
HAL Id: ujm-00288982
https://ujm.hal.science/ujm-00288982

Submitted on 25 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison of Scalable Montgomery Modular
Multiplication Implementations Embedded in

Reconfigurable Hardware
Milos Drutarovský, Martin Simka, Viktor Fischer

To cite this version:
Milos Drutarovský, Martin Simka, Viktor Fischer. Comparison of Scalable Montgomery Modular
Multiplication Implementations Embedded in Reconfigurable Hardware. Acta Electrotechnica et In-
formatica, 2006, 6 (2), pp.37-45. �ujm-00288982�

https://ujm.hal.science/ujm-00288982
https://hal.archives-ouvertes.fr

COMPARISON OF SCALABLE MONTGOMERY MODULAR MULTIPLICATION
IMPLEMENTATIONS EMBEDDED IN RECONFIGURABLE HARDWARE

*Miloš DRUTAROVSKÝ, *Martin ŠIMKA, **Viktor FISCHER
*Department of Electronics and Multimedia Communications, Technical University of Košice,

Park Komenského 13, 041 20 Košice, Slovak Republic,
E-mail: {Milos.Drutarovsky, Martin.Simka}@tuke.sk

**Laboratoire Traitement du Signal et Instrumentation, Unité Mixte de Recherche CNRS 5516, Université Jean Monnet,
10, rue Barrouin, 42000 Saint-Etienne, France, E-mail: fischer@univ-st-etienne.fr

SUMMARY
This paper presents a comparison of possible approaches for an efficient implementation of Multiple-word radix-2

Montgomery Modular Multiplication (MM) on modern Field Programmable Gate Arrays (FPGAs). The hardware
implementation of MM coprocessor is fully scalable what means that it can be reused in order to generate long-precision
results independently on the word length of the originally proposed coprocessor. The first of analyzed implementations uses a
data path based on traditionally used redundant carry-save adders, the second one exploits, in scalable designs not yet
applied, standard carry-propagate adders with fast carry chain logic. As a control unit and a platform for purely software
implementation an embedded soft-core processor Altera NIOS is employed. All implementations use large embedded memory
blocks available in recent FPGAs. Speed and logic requirements comparisons are performed on the optimized software and
combined hardware-software designs in Altera FPGAs. The issues of targeting a design specifically for a FPGA are
considered taking into account the underlying architecture imposed by the target FPGA technology. It is shown that the
coprocessors based on carry-save adders and carry-propagate adders provide comparable results in constrained FPGA
implementations but in case of carry-propagate logic, the solution requires less embedded memory and provides some
additional implementation advantages presented in the paper.

Keywords: Altera, FPGA, modular multiplication, Montgomery exponentiation, RSA, ECC, scalable architecture, NIOS

1. INDRODUCTION

Many popular cryptographic algorithms, such as
the RSA, ElGamal, Elliptic curve cryptography
(ECC), Diffie-Hellman etc. [1] include extensive use
of modular exponentiation of long integers.
However, it is a very slow operation when
performed on a general-purpose computer since
current typical operands (e.g. for RSA) have 1024,
2048 or more bits. The modular exponentiation is
achieved by repeated modular multiplications. An
efficient Modular Multiplication (MM) algorithm for
the calculation of modAB M was developed by P.L.
Montgomery [2].

A scalable MM design methodology in prime
Galois Fields (GF) introduced in [3] forms the basis
of approaches presented in the paper. This design
methodology based on Carry-Save Adders (CSA)
[4] allows using a fixed-area modular multiplication
circuit for performing multiplication of (virtually)
unlimited precision operands in radix-2. The design
tradeoffs for the best ASIC performance in a limited
chip area of ASIC gates were analyzed in [3, 5].

A cheap and flexible modular exponentiation
hardware accelerator can be also achieved using
Field Programmable Gate Arrays (FPGAs). Results
presented in literature, e.g. [6-8] are mainly
concentrated to systolic-like implementations that
provide very fast but less flexible solution. Current
FPGAs provide an alternative hardware platform
even for system-level integration of complete
cryptographic systems. A System on a Configurable
Chip (SoCC) typically includes an embedded

processor with a set of dedicated coprocessors. For
SoCC a highly flexible (although typically slower)
scalable MM coprocessor could be more attractive
than the one with the fixed length.

Principal questions that motivated this paper are:
1. Is CSA-based data path the best option for

a scalable MM implementation in modern
FPGAs?

2. What is the best organization for a scalable
architecture for given constrained FPGA
resources?

To answer these questions, we consider such
design aspects as the architecture, the effect of the
word length, the number of pipelined stages, the size
of Embedded Memory Blocks (EMBs), etc. on
Altera FPGAs. Although these results are vendor
specific they can be generalized also for other
FPGAs (e.g. Xilinx).

This paper presents the results originally
presented in [9] and is organized as follows: Section
2 gives a brief discussion on the scalability of an
arithmetic unit in the context of FPGA application.
Section 3 introduces a Montgomery method of MM,
used notation and applied algorithmic optimization.
Multiple-word radix-2 Montgomery multiplication
algorithms suitable for scalable implementation are
described in Section 4. Section 5 describes how the
underlying architecture of the target FPGA may be
utilized to produce an optimized design within
constrained FPGA resources. Implementation results
including final speed and area requirements of the
hardware MM coprocessor designs as well as the
pure software solution based on the embedded

Altera NIOS processor are presented in Section 6.
Finally, concluding remarks are presented in the
Section 7.

2. SCALABILITY OF COPROCESSOR
ARCHITECTURE IN FPGA

An arithmetic (cryptographic) unit is called
scalable if it can be reused or replicated in order to
generate long-precision results independently on the
data precision for which the unit was originally
designed [3]. The typical scalable coprocessor
consists of two separate blocks – memory and
scalable processing element interconnected by w -
bit data path as shown in Fig.1.

Separation of the processing element with data
path and the memory block is the first fundamental
difference from FPGA designs optimized for fixed-
length operands – e.g. [7, 8]. RAM in modern
FPGAs is implemented in dedicated part of the
device in the form of Embedded Memory Blocks
(EMBs). In Altera devices they have size of 2 or 4
kbits [10-14]. The EMB could be an ideal
component to build a memory for a scalable MM
coprocessor since its size is comparable to typical
RSA operand sizes. FPGAs typically contain
relatively large number of EMBs, which can be
configured as true dual-port memories. Therefore the
proposed MM coprocessor designs for FPGA will
exploit these EMBs for data storing.

Y(j)

Scalable

Processing

Element

M(j)

S(j) S(j-1)

xi

w

w

w

Embedded
Data

Memory
4 w e

Fig. 1 Architecture of a general scalable
coprocessor based on a separated memory and a
processing element with w -bit data path width

3. MONTGOMERY MULTIPLICATION IN
MONTGOMERY DOMAIN

In the following text, the notation from [3, 5] is
used. Given two n -bit integers X and Y , and the
prime modulus M , the original Montgomery
multiplication algorithm computes

1MM , modZ X Y XYr M , (1)

where 2nr , ,X Y M r and M is an n -bit
number. The algorithm is applicable for any
modulus M provided that GCD , 1.M r

3.1. Montgomery exponentiation

Basic MM (1) can be used especially for efficient
computation of modular exponentiation by the
standard Montgomery exponentiation algorithm [1]
(1 0 2, ,tE e e with 1 1te , all other variables
are k -bit integers) described in Alg. 1.

Alg. 1 The Montgomery exponentiation algorithm.

2MM , mod mod

mod
for 1 downto 0 do

MM ,
if 1 then

MM ,

end if
end for

MM ,1

i

X X R M XR M

A R M
i t

A A A
e

A A X

A A

The Montgomery multiplication is especially
efficient when a sequence of MM is used in a row.
The input X is transformed to Montgomery domain
X (or Montgomery base) in step 1 of Alg. 1. And

then we use Montgomery form of MM instead of
regular MM. The final result is transformed back to
the real domain by Montgomery multiplication by 1
(since for any X , we have MM ,1X X).

3.2. Radix-2 Montgomery multiplication

The basic radix-2 Montgomery multiplication
algorithm for m -bit operands 1 1 0, , ,mX x x x ,
Y , and M is given as Alg. 21. Alg. 2 is suitable for
the hardware implementation because it is composed
of simple operations: a word-by-bit multiplication,
right bit-shift (division by 2) and an addition. The
test of an even condition is also very simple to
implement; it consists of checking the least
significant bit of the partial sum 1iS followed by
decision if the addition of M is required.

1 In the rest of the paper we use m as a parameter for length of
the input operands ,X Y and M . The parameter n will be used
for setting the 2nr . Optimized implementations use n m .

Alg. 2 The basic radix-2 Montgomery multiplication
algorithm for m -bit operands

1 1 0, , ,mX x x x , Y and M .

0

1

1

0
for 0 to 1

mod 2

if 1 then

/ 2
else

/ 2
end if

end for
if then

// the final correction step
end if

i i i

i

i i i

i i i

m

m m

m

S
i m

q S x Y

q

S S x Y M

S S x Y

S M
S S M

Z S

The described formulation of radix-2 algorithm
was used as the starting point for derivation of
scalable MM presented in [3, 5]. Instead of direct
usage of the Alg. 2, several optimizations of original
MM are taken from references [15, 16] to formulate
the Alg. 3 (such formulation is used also for fast
implementation, e.g. in [7, 8]).

Alg. 3 The optimized radix-2 Montgomery
multiplication algorithm for 3m -bit
operands 1 1 00,0, , , , ,m mX x x x x , Y
and M .

0

1

1

3

0
ˆ 2
for 0 to 2

mod 2
if 1 then

ˆ / 2

else
ˆ / 2

end if
end for

i i

i

i i i

i i i

m

S

Y Y
i m

q S
q

S S x Y M

S S x Y

Z S

In the Alg. 3

1 1 0
0

2 0,0, , , , , 2
m i

i m m
i

X x x x x x M , (2)

1
1 0

0

ˆ ˆ 2 , , , ,0 4
m i

i m
i

Y y y y y M , (3)

where 32mr , , 2X Y M (two times larger than
in Alg. 2 so can be reused for the following MM in
Alg. 1) and 12 2m mM is an m -bit number (the
same as in the Alg. 2). Note that Ŷ in (3) is the left
shifted version of Y , with 0ˆ 0y . This

modification simplifies the computation of iq
compared to the Alg. 2. The loop of the Alg. 3 is
executed three more times (3m) than in the Alg.
2, what ensures that the inequalities

3 , 0,1, , 2iS M i m (4)

and

3

3

MM ,

2 mod 2

m

m

Z S X Y

XY M M
 (5)

always hold.
The result of MM ,Z X Y in the Alg. 3 can

thus be reused as an input X and Y for the next
MM. This modification avoids the originally
proposed final correction step (comparison and
subtraction shown in the Alg. 2) and makes a
pipelined execution of the Montgomery
exponentiation algorithm much simpler.

In typical applications (e.g. RSA, ECC), input
operands X , Y are transformed into Montgomery
domain by pre-multiplication with a factor

22 modm M (Alg. 2) or 2 62 modm M (Alg. 3). The
final MM with value 1 (MM ,1A A in Alg. 1)
makes the final result smaller than M (without any
final correction step in Alg. 3) and provides the
result modXY M [7, 16].

4. MULTIPLE-WORD RADIX-2
MONTGOMERY MULTIPLICATION
ALGORITHM

Operations in Alg. 2 and Alg. 3 are performed on
full-precision operands and do not provide
scalability shown in Fig. 1. A scalable algorithm
requires a word-oriented processing. Let us consider
w -bit words. For operands with m -bit precision,
1 (1) /e m w words are required for Algorithm

2. An extra bit used in the calculation of 1e is
required since it is known that iS (the internal
variable of radix-2 algorithm) is in the range
0, 2 1M where M is the modulus [3]. Thus the

computations of Alg. 2 must be done with an extra
bit of precision. The input operands will need an
extra 0 bit value at the leftmost bit position in order
to have the precision extended to the correct value.

The Alg. 3 requires 2 3 /e m w words in
order to support extended range of input variables
X , Y , and internal variable iS . Note that in many

practical configurations 1 2e e and no additional
words are required for the Alg. 3. The operand X
will need two extra 0 bit values at the leftmost bit
positions in order to have the precision extended to
the 3m cycles required by Alg. 3. Note that in
practical configurations 1024m (for RSA) or

160m (for ECC), so the difference in number of
cycles is not significant. On the other hand, the
possibility to remove correction unit from hardware

design of Alg. 3 greatly simplifies the hardware
design.

A scalable algorithm in which operands
Y (multiplicand) and M (modulus) are scanned
word-by-word and the operand X (multiplier) is
scanned bit-by-bit, was proposed in [3, 5]. It is
called Multiple Word Radix-2 Montgomery
Multiplication algorithm (MWR2MM) and it uses
the following vectors:

1 1 0

1 1 0

1 1 0

1 1 0

, , , ,

, , , ,

, , , ,

, , , ,

e

e

e

m

M M M M

Y Y Y Y

S S S S

X x x x

 (6)

where the words are marked with superscripts and
the bits are marked with subscripts. The
concatenation of vectors a and b is presented as

,a b . A particular range of bits in a vector a from
position i to position j , j i is represented as

...j ia . The bit position i of the thk word of a is
represented as k

ia . The details of the MWR2MM
algorithm (Alg. 4, in this paper it will be referred to
as MWR2MM_CSA) are given in [3].

Alg. 3 can be transformed to a multiple word
form (Alg. 5) in a similar way (here referred to as
MWR2MM_CPA as its implementation is based on
application of Carry-Propagate Adders (CPA)). In
Alg. 5, the notation from (6) is used with the
exception of X which is given by (2). The
MWR2MM_CPA algorithm features the same basic
characteristics as the original MWR2MM algorithm.
Thus, the MWR2MM_CSA as well as
MWR2MM_CPA imposes no constraints on the
precision of operands. The carry variable C must be
from the set 0,1, 2 . This condition is imposed by
the addition of the three vectors S , M , and ˆ

ix Y
[3].

MWR2MM_CSA and MWR2MM_CPA share
the same data dependencies. Detailed analysis of
algorithm implementation can be found in [3, 5]. It
can be directly applied to MWR2MM_CPA
algorithm, too. The main result of this analysis – the
possibility to operate in pipelined stages is used by
FPGA implementations proposed in this paper.

There are two possible approaches how to
increase the speed of both algorithms:

1. To increase the word length w : Typical
FPGAs provide the EMBs with dual port memory
feature and configurable word lengths up to 16 bits.
Since the capacity of EMBs is sufficient for typical
RSA or ECC operands, in constrained designs it
makes sense to use only one (16w) or two
(32w) EMBs per algorithm variable. Usage of
more EMBs per variable is not reasonable for
currently used operands (say, up to 4096 bits) and
EMB sizes. This is especially important for
constrained SoCC designs.

Alg. 4 The multiple word radix-2 Montgomery
multiplication MWR2MM_CSA algorithm.

0 0 0

0
0

1 1
0 1..1

1 1
1..1

1 1
0 1..1

1 1
1..1

0
for 0 to 1 do

,

if 1 then
for 1 to 1 do

,

,

end for

,

else
for 1 to 1 do

,

,

end for

,

end i

i

j j j j
i

j j j
w

e e
w

j j j
i

j j j
w

e e
w

S
i m

C S x Y S

S
j e

C S C x Y M S

S S S

S C S

j e

C S C x Y S

S S S

S C S

f
end for

Alg. 5 The multiple word radix-2 Montgomery
multiplication MWR2MM_CPA algorithm.

0

1 1
0 1..1

1 1
1..1

0
ˆ 2
for 0 to 3 do

0

for 1 to 1 do
ˆ,

,

end for

,

end for

i

j j j j
i i

j j j
w

e e
w

S

Y Y
i m

C

q S
j e

C S C x Y q M S

S S S

S C S

2. To increase the number of pipelined stages
pN : The hardware structure for both solutions is

relatively simple and fast. An addition of several
pipelined stages can increase the overall speed,
especially if the access to the embedded memory is a
bottleneck (as it is a case of FPGA with limited
routing resources for a large w). However,
significant increase of the number of pipelined
stages necessitates a reduction of the complexity of
one stage.

The main difference between the
MWR2MM_CPA and the MWR2MM_CSA
algorithms is a non-redundant representation of

iS variables in case of the MWR2MM_CPA with the
following consequences:

1. The MWR2MM_CPA algorithm uses less
(only 80% of MWR2MM_CSA) memory resources
for the same operand sizes.

2. The MWR2MM_CPA algorithm does not
require the final correction unit (MWR2MM_CSA
algorithm requires at least the final conversion to the
non-redundant form).

3. The MWR2MM_CPA algorithm allows a
simpler computation of internal iq variable that can
(potentially) allow simplification of the architecture
of the MWR2MM_CPA Processing Element (PE).

4. The MWR2MM_CSA PE is always faster than
MWR2MM_CPA one because it does not use the
carry at all. The MWR2MM_CPA PE is slower but
uses less LEs (so within the same FPGA resources,
more MWR2MM_CPA PE pipelined stages can be
used, what can in turn speed up the complete
solution).

It is clear, that the speed of the MWR2MM_CPA
PE depends significantly on the word-length (the
length of carry chain). However, we can suppose
that up to a certain word-length maxw w the speed
of the MWR2MM_CPA PE is not critical, because
the final speed is dominated by the embedded
memory access time. The value maxw may differ
between technologies due to the different routing
and distinct physical layout. The unanswered
question is whether the maxw is larger than 16 (or
32) bits required for economical usage of EMB
resources in current FPGAs as it was explained in
Section 2. This is analyzed in the next section.

5. MWR2MM PROCESSING ELEMENTS
COMPARISON

The whole computational complexity of both
algorithms lies in the three additions of w -bit
operands for computation of 1iS . In the following
part we describe pipelined implementations of the
Alg. 4 and 5 optimized for constrained FPGA
resources.

5.1. Architecture of processing elements

As the propagation of w carries is (in general)
too slow and an equivalent carry look-ahead logic
requires too many resources, implementation of
MWR2MM_CSA in [3] uses redundant carry-save
representation [4]. A w -bit PE architecture
implementing the MWR2MM_CSA algorithm
(CSA_PE) based on Full Adders (FAs) is depicted in
Fig. 2.

In order to reduce the storage and arithmetic
hardware complexity, the operands ,X Y , and M
are available in a non-redundant form. The
intermediate internal sum S is received and
generated in the redundant carry-save form 1S , 2 S .

Conversion into binary representation is done
only at the very end for feeding the intermediate
result back as X or Y for a new computation (e.g.

next iteration of modular exponentiation). The
redundant representation of variables requires twice
as much memory as a non-redundant representation.
This is a drawback of the MWR2MM_CSA
algorithm. However, it can be easily mapped into
FPGA as it was done in [17, 18].

FA FA FA

FA FA FA

Yw-1
(j) Mw-1

(j) Yw-2
(j) Mw-2

(j) Y0
(j) M0

(j)

1Sw-1
(j)

2Sw-1
(j)

1Sw-2
(j)

2Sw-2
(j)

1S0
(j)

2S0
(j)

qi

t

xi

1Sw-1
(j-1)

 2Sw-1
(j-1)

1Sw-2
(j-1)

2Sw-2
(j-1)

1S0
(j-1)

 2S0
(j-1)

Fig. 2 Block diagram of a CSA-based w -bit
MWR2MM processing element CSA_PE based on

full adders (FAs) [3]

FA FA FA

FA FA FA

Yw-1
(j) Mw-1

(j) Yw-2
(j) Mw-2

(j) Y0
(j) M0

(j)

Sw-1
(j) Sw-2

(j) S0
(j)

qi

xi

Sw-1
(j-1) Sw-2

(j-1) S0
(j-1)

cin1

cin2

cout1

cout2

Fig. 3 Block diagram of a new CPA-based w -bit
MWR2MM processing element CPA_PE based on

FAs

Recent FPGAs contain high speed
interconnecting lines between adjacent logic blocks
which are designed to provide efficient carry
propagation.

The PE architecture presented in this paper is
optimal for implementation on any FPGA that has
dedicated carry logic capability (e.g. modern Altera
and Xilinx FPGAs). The basic organization of the
data path consists of two layers of conventional
Carry-Propagated Adders (CPA) as shown in Fig. 3.
MWR2MM Processing Element (CPA_PE) occupies
smaller area than that used for MWR2MM_CSA
(Fig. 2) and uses less embedded memory.

5.2. Pipelined organization of PEs

The main advantage of the scalable architecture
lies in the fact that the PEs can be easily repeated to
increase throughput [3]. In the pipelined version of
the multiplier pN slightly modified PEs (some
registers have to be added to allow temporary data
storage) are connected in a cascade (for CPA_PEs
see Fig. 4).

The maximum number of pipelined stages is
found as:

max

1
2p

eN (7)

To keep the control logic simple the number of
the stages pN is restricted to values that divide the
number of words e . In this way, the output of the
last stage after computation is finished is the final
result. The total computation time T (in clock
cycles) when

maxp pN N stages are connected in
the cascade is

2 p
p

ewT e N
N

 (8)

5.3. Performance analysis of scalable CSA_PE
and CPA_PE

Tab. 1 and Tab. 2 give results of the
MWR2MM_CSA and the MWR2MM_CPA PEs
implementations (including data storage registers
necessary for the pipelined version) in different
Altera FPGAs for various word lengths w . The

results have been obtained with Altera Quartus
development system, version 4.0. PEs have been
implemented in parameterized VHDL code. Carry
chains have been realized using the lpm_add_sub
function from the Library of Parameterized Modules
(LPM) – a technology-independent library of logic
functions that are parameterized to achieve
scalability and adaptability.

There are several interesting facts that can be
seen in these tables. With the exception of the
CPA_PE implemented in the ACEX family, the two
solutions are technologically independent (as far as
the area occupation is concerned).

Tab. 1 PE sizes and speeds for old style Altera
FPGAs

CPA_PE CSA_PE
w Size Speed w Size Speed Device

(bits) (LEs) (MHz) (bits) (LEs) (MHz)
8 66 161 8 81 232

16 130 129 16 161 202 ACEX [10]
EP1K100-1 32 258 99 32 321 170

8 59 161 8 81 232
16 115 129 16 161 202

APEX [11]
EP

20K160-1 32 227 99 32 321 170

Tab. 2 PE sizes and speeds for new style Altera
FPGAs

CPA_PE CSA_PE
w Size Speed w Size SpeedDevice

(bits) (LEs) (MHz) (bits) (LEs) (MHz)
8 59 277 8 81 304
16 115 235 16 161 304 CYCLONE [13]

EP1C20-6 32 227 221 32 321 304
8 59 271 8 81 304
16 115 248 16 161 304 STRATIX [14]

EP1S10-6 32 227 214 32 321 304

Y(j)

M(j)

S(j) S(j-1)

xi

w

w

w

PE Np

…

…

…

xi-1 xi-Np+1

Y(j-1)

M(j-1)

S(j- Np +1)

Y(j-Np+1)

M(j- Np +1)

S(j- Np)
PE 1 PE 2

High-speed
Embedded

Data
Memory
3 w e

Fig. 4 Pipelined organization of the Montgomery MM coprocessor based on pN CPA_PEs connection and
separated embedded data memory

The size (expressed as a number of logic
elements (LEs) in Altera FPGAs) of the block
depends almost linearly on the word length w . The
CSA_PE occupies always more resources than the
CPA_PE. The most important fact concerns the
speed of the PEs.

As it could be expected, the CSA_PE is always
faster and the speed varies either only slightly (for
old families) or almost not at all (for recent families,
probably due to enhanced routing possibilities) with
the word length w . However, the speed of the
CPA_PE in the older families decreases significantly
with the word length (about 40% from 8 bits to 32
bits). Recent Altera devices use an enhanced carry
chain. The so-called carry-select chain uses the
redundant carry calculation (hardwired) to increase
the speed of carry functions. This feature enables to
get processing times for the CPA_PE comparable to
the CSA_PE (it is about 10 to 30% slower). Since
CPA_PE is about 20% smaller, we can improve the
final speed by increasing number of pipelined stages

pN . However, this approach does not seem to be
adequate for the word lengths 32w bits.

6. IMPLEMENTATION RESULTS

An advantage of the use of the SoCC is that
hardware and software solutions can be compared in
a better way. In the SoCC both software and
hardware solutions occupy the same resources. The
fully software solution needs relatively large logic
resources and small memory resources to implement
the processor and sometimes large memory to
implement the program. The fully hardware solution
needs larger logic resources and eventually some
data memory. In a mixed hardware-software design,
parallel and time critical operation can be done in
the hardware (dedicated coprocessor) and complex
sequential and control operations in the software
(hard- or soft-core processor). In the proposed SoCC
design the speedup factor of the coprocessor
application in relationship to the entirely software-
based solution can be measured quite easily: both
implementations use the same embedded processor,
e.g. Altera NIOS soft core.

Altera NIOS CPU [19] is a pipelined general-
purpose RISC microprocessor. NIOS supports both
32-bit and 16-bit architectural variants. Both of them
use 16-bit instructions. The processor has a five-
stage pipelined structure with separate instruction
and data-memory blocks (Harvard memory
architecture). NIOS can include up to 512 internal
general-purpose registers. The compiler uses the
internal registers to accelerate subroutine calls and a
local variable access. A 32-bit NIOS CPU can
optionally be configured to include a hardware
integer multiplier. This hardware is used by the
MUL instruction to compute 32-bit result in three
clock cycles2. This option is not supported in the 16-

2 When using the MUL option with Altera STRATIX devices, the
hardware multiplier uses DSP blocks for implementation.

bit NIOS instruction set. In order to obtain realistic
comparisons, 32-bit NIOS CPU with hardware
supported MUL instruction was used for software
implementation.

We have realized three different systems:
a) the first one was based on a fully software

solution implemented on a 32-bit NIOS processor,
b) the second version used 16-bit NIOS

processor and the pipelined MWR2MM_CSA
coprocessor,

c) the third version used 16-bit NIOS and the
pipelined MWR2MM_CPA coprocessor.

6.1. Execution times and implementation details

a) The software implementation of the MM
algorithm has been written in the NIOS assembly
language by using known optimization techniques
for target processor. The Separated Operand
Scanning (SOS) MM method [20] was used as the
best method for given NIOS RISC architecture [21].
Tab. 3 shows the software MM timings for this fully
software solution at 50 MHz. 32-bit NIOS processor
had 2137 LEs and hardware integer multiplier (for
MUL instruction) had 446 LEs.

Tab. 3 Execution times of software implementation
of MM on Altera NIOS development board
(with APEX EP20K200-2X FPGA)

Length
e w Method Multiplication

(ms)
Squaring

(ms)

1024 SOS32MEM 2.40 1.87
2048 SOS32MEM 9.47 7.24

b) In the mixed hardware-software design
multiplication is realized in the hardware as a
coprocessor. Therefore we did not need the 32-bit
version of the NIOS core. To reduce resources usage
the second design has used the 16-bit NIOS
processor (with area occupation - 1275 LEs), which
was powerful enough to realize the necessary control
operations. The coprocessor was based on a 16-bit
(16w) MWR2MM_CSA PE with 6pN
pipelined stages. The coprocessor has thus occupied
additional 1290 LEs. So the total area occupation of
the second solution was comparable to that of the
first solution. The processor has been clocked at

NIOS 50F MHz and the coprocessor at
CSA_MM 150F MHz. Times necessary for

Montgomery multiplication and squaring are
presented in Tab. 4.

Tab. 4 Execution times of hardware-software
implementation of MM on Altera NIOS
development board (with APEX EP20K200-
2X FPGA) for MWR2MM_CSA PE

Length
e w Method Multiplication

(ms)
Squaring

(ms)

1024 64 16 MWR2MM_CSA 0.073 0.073
2048 128 16 MWR2MM_CSA 0.291 0.291

c) The third design was the same as the second
one except for type of the coprocessor. It was based
on a 16-bit (16w) MWR2MM_CPA PE with

9pN pipelined stages, so that it has occupied
about the same area as the coprocessor based on
MWR2MM_CSA PE in the previous design. The
processor has been clocked at NIOS 50F MHz and
the coprocessor at CPA_MM 100F MHz. The results
obtained for this configuration are presented in
Tab. 5.

Tab. 5 Execution times of hardware-software
implementation of MM on Altera NIOS
development board (with APEX EP20K200-
2X FPGA) for MWR2MM_CPA PE

Length
e w Method Multiplication

(ms)
Squaring

(ms)

1024 64 16 MWR2MM_CPA 0.069 0.069
2048 128 16 MWR2MM_CPA 0.278 0.278

7. CONCLUSIONS

In this paper we have evaluated two
implementation methods of a scalable hardware
Montgomery multiplier embedded in Altera FPGAs.
It was shown that PE based on the conventional
carry-propagated adders provides comparable speed
results in implementation with constrained FPGA
resources as originally proposed PE based on carry-
save adders. The new method uses only 80% of the
embedded FPGA memory resources required for the
coprocessor based on carry-save adders. The
proposed implementation method can be applied
also for FPGAs from other vendors since it uses
building blocks generally available in modern
FPGAs - high-speed dual-port embedded memories
and fast carry-propagated logic.

Both variants of the Montgomery multiplier
(MWR2MM_CSA and MWR2MM_CPA) were
successfully applied also in system implementations
of RSA algorithm [18] and Elliptic Curve Method
for factorization [22] (in this case Xilinx Virtex
FPGA was chosen as a target platform). Thanks to
the scalability of the MM the implementations are
highly flexible and provide effective utilization of
FPGAs resources.

ACKNOWLEDGEMENT

This work has been done in the frame of the
project CryptArchi included in the French national
program ACI Cryptologie (project number CR/02 2
0041) and the project of the Slovak Grant Agency
for Science VEGA 1/1057/04.

REFERENCES

[1] J.A. Menezes, P.C. Oorschot, S.A. Vanstone:
Handbook of Applied Cryptography, CRC
Press, New York, 1997.

[2] P.L. Montgomery: Modular Multiplication
without Trial Division. Math. Computation,
(44), pp. 519-521, 1985.

[3] A.F. Tenca, C.K. Koc: A Scalable Architecture
for Montgomery Multiplication, In C.K. Koc
and C. Paar, editors, Cryptographic Hardware
and Embedded Systems, Lecture Notes in
Computer Science, No.1717, pp. 94-108,
Springer, Berlin, Germany, 1999.

[4] C.K. Koc: RSA Hardware Implementation.
RSA Laboratories, version 1.0, pp. 1-28,
August 1995, www.rsa.com.

[5] A.F. Tenca, C.K. Koc: A Scalable Architecture
for Modular Multiplication Based on
Montgomery’s Algorithm, IEEE Transactions
on Computers, No 9., (52), pp. 1215-1221,
September 2003.

[6] S.E. Eldridge, C.D. Walter: Hardware
Implementation of Montgomery’s Modular
Multiplication Algorithm. IEEE Transactions
on Computers, (42), pp. 693-699, June 1993.

[7] T. Blum, C. Paar: Montgomery Modular
Exponentiation on Reconfigurable Hardware.
Proceedings of the 14th IEEE Symposium on
Computer Arithmetic, Adeline, Australia, pp.
70-77, 1999.

[8] A. Daly, W. Marnane: Efficient Architectures
for Implementing Montgomery Modular
Multiplication and RSA Modular
Exponentiation on Reconfigurable Logic.
Proceedings of the 2002 ACM/SIGDA 10th

International Symposium on Field-
Programmable Gate Arrays FPGA’02,
Monterey, California, USA, February 2002.

[9] M. Drutarovský, V. Fischer, M. Šimka:
Comparison of Two Implementations of
Scalable Montgomery Coprocessor Embedded
in Reconfigurable Hardware. In Proceedings of
the XIX Conference on Design of Circuits and
Integrated Systems - DCIS 2004, pp. 240-245,
Bordeaux, France, November 24-26, 2004.

[10] ACEX 1K Programmable Logic Device
Family. Data Sheet, May 2003, ver. 3.4.
www.altera.com

[11] APEX 20K Programmable Logic Device
Family. Data Sheet, March 2004, ver. 5.1.
www.altera.com

[12] APEX II Programmable Logic Device Family.
Data Sheet, August 2002, ver. 3.0.
www.altera.com

[13] Cyclone Device Handbook, Volume 1, March
2005, ver. 1.6. www.altera.com

[14] Stratix Device Handbook Volume 1, January
2005, ver. 3.2. www.altera.com

[15] C. D. Walter: Systolic Modular Multiplication,
IEEE Transactions on Computers, no. 3, (42),
pp. 376–378, March 1993.

[16] Colin D. Walter: Montgomery's Multiplication
Technique: How to Make It Smaller and Faster.
In C.K. Koc and C. Paar, editors,
Cryptographic Hardware and Embedded
Systems, Lecture Notes in Computer Science,
No.1717, pp. 80-93, Springer, Berlin,
Germany, 1999.

[17] M. Drutarovský, V. Fischer: Implementation of
Scalable Montgomery Multiplication
coprocessor in Altera reconfigurable hardware,
in Proceedings of the International Conference
on Signal Processing and Multimedia
Communications, Košice, Slovakia, pp. 132–
135, November 2001.

[18] V. Fischer, M. Drutarovský: Scalable RSA
Processor in Reconfigurable Hardware – a SoC
Building Block, in Proceedings of XVI.
Conference of Design of Circuits and
Integrated Systems – DCIS 2001, Porto,
Portugal, pp. 327–332, November 2001.

[19] NIOS 3.0 CPU, Data Sheet, November 2004,
ver. 2.2. www.altera.com

[20] C. K. Koc, T. Acar, B. S. Kaliski, Jr.:
Analyzing and Comparing Montgomery
Multiplication Algorithms, IEEE Micro, no. 3,
(16) pp. 26–33, 1996.

[21] V. Frolek: Implementation of Asymmetric
Encryption Algorithms in Reconfigurable
Circuits, Master’s thesis, Technical University
of Košice, Department of Electronics and
Multimedia Communications, January-May
2002.

[22] J. Pelzl, M. Šimka, T. Kleinjung, J. Franke, C.
Priplata, C. Stahlke, M. Drutarovský, V.
Fischer, C. Paar: Area-time Efficient Hardware
Architecture for Factoring Integers with the
Elliptic Curve Method, IEE Proceedings -
Information Security, Special Issue on
Cryptographic Algorithms and Architectures
for System-on-Chip, Vol. 152, No. 1, pp. 67-
78, 2005.

BIOGRAPHIES

Miloš Drutarovský was born in 1965 in Prešov,
Slovak Republic. He received the MSc degree in
radioelectronics and PhD degree in electronics from
Technical University of Košice, Slovak Republic, in
1988 and 1995, respectively. He defended his
habilitation work - Digital Signal Processors in
Digital Signal Processing in 2000. He is currently
working as an Associated Professor at the
Department of Electronics and Multimedia
Communications, Technical University of Košice.
His current research interests include applied
cryptography, digital signal processing, and
algorithms for embedded cryptographic
architectures.

Martin Šimka was born in 1979 in Košice. He
received his MSc degree in electronics and
telecommunications in 2002 after defending his
Master's Thesis - Conception of connection of
embedded processor to arithmetic coprocessor in
SOPC Altera. Currently he is a PhD student at the
Department of Electronics and Multimedia
Communications, Technical University of Košice
and his main research area is an implementation of
cryptographic blocks on FPGAs.

Viktor Fischer received the MSc and PhD degrees
in electronics from Technical University of Košice,
Slovak Republic, in 1981 and 1991, respectively.
From 1982 to 1991 he was an Assistant Professor at
the Department of Electronics, Technical University
of Košice. Since 1991, he has been working at the
Jean Monnet University of Saint-Etienne, France, as
an Invited Professor in electronics and computer
science. In the Laboratory Traitement du Signal et
Instrumentation (TSI), UMR 5516 CNRS/University
of Saint-Etienne, he works on signal and image
processing, information security and embedded
cryptographic systems. He is also currently working
with company Micronic (Košice, Slovak Republic)
oriented towards the development and production of
data security hardware and software.

