H10T1/2 on Runx2 and PPARγ2 mRNA levels. Cells were unstretched (open bars) 
or stretched (stripped bars)and treated or not with either Rosiglitazone or GW9662. 
Changes are expressed as percentage of unloaded control expression at day 3. (A) 
Expression of Runx2, (B) Expression of PPARγ2, at day 7 and day 14 of the culture. 
Values are mean ± SEM of 6 wells per group. For clarity, only the most relevant 
significant differences (two-way ANOVA with post hoc Holm test) are labelled. *: 
p<0.05 vs matched unstretched cells; ‡: p<0.05 vs untreated and unstretched cells. 
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Figure 6. 
Effects of cyclic mechanical stretching under Rosiglitazone or GW9662 treatment of 
C3H10T1/2 cells on Runx2 and PPARγ2 activity at day 7. Cells were unstretched 
(open bars) or stretched (stripped bars) and treated or not with either Rosiglitazone 
or GW9662. Values are expressed as percentage of values for unstretched untreated 
cells (U). The graphs present the protein amounts of (A) Nuclear Runx2, (B) 
Osteocalcin, (C) Nuclear PPARγ2 and (D) PPARγ DNA binding activity. Values are 
mean ± SEM of 6 wells per group. For clarity, only the most relevant significant 
differences (two-way ANOVA with post hoc Holm test) are labelled. *: p<0.05 vs 
matched unstretched cells; ‡: p<0.05 vs untreated and unstretched cells.  
 
 
Figure 7. 
The effect of of mechanical stretching on PPARγ : proposed mechanism. Mechanical 
stretching promotes osteoblastogenesis by both upregulating Runx2 and 
downregulating PPARγ. Rosiglitazone-induced PPARγ activation promotes 
adipogenesis and decreases osteoblastogenesis whereas GW9662, a potent 
antagonist of PPARγ, induces the opposite. Mechanical stretching reduces the 
stimulation of adipogenesis and the inhibition of osteoblastogenesis induced by 
Rosiglitazone while increasing the osteoblastic stimulation induced by GW9662. 
 



Tables  
 
 
 
 

Table 1: Primers and conditions for real time PCR 
Target  
gene 

Species 
θ m 
(°C) 

A 
(s) 

M 
(s) 

Tm 
(°C) 

Te 
(°C) 

Forward Reverse 
Product size  
(pb) 

RUNX2 bovine 58 7 14 70 68 accatggtggagatcatcg tggggaggatttgtgaagac 325 
OSX  58 7 14 70 68 cgggactcaacaactct ccataggggtgtgtcat 308 
OC  60 7 14 75 72 gcctttgtgtccaagc ggaccccacatccatag 315 
PPARγ2  52 5 10 72 65 aggatggggtcctcatatcc gcgttgaacttcacagcaaa 132 
aP2  58 5 10 72 62 agccactttcctggtagc cttgtctccagtgaaaactt 111 
L24  60 6 12 68 72 aggaaggctcaacgagaaca caactcgaggagcagaaacc 231 
RUNX2 mouse 55 5 10 65 60 tgtccttgtggattaaaaggacttg tttagggcgcattcctcatc 102 
OSX  55 5 10 72 63 cccttctcaagcaccaatgg aagggtgggtagtcatttgcata 85 
OC  60 5 10 72 65 acggtatcactatttaggacctgt actttattttggagctgctgtgac 140 
PPARγ2  58 5 10 65 65 cttcactgatacactgtctgc gcattatgagacatccccac 112 
aP2  58 8 16 65 65 cttgtctccagtgaaaactt gtggaagtcacgcctttcat 347 
ADD1  58 8 16 65 65 acggagccatggattgcaca aagggtgcaggtgtcacctt 422 
Adipsin  55 5 10 64 60 tgcagtcgaaggtgtggttacg gtgtctcttgtttccctgagc 170 
L30  55 5 10 64 72 tttagaaaaaaggcctctac caaacctgaatttccatgag 132 
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	Because a lack of mechanical information favors the development of adipocytes at the expense of osteoblasts, we hypothesized that the PPAR(-dependent balance between osteoblasts and adipocytes is affected by mechanical stimuli. We tested the robustness of this hypothesis in in vivo rodent osteogenic exercise, in vitro cyclic loading of cancellous haversian bone samples and cyclic stretching of primary stromal and C3H10T1/2 cells. We found that running rats exhibit a decreased marrow fat volume associated with an increased bone formation, presumably through recruitment of osteoprogenitors. In the tissue culture model, cyclic loading induced higher Runx2 and lower PPAR(2 protein levels. Given the pro-adipocytic and anti-osteoblastic activities of PPAR(, we studied the effects of cyclic stretching in C3H10T1/2 cells, treated either with the PPAR( activator, Rosiglitazone, or with GW9662, a potent antagonist of PPAR(. We found, through both cytochemistry and analysis of lineage marker expression, that under Roziglitazone cyclic stretch partially overcomes the induction of adipogenesis and is still able to favor osteoblast differentiation. Conversely, cyclic stretch has additive effects with GW9662 in inducing osteoblastogenesis. In conclusion, we provide evidence that mechanical stimuli are potential PPARγ modulators counteracting adipocyte differentiation and inhibition of osteoblastogenesis. 
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