Miloš Drutarovský
email: milos.drutarovsky@tuke.sk

Martin Šimka
email: martin.simka@tuke.sk

Viktor Fischer
email: fischer@univ-st-etienne.fr

COMPARISON OF SCALABLE MONTGOMERY MODULAR MULTIPLICATION IMPLEMENTATIONS EMBEDDED IN RECONFIGURABLE HARDWARE *

Keywords: Altera, FPGA, modular multiplication, Montgomery exponentiation, RSA, ECC, scalable architecture, NIOS 1. INDRODUCTION

This paper presents a comparison of possible approaches for an efficient implementation of Multiple-word radix-2 Montgomery Modular Multiplication (MM) on modern Field Programmable Gate Arrays

. The hardware implementation of MM coprocessor is fully scalable what means that it can be reused in order to generate long-precision results independently on the word length of the originally proposed coprocessor. The first of analyzed implementations uses a data path based on traditionally used redundant carry-save adders, the second one exploits, in scalable designs not yet applied, standard carry-propagate adders with fast carry chain logic. As a control unit and a platform for purely software implementation an embedded soft-core processor Altera NIOS is employed. All implementations use large embedded memory blocks available in recent FPGAs. Speed and logic requirements comparisons are performed on the optimized software and combined hardware-software designs in Altera FPGAs. The issues of targeting a design specifically for a FPGA are considered taking into account the underlying architecture imposed by the target FPGA technology. It is shown that the coprocessors based on carry-save adders and carry-propagate adders provide comparable results in constrained FPGA implementations but in case of carry-propagate logic, the solution requires less embedded memory and provides some additional implementation advantages presented in the paper.

Many popular cryptographic algorithms, such as the RSA, ElGamal, Elliptic curve cryptography (ECC), Diffie-Hellman etc. [START_REF] Menezes | Handbook of Applied Cryptography[END_REF] include extensive use of modular exponentiation of long integers. However, it is a very slow operation when performed on a general-purpose computer since current typical operands (e.g. for RSA) have 1024, 2048 or more bits. The modular exponentiation is achieved by repeated modular multiplications. An efficient Modular Multiplication (MM) algorithm for the calculation of mod AB M was developed by P.L. Montgomery [START_REF] Montgomery | Modular Multiplication without Trial Division[END_REF].

A scalable MM design methodology in prime Galois Fields (GF) introduced in [START_REF] Tenca | A Scalable Architecture for Montgomery Multiplication[END_REF] forms the basis of approaches presented in the paper. This design methodology based on Carry-Save Adders (CSA) [START_REF] Koc | RSA Hardware Implementation[END_REF] allows using a fixed-area modular multiplication circuit for performing multiplication of (virtually) unlimited precision operands in radix-2. The design tradeoffs for the best ASIC performance in a limited chip area of ASIC gates were analyzed in [START_REF] Tenca | A Scalable Architecture for Montgomery Multiplication[END_REF][START_REF] Tenca | A Scalable Architecture for Modular Multiplication Based on Montgomery's Algorithm[END_REF].

A cheap and flexible modular exponentiation hardware accelerator can be also achieved using Field Programmable Gate Arrays (FPGAs). Results presented in literature, e.g. [START_REF] Eldridge | Hardware Implementation of Montgomery's Modular Multiplication Algorithm[END_REF][START_REF] Blum | Montgomery Modular Exponentiation on Reconfigurable Hardware[END_REF][START_REF] Daly | Efficient Architectures for Implementing Montgomery Modular Multiplication and RSA Modular Exponentiation on Reconfigurable Logic[END_REF] are mainly concentrated to systolic-like implementations that provide very fast but less flexible solution. Current FPGAs provide an alternative hardware platform even for system-level integration of complete cryptographic systems. A System on a Configurable Chip (SoCC) typically includes an embedded processor with a set of dedicated coprocessors. For SoCC a highly flexible (although typically slower) scalable MM coprocessor could be more attractive than the one with the fixed length.

Principal questions that motivated this paper are: 1. Is CSA-based data path the best option for a scalable MM implementation in modern FPGAs? 2. What is the best organization for a scalable architecture for given constrained FPGA resources? To answer these questions, we consider such design aspects as the architecture, the effect of the word length, the number of pipelined stages, the size of Embedded Memory Blocks (EMBs), etc. on Altera FPGAs. Although these results are vendor specific they can be generalized also for other FPGAs (e.g. Xilinx).

This paper presents the results originally presented in [START_REF] Drutarovský | Comparison of Two Implementations of Scalable Montgomery Coprocessor Embedded in Reconfigurable Hardware[END_REF] and is organized as follows: Section 2 gives a brief discussion on the scalability of an arithmetic unit in the context of FPGA application. Section 3 introduces a Montgomery method of MM, used notation and applied algorithmic optimization. Multiple-word radix-2 Montgomery multiplication algorithms suitable for scalable implementation are described in Section 4. Section 5 describes how the underlying architecture of the target FPGA may be utilized to produce an optimized design within constrained FPGA resources. Implementation results including final speed and area requirements of the hardware MM coprocessor designs as well as the pure software solution based on the embedded Altera NIOS processor are presented in Section 6. Finally, concluding remarks are presented in the Section 7.

SCALABILITY OF COPROCESSOR ARCHITECTURE IN FPGA

An arithmetic (cryptographic) unit is called scalable if it can be reused or replicated in order to generate long-precision results independently on the data precision for which the unit was originally designed [START_REF] Tenca | A Scalable Architecture for Montgomery Multiplication[END_REF]. The typical scalable coprocessor consists of two separate blocks -memory and scalable processing element interconnected by wbit data path as shown in Fig. 1.

Separation of the processing element with data path and the memory block is the first fundamental difference from FPGA designs optimized for fixedlength operands -e.g. [START_REF] Blum | Montgomery Modular Exponentiation on Reconfigurable Hardware[END_REF][START_REF] Daly | Efficient Architectures for Implementing Montgomery Modular Multiplication and RSA Modular Exponentiation on Reconfigurable Logic[END_REF]. RAM in modern FPGAs is implemented in dedicated part of the device in the form of Embedded Memory Blocks (EMBs). In Altera devices they have size of 2 or 4 kbits [START_REF]ACEX 1K Programmable Logic Device Family[END_REF][START_REF]APEX 20K Programmable Logic Device Family. Data Sheet[END_REF][START_REF]APEX II Programmable Logic Device Family. Data Sheet[END_REF][START_REF][END_REF][14]. The EMB could be an ideal component to build a memory for a scalable MM coprocessor since its size is comparable to typical RSA operand sizes. FPGAs typically contain relatively large number of EMBs, which can be configured as true dual-port memories. Therefore the proposed MM coprocessor designs for FPGA will exploit these EMBs for data storing.

Y (j) Scalable

Processing

Ele ment

M (j) S (j) S (j-1)
x i w w w Embedded Data Memory 4 w e Fig. 1 Architecture of a general scalable coprocessor based on a separated memory and a processing element with w -bit data path width

MONTGOMERY MULTIPLICATION IN MONTGOMERY DOMAIN

In the following text, the notation from [START_REF] Tenca | A Scalable Architecture for Montgomery Multiplication[END_REF][START_REF] Tenca | A Scalable Architecture for Modular Multiplication Based on Montgomery's Algorithm[END_REF]

X X R M XR M A R M i t A AA e A AX A A
The Montgomery multiplication is especially efficient when a sequence of MM is used in a row. The input X is transformed to Montgomery domain X (or Montgomery base) in step 1 of Alg. 1. And then we use Montgomery form of MM instead of regular MM. The final result is transformed back to the real domain by Montgomery multiplication by 1 (since for any X , we have MM ,1 X X).

Radix-2 Montgomery multiplication

The basic radix-2 Montgomery multiplication algorithm for m -bit operands , , , m X x x x , Y , and M is given as Alg. 2 1 . Alg. 2 is suitable for the hardware implementation because it is composed of simple operations: a word-by-bit multiplication, right bit-shift (division by 2) and an addition. The test of an even condition is also very simple to implement; it consists of checking the least significant bit of the partial sum

i i i i i i i i i i m m m m S i m q S xY q S S xY M S S xY S M S S M Z S
The described formulation of radix-2 algorithm was used as the starting point for derivation of scalable MM presented in [START_REF] Tenca | A Scalable Architecture for Montgomery Multiplication[END_REF][START_REF] Tenca | A Scalable Architecture for Modular Multiplication Based on Montgomery's Algorithm[END_REF]. Instead of direct usage of the Alg. 2, several optimizations of original MM are taken from references [START_REF] Walter | Systolic Modular Multiplication[END_REF][START_REF] Walter | Montgomery's Multiplication Technique: How to Make It Smaller and Faster[END_REF] to formulate the Alg. 3 (such formulation is used also for fast implementation, e.g. in [START_REF] Blum | Montgomery Modular Exponentiation on Reconfigurable Hardware[END_REF][START_REF] Daly | Efficient Architectures for Implementing Montgomery Modular Multiplication and RSA Modular Exponentiation on Reconfigurable Logic[END_REF]).

Alg. 3

The optimized radix-2 Montgomery multiplication algorithm for 3 m -bit operands

1 1 0 0, 0, , , , , m m X x x x x , Y and M . 0 1 1 3 0 ˆ2 for 0 to 2 mod 2 if 1 then ˆ/ 2 else ˆ/ 2 end if end for i i i i i i i i i m S Y Y i m q S q S S xY M S S xY Z S
In the Alg. 3

1 1 0 0 2 0,0, , , , , 2
m i i m m i X x x x x x M , (2)
1 1 0 0 ˆˆ2 , , , ,0 4 m i i m i Y y y y y M , (3)
where

3 2 m r
, , 2 X Y M (two times larger than in Alg. 2 so can be reused for the following MM in Alg. 1) and 1 [START_REF] Montgomery | Modular Multiplication without Trial Division[END_REF] 2

m m
M is an m -bit number (the same as in the Alg. 2). Note that Ŷ in [START_REF] Tenca | A Scalable Architecture for Montgomery Multiplication[END_REF] [START_REF] Blum | Montgomery Modular Exponentiation on Reconfigurable Hardware[END_REF][START_REF] Walter | Montgomery's Multiplication Technique: How to Make It Smaller and Faster[END_REF].

MULTIPLE-WORD RADIX-2 MONTGOMERY MULTIPLICATION ALGORITHM

Operations in Alg. 2 and Alg. 3 are performed on full-precision operands and do not provide scalability shown in Fig. 1. A scalable algorithm requires a word-oriented processing. Let us consider w -bit words. For operands with m -bit precision, e is required since it is known that i S (the internal variable of radix-2 algorithm) is in the range

0, 2 1 M
where M is the modulus [START_REF] Tenca | A Scalable Architecture for Montgomery Multiplication[END_REF]. Thus the computations of Alg. 2 must be done with an extra bit of precision. The input operands will need an extra 0 bit value at the leftmost bit position in order to have the precision extended to the correct value.

The Alg. (for ECC), so the difference in number of cycles is not significant. On the other hand, the possibility to remove correction unit from hardware design of Alg. 3 greatly simplifies the hardware design.

A scalable algorithm in which operands Y (multiplicand) and M (modulus) are scanned word-by-word and the operand X (multiplier) is scanned bit-by-bit, was proposed in [START_REF] Tenca | A Scalable Architecture for Montgomery Multiplication[END_REF][START_REF] Tenca | A Scalable Architecture for Modular Multiplication Based on Montgomery's Algorithm[END_REF]. It is called Multiple Word Radix-2 Montgomery Multiplication algorithm (MWR2MM) and it uses the following vectors:

1 1 0 1 1 0 1 1 0 1 1 0 , , , , , , , , , , , , , , , , e e e
m M M M M Y Y Y Y S S S S X x x x (6
)
where the words are marked with superscripts and the bits are marked with subscripts. The concatenation of vectors a and b is presented as , a b . A particular range of bits in a vector a from position i to position j , j i is represented as ... j i a . The bit position i of the th k word of a is represented as k i a . The details of the MWR2MM algorithm (Alg. 4, in this paper it will be referred to as MWR2MM_CSA) are given in [START_REF] Tenca | A Scalable Architecture for Montgomery Multiplication[END_REF].

Alg. 3 can be transformed to a multiple word form (Alg. 5) in a similar way (here referred to as MWR2MM_CPA as its implementation is based on application of Carry-Propagate Adders (CPA)). In Alg. 5, the notation from (6) is used with the exception of X which is given by [START_REF] Montgomery | Modular Multiplication without Trial Division[END_REF]. The MWR2MM_CPA algorithm features the same basic characteristics as the original MWR2MM algorithm. Thus, the MWR2MM_CSA as well as MWR2MM_CPA imposes no constraints on the precision of operands. The carry variable C must be from the set 0,1, 2 . This condition is imposed by the addition of the three vectors S , M , and î x Y [START_REF] Tenca | A Scalable Architecture for Montgomery Multiplication[END_REF].

MWR2MM_CSA and MWR2MM_CPA share the same data dependencies. Detailed analysis of algorithm implementation can be found in [START_REF] Tenca | A Scalable Architecture for Montgomery Multiplication[END_REF][START_REF] Tenca | A Scalable Architecture for Modular Multiplication Based on Montgomery's Algorithm[END_REF]. It can be directly applied to MWR2MM_CPA algorithm, too. The main result of this analysis -the possibility to operate in pipelined stages is used by FPGA implementations proposed in this paper.

There are two possible approaches how to increase the speed of both algorithms:

1. To increase the word length w : Typical FPGAs provide the EMBs with dual port memory feature and configurable word lengths up to 16 bits. Since the capacity of EMBs is sufficient for typical RSA or ECC operands, in constrained designs it makes sense to use only one (16 w) or two (32 w

) EMBs per algorithm variable. Usage of more EMBs per variable is not reasonable for currently used operands (say, up to 4096 bits) and EMB sizes. This is especially important for constrained SoCC designs.

Alg. [START_REF] Koc | RSA Hardware Implementation[END_REF] The multiple word radix-2 Montgomery multiplication MWR2MM_CSA algorithm. 2. To increase the number of pipelined stages p N : The hardware structure for both solutions is relatively simple and fast. An addition of several pipelined stages can increase the overall speed, especially if the access to the embedded memory is a bottleneck (as it is a case of FPGA with limited routing resources for a large w). However, significant increase of the number of pipelined stages necessitates a reduction of the complexity of one stage. The main difference between the MWR2MM_CPA and the MWR2MM_CSA algorithms is a non-redundant representation of i S variables in case of the MWR2MM_CPA with the following consequences:

1. The MWR2MM_CPA algorithm uses less (only 80% of MWR2MM_CSA) memory resources for the same operand sizes.

2. The MWR2MM_CPA algorithm does not require the final correction unit (MWR2MM_CSA algorithm requires at least the final conversion to the non-redundant form).

3. The MWR2MM_CPA algorithm allows a simpler computation of internal i q variable that can (potentially) allow simplification of the architecture of the MWR2MM_CPA Processing Element (PE).

4. The MWR2MM_CSA PE is always faster than MWR2MM_CPA one because it does not use the carry at all. The MWR2MM_CPA PE is slower but uses less LEs (so within the same FPGA resources, more MWR2MM_CPA PE pipelined stages can be used, what can in turn speed up the complete solution).

It is clear, that the speed of the MWR2MM_CPA PE depends significantly on the word-length (the length of carry chain). However, we can suppose that up to a certain word-length max w w the speed of the MWR2MM_CPA PE is not critical, because the final speed is dominated by the embedded memory access time. The value max w may differ between technologies due to the different routing and distinct physical layout. The unanswered question is whether the max w is larger than 16 (or 32) bits required for economical usage of EMB resources in current FPGAs as it was explained in Section 2. This is analyzed in the next section.

MWR2MM PROCESSING ELEMENTS COMPARISON

The whole computational complexity of both algorithms lies in the three additions of w -bit operands for computation of 1 i S . In the following part we describe pipelined implementations of the Alg. 4 and 5 optimized for constrained FPGA resources.

Architecture of processing elements

As the propagation of w carries is (in general) too slow and an equivalent carry look-ahead logic requires too many resources, implementation of MWR2MM_CSA in [START_REF] Tenca | A Scalable Architecture for Montgomery Multiplication[END_REF] uses redundant carry-save representation [START_REF] Koc | RSA Hardware Implementation[END_REF]. A w -bit PE architecture implementing the MWR2MM_CSA algorithm (CSA_PE) based on Full Adders (FAs) is depicted in Fig. 2.

In order to reduce the storage and arithmetic hardware complexity, the operands , X Y , and M are available in a non-redundant form. The intermediate internal sum S is received and generated in the redundant carry-save form 1 S , 2 S .

Conversion into binary representation is done only at the very end for feeding the intermediate result back as X or Y for a new computation (e.g. next iteration of modular exponentiation). The redundant representation of variables requires twice as much memory as a non-redundant representation. This is a drawback of the MWR2MM_CSA algorithm. However, it can be easily mapped into FPGA as it was done in [START_REF] Drutarovský | Implementation of Scalable Montgomery Multiplication coprocessor in Altera reconfigurable hardware[END_REF][START_REF] Fischer | Scalable RSA Processor in Reconfigurable Hardware -a SoC Building Block[END_REF].

FA FA FA FA FA FA Y w-1 (j) M w-1 (j) Y w-2 (j) M w-2 (j) Y 0 (j) M 0 (j) 1 S w-1 (j) 2 S w-1 (j) 1 S w-2 (j) 2 S w-2 (j) 1 S 0 (j) 2 S 0 (j) q i t x i 1 S w-1 (j-1)
2 S w-1

(j-1)
1 S w-2

(j-1)
2 S w-2

(j-1) 1 S 0 (j-1) 2 S 0 (j-1)
Fig. 2 Block diagram of a CSA-based w -bit MWR2MM processing element CSA_PE based on full adders (FAs) [START_REF] Tenca | A Scalable Architecture for Montgomery Multiplication[END_REF] FA FA FA The PE architecture presented in this paper is optimal for implementation on any FPGA that has dedicated carry logic capability (e.g. modern Altera and Xilinx FPGAs). The basic organization of the data path consists of two layers of conventional Carry-Propagated Adders (CPA) as shown in Fig. 3. MWR2MM Processing Element (CPA_PE) occupies smaller area than that used for MWR2MM_CSA (Fig. 2) and uses less embedded memory.

FA FA FA Y w-1 (j) M w-1 (j) Y w-2 (j) M w-2 (j) Y 0 (j) M 0 (j) S w-1 (j) S w-2 (j) S 0 (j) q i x i S w-1 (j-1)

Pipelined organization of PEs

The main advantage of the scalable architecture lies in the fact that the PEs can be easily repeated to increase throughput [START_REF] Tenca | A Scalable Architecture for Montgomery Multiplication[END_REF]. In the pipelined version of the multiplier p N slightly modified PEs (some registers have to be added to allow temporary data storage) are connected in a cascade (for CPA_PEs see Fig. 4).

The maximum number of pipelined stages is found as:

Performance analysis of scalable CSA_PE and CPA_PE

Tab. 1 and Tab. 2 give results of the MWR2MM_CSA and the MWR2MM_CPA PEs implementations (including data storage registers necessary for the pipelined version) in different Altera FPGAs for various word lengths w . The results have been obtained with Altera Quartus development system, version 4.0. PEs have been implemented in parameterized VHDL code. Carry chains have been realized using the lpm_add_sub function from the Library of Parameterized Modules (LPM) -a technology-independent library of logic functions that are parameterized to achieve scalability and adaptability.

There are several interesting facts that can be seen in these tables. With the exception of the CPA_PE implemented in the ACEX family, the two solutions are technologically independent (as far as the area occupation is concerned).

Tab. [START_REF] Menezes | Handbook of Applied Cryptography[END_REF]

Y (j) M (j)
S (j) S (j-1) The size (expressed as a number of logic elements (LEs) in Altera FPGAs) of the block depends almost linearly on the word length w . The CSA_PE occupies always more resources than the CPA_PE. The most important fact concerns the speed of the PEs.

x i w w w PE N p … … … x i-1 x i-Np+1 Y (j-1) M (j-1) S (j-Np +1) Y (j-Np+1) M (j-Np +1) S (j-Np) PE 1 PE 2
As it could be expected, the CSA_PE is always faster and the speed varies either only slightly (for old families) or almost not at all (for recent families, probably due to enhanced routing possibilities) with the word length w . However, the speed of the CPA_PE in the older families decreases significantly with the word length (about 40% from 8 bits to 32 bits). Recent Altera devices use an enhanced carry chain. The so-called carry-select chain uses the redundant carry calculation (hardwired) to increase the speed of carry functions. This feature enables to get processing times for the CPA_PE comparable to the CSA_PE (it is about 10 to 30% slower). Since CPA_PE is about 20% smaller, we can improve the final speed by increasing number of pipelined stages p N . However, this approach does not seem to be adequate for the word lengths 32 w bits.

IMPLEMENTATION RESULTS

An advantage of the use of the SoCC is that hardware and software solutions can be compared in a better way. In the SoCC both software and hardware solutions occupy the same resources. The fully software solution needs relatively large logic resources and small memory resources to implement the processor and sometimes large memory to implement the program. The fully hardware solution needs larger logic resources and eventually some data memory. In a mixed hardware-software design, parallel and time critical operation can be done in the hardware (dedicated coprocessor) and complex sequential and control operations in the software (hard-or soft-core processor). In the proposed SoCC design the speedup factor of the coprocessor application in relationship to the entirely softwarebased solution can be measured quite easily: both implementations use the same embedded processor, e.g. Altera NIOS soft core.

Altera NIOS CPU [START_REF]NIOS 3.0 CPU, Data Sheet[END_REF] is a pipelined generalpurpose RISC microprocessor. NIOS supports both 32-bit and 16-bit architectural variants. Both of them use 16-bit instructions. The processor has a fivestage pipelined structure with separate instruction and data-memory blocks (Harvard memory architecture). NIOS can include up to 512 internal general-purpose registers. The compiler uses the internal registers to accelerate subroutine calls and a local variable access. A 32-bit NIOS CPU can optionally be configured to include a hardware integer multiplier. This hardware is used by the MUL instruction to compute 32-bit result in three clock cycles 2 . This option is not supported in the 16-2 When using the MUL option with Altera STRATIX devices, the hardware multiplier uses DSP blocks for implementation.

bit NIOS instruction set. In order to obtain realistic comparisons, 32-bit NIOS CPU with hardware supported MUL instruction was used for software implementation.

We have realized three different systems: a) the first one was based on a fully software solution implemented on a 32-bit NIOS processor, b) the second version used 16-bit NIOS processor and the pipelined MWR2MM_CSA coprocessor, c) the third version used 16-bit NIOS and the pipelined MWR2MM_CPA coprocessor.

Execution times and implementation details

a) The software implementation of the MM algorithm has been written in the NIOS assembly language by using known optimization techniques for target processor. The Separated Operand Scanning (SOS) MM method [START_REF] Koc | Analyzing and Comparing Montgomery Multiplication Algorithms[END_REF] was used as the best method for given NIOS RISC architecture [START_REF] Frolek | Implementation of Asymmetric Encryption Algorithms in Reconfigurable Circuits[END_REF] b) In the mixed hardware-software design multiplication is realized in the hardware as a coprocessor. Therefore we did not need the 32-bit version of the NIOS core. To reduce resources usage the second design has used the 16-bit NIOS processor (with area occupation -1275 LEs), which was powerful enough to realize the necessary control operations. The coprocessor was based on a [START_REF] Walter | Montgomery's Multiplication Technique: How to Make It Smaller and Faster[END_REF]

CONCLUSIONS

In this paper we have evaluated two implementation methods of a scalable hardware Montgomery multiplier embedded in Altera FPGAs. It was shown that PE based on the conventional carry-propagated adders provides comparable speed results in implementation with constrained FPGA resources as originally proposed PE based on carrysave adders. The new method uses only 80% of the embedded FPGA memory resources required for the coprocessor based on carry-save adders. The proposed implementation method can be applied also for FPGAs from other vendors since it uses building blocks generally available in modern FPGAs -high-speed dual-port embedded memories and fast carry-propagated logic.

Both variants of the Montgomery multiplier (MWR2MM_CSA and MWR2MM_CPA) were successfully applied also in system implementations of RSA algorithm [START_REF] Fischer | Scalable RSA Processor in Reconfigurable Hardware -a SoC Building Block[END_REF] and Elliptic Curve Method for factorization [START_REF] Pelzl | Area-time Efficient Hardware Architecture for Factoring Integers with the Elliptic Curve Method[END_REF] (in this case Xilinx Virtex FPGA was chosen as a target platform). Thanks to the scalability of the MM the implementations are highly flexible and provide effective utilization of FPGAs resources.

 required for Algorithm 2. An extra bit used in the calculation of 1

S w- 2 (Fig. 3

 23 Fig. 3 Block diagram of a new CPA-based w -bit MWR2MM processing element CPA_PE based on FAs Recent FPGAs contain high speed interconnecting lines between adjacent logic blocks which are designed to provide efficient carry propagation.The PE architecture presented in this paper is optimal for implementation on any FPGA that has dedicated carry logic capability (e.g. modern Altera and Xilinx FPGAs). The basic organization of the data path consists of two layers of conventional Carry-Propagated Adders (CPA) as shown in Fig.3. MWR2MM Processing Element (CPA_PE) occupies smaller area than that used for MWR2MM_CSA (Fig.2) and uses less embedded memory.

 control logic simple the number of the stages p N is restricted to values that divide the number of words e . In this way, the output of the last stage after computation is finished is the final result. The total computation time T (in clock cycles)

Fig. 4

 4 Fig. 4 Pipelined organization of the Montgomery MM coprocessor based on p N CPA_PEs connection and separated embedded data memory

 is used. Given two n -bit integers X and Y , and the prime modulus M , the original Montgomery multiplication algorithm computes

	Z	MM , X Y	XYr	1	mod	M ,	(1)
	where	r	2 n	, , X Y M r and M is an n -bit
	number. The algorithm is applicable for any
	modulus M provided that GCD	, M r	1.
	3.1. Montgomery exponentiation
		Basic MM (1) can be used especially for efficient
	computation of modular exponentiation by the
	standard Montgomery exponentiation algorithm [1]
	(are k -bit integers) described in Alg. 1. 1 , , t E e e with 1 1 t e , all other variables 0 2
	Alg. 1 The Montgomery exponentiation algorithm.
			2 MM , mod		mod
			mod			
		for		1 downto 0 do
			MM ,		
		if	i	1 then		
				MM ,	
		end if				
		end for				
			MM ,1		

 is the left shifted version of Y , with

		modification simplifies the computation of i q
		compared to the Alg. 2. The loop of the Alg. 3 is
		executed three more times (m	3) than in the Alg.
		2, what ensures that the inequalities
		S	i	3 , M i	0,1, ,	m	2	(4)
		and						
		Z S	m	3		MM , X Y
				XY	2	m	3	mod	M	2	M	(5)
		always hold.
			The result of	Z	MM , X Y in the Alg. 3 can
		thus be reused as an input X and Y for the next
		MM. This modification avoids the originally
		proposed final correction step (comparison and
		subtraction shown in the Alg. 2) and makes a
		pipelined			execution	of	the	Montgomery
		exponentiation algorithm much simpler.
			In typical applications (e.g. RSA, ECC), input
		operands X , Y are transformed into Montgomery
		domain by pre-multiplication with a factor
		2 2 mod m	M (Alg. 2) or 2 6 2 m	mod	M (Alg. 3). The
		final MM with value 1 (A	MM ,1 A	in Alg. 1)
		makes the final result smaller than M (without any
		final correction step in Alg. 3) and provides the
		result	XY	mod	M
	0 ˆ0 y	. This							

 PE sizes and speeds for old style Altera FPGAs

			CPA_PE			CSA_PE
	Device	w	Size	Speed	w	Size	Speed
		(bits) (LEs) (MHz) (bits) (LEs) (MHz)
	ACEX [10] EP1K100-1	8 16 32	66 130 258	161 129 99		8 16 32	81 161 321	232 202 170
	APEX [11]	8	59	161		8	81	232
	EP	16	115	129		16	161	202
	20K160-1	32	227	99		32	321	170
	Tab. 2 PE sizes and speeds for new style Altera
	FPGAs					
				CPA_PE			CSA_PE
	Device		w Size Speed w Size Speed
			(bits) (LEs) (MHz) (bits) (LEs) (MHz)
	CYCLONE [13] EP1C20-6	8 16 32	59 115 227	277 235 221	8 16 32	81 161 321	304 304 304
	STRATIX [14] EP1S10-6	8 16 32	59 115 227	271 248 214	8 16 32	81 161 321	304 304 304

 . Tab. 3 shows the software MM timings for this fully software solution at 50 MHz. 32-bit NIOS processor had 2137 LEs and hardware integer multiplier (for MUL instruction) had 446 LEs.

	Tab. 3 Execution times of software implementation
	of MM on Altera NIOS development board
	(with APEX EP20K200-2X FPGA)
	Length e w	Method	Multiplication (ms)	Squaring (ms)
	1024	SOS32MEM	2.40	1.87
	2048	SOS32MEM	9.47	7.24

 The third design was the same as the second one except for type of the coprocessor. It was based on a 16-bit (pipelined stages, so that it has occupied about the same area as the coprocessor based on MWR2MM_CSA PE in the previous design. The processor has been clocked at NIOS 50

	c) 16 w) MWR2MM_CPA PE with	
	9						
				F	MHz and	
	the coprocessor at CPA_MM 100 F	MHz. The results	
	obtained for this configuration are presented in	
	Tab. 5.						
	Tab. 5 Execution times of hardware-software	
	implementation of MM on Altera NIOS	
	development board (with APEX EP20K200-	
	2X FPGA) for MWR2MM_CPA PE		
	Length e w	Method	Multiplication (ms)	Squaring (ms)	
	1024 64 16 MWR2MM_CPA		0.069	0.069	
	2048 128 16 MWR2MM_CPA		0.278	0.278	
								-bit
						(w	16) MWR2MM_CSA PE with	N	p	6
						pipelined stages. The coprocessor has thus occupied
						additional 1290 LEs. So the total area occupation of
						the second solution was comparable to that of the
						first solution. The processor has been clocked at
						NIOS F	50	MHz and the coprocessor at
						CSA_MM F	150	MHz. Times necessary for
						Montgomery multiplication and squaring are
						presented in Tab. 4.
						Tab. 4 Execution times of hardware-software
								implementation of MM on Altera NIOS
								development board (with APEX EP20K200-
								2X FPGA) for MWR2MM_CSA PE
								Length e w	Method	Multiplication (ms)	Squaring (ms)
						1024 64 16	MWR2MM_CSA	0.073	0.073
						2048 128 16 MWR2MM_CSA	0.291	0.291

p N

ACKNOWLEDGEMENT

This work has been done in the frame of the project CryptArchi included in the French national program ACI Cryptologie (project number CR/02 2 0041) and the project of the Slovak Grant Agency for Science VEGA 1/1057/04.

BIOGRAPHIES