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SUMMARY
This paper presents a comparison of possible approaches for an efficient implementation of Multiple-word radix-2 

Montgomery Modular Multiplication (MM) on modern Field Programmable Gate Arrays (FPGAs). The hardware 
implementation of MM coprocessor is fully scalable what means that it can be reused in order to generate long-precision 
results independently on the word length of the originally proposed coprocessor. The first of analyzed implementations uses a 
data path based on traditionally used redundant carry-save adders, the second one exploits, in scalable designs not yet 
applied, standard carry-propagate adders with fast carry chain logic. As a control unit and a platform for purely software 
implementation an embedded soft-core processor Altera NIOS is employed. All implementations use large embedded memory 
blocks available in recent FPGAs. Speed and logic requirements comparisons are performed on the optimized software and 
combined hardware-software designs in Altera FPGAs. The issues of targeting a design specifically for a FPGA are 
considered taking into account the underlying architecture imposed by the target FPGA technology. It is shown that the 
coprocessors based on carry-save adders and carry-propagate adders provide comparable results in constrained FPGA 
implementations but in case of carry-propagate logic, the solution requires less embedded memory and provides some 
additional implementation advantages presented in the paper. 
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1. INDRODUCTION 

Many popular cryptographic algorithms, such as 
the RSA, ElGamal, Elliptic curve cryptography 
(ECC), Diffie-Hellman etc. [1] include extensive use 
of modular exponentiation of long integers. 
However, it is a very slow operation when 
performed on a general-purpose computer since 
current typical operands (e.g. for RSA) have 1024, 
2048 or more bits. The modular exponentiation is 
achieved by repeated modular multiplications. An 
efficient Modular Multiplication (MM) algorithm for 
the calculation of modAB M  was developed by P.L. 
Montgomery [2].  

A scalable MM design methodology in prime 
Galois Fields (GF) introduced in [3] forms the basis 
of approaches presented in the paper. This design 
methodology based on Carry-Save Adders (CSA) 
[4] allows using a fixed-area modular multiplication 
circuit for performing multiplication of (virtually) 
unlimited precision operands in radix-2. The design 
tradeoffs for the best ASIC performance in a limited 
chip area of ASIC gates were analyzed in [3, 5]. 

A cheap and flexible modular exponentiation 
hardware accelerator can be also achieved using 
Field Programmable Gate Arrays (FPGAs). Results 
presented in literature, e.g. [6-8] are mainly 
concentrated to systolic-like implementations that 
provide very fast but less flexible solution. Current 
FPGAs provide an alternative hardware platform 
even for system-level integration of complete 
cryptographic systems. A System on a Configurable 
Chip (SoCC) typically includes an embedded 

processor with a set of dedicated coprocessors. For 
SoCC a highly flexible (although typically slower) 
scalable MM coprocessor could be more attractive 
than the one with the fixed length.  

Principal questions that motivated this paper are:  
1. Is CSA-based data path the best option for 

a scalable MM implementation in modern 
FPGAs?  

2. What is the best organization for a scalable 
architecture for given constrained FPGA 
resources? 

To answer these questions, we consider such 
design aspects as the architecture, the effect of the 
word length, the number of pipelined stages, the size 
of Embedded Memory Blocks (EMBs), etc. on 
Altera FPGAs. Although these results are vendor 
specific they can be generalized also for other 
FPGAs (e.g. Xilinx). 

This paper presents the results originally 
presented in [9] and is organized as follows: Section 
2 gives a brief discussion on the scalability of an 
arithmetic unit in the context of FPGA application. 
Section 3 introduces a Montgomery method of MM, 
used notation and applied algorithmic optimization. 
Multiple-word radix-2 Montgomery multiplication 
algorithms suitable for scalable implementation are 
described in Section 4. Section 5 describes how the 
underlying architecture of the target FPGA may be 
utilized to produce an optimized design within 
constrained FPGA resources. Implementation results 
including final speed and area requirements of the 
hardware MM coprocessor designs as well as the 
pure software solution based on the embedded 



Altera NIOS processor are presented in Section 6. 
Finally, concluding remarks are presented in the  
Section 7. 

2. SCALABILITY OF COPROCESSOR 
ARCHITECTURE IN FPGA 

An arithmetic (cryptographic) unit is called 
scalable if it can be reused or replicated in order to 
generate long-precision results independently on the 
data precision for which the unit was originally 
designed [3]. The typical scalable coprocessor 
consists of two separate blocks – memory and 
scalable processing element interconnected by w -
bit data path as shown in Fig.1. 

Separation of the processing element with data 
path and the memory block is the first fundamental 
difference from FPGA designs optimized for fixed-
length operands – e.g. [7, 8]. RAM in modern 
FPGAs is implemented in dedicated part of the 
device in the form of Embedded Memory Blocks 
(EMBs). In Altera devices they have size of 2 or 4 
kbits [10-14]. The EMB could be an ideal 
component to build a memory for a scalable MM 
coprocessor since its size is comparable to typical 
RSA operand sizes. FPGAs typically contain 
relatively large number of EMBs, which can be 
configured as true dual-port memories. Therefore the 
proposed MM coprocessor designs for FPGA will 
exploit these EMBs for data storing. 
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Fig. 1 Architecture of a general scalable 
coprocessor based on a separated memory and a 
processing element with w -bit data path width 

3. MONTGOMERY MULTIPLICATION IN 
MONTGOMERY DOMAIN 

In the following text, the notation from [3, 5] is 
used. Given two n -bit integers X  and Y , and the 
prime modulus M , the original Montgomery 
multiplication algorithm computes 

1MM , modZ X Y XYr M , (1) 

where 2nr , ,X Y M r  and M  is an n -bit 
number. The algorithm is applicable for any 
modulus M  provided that GCD , 1.M r

3.1.  Montgomery exponentiation 

Basic MM (1) can be used especially for efficient 
computation of modular exponentiation by the 
standard Montgomery exponentiation algorithm [1] 
( 1 0 2, ,tE e e  with 1 1te , all other variables 
are k -bit integers) described in Alg. 1. 

Alg. 1 The Montgomery exponentiation algorithm. 
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The Montgomery multiplication is especially 
efficient when a sequence of MM is used in a row. 
The input X  is transformed to Montgomery domain 
X  (or Montgomery base) in step 1 of Alg. 1. And 

then we use Montgomery form of MM instead of 
regular MM. The final result is transformed back to 
the real domain by Montgomery multiplication by 1 
(since for any X , we have MM ,1X X ).

3.2.  Radix-2 Montgomery multiplication  

The basic radix-2 Montgomery multiplication 
algorithm for m -bit operands 1 1 0, , ,mX x x x ,
Y , and M is given as Alg. 21. Alg. 2 is suitable for 
the hardware implementation because it is composed 
of simple operations: a word-by-bit multiplication, 
right bit-shift (division by 2) and an addition. The 
test of an even condition is also very simple to 
implement; it consists of checking the least 
significant bit of the partial sum 1iS  followed by 
decision if the addition of M  is required. 

                                                          
1 In the rest of the paper we use m  as a parameter for length of 
the input operands ,X Y  and M . The parameter n  will be used 
for setting the 2nr . Optimized implementations use n m .



Alg. 2 The basic radix-2 Montgomery multiplication 
algorithm for m -bit operands 

1 1 0, , ,mX x x x , Y  and M .
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The described formulation of radix-2 algorithm 
was used as the starting point for derivation of 
scalable MM presented in [3, 5]. Instead of direct 
usage of the Alg. 2, several optimizations of original 
MM are taken from references [15, 16] to formulate 
the Alg. 3 (such formulation is used also for fast 
implementation, e.g. in [7, 8]). 

Alg. 3 The optimized radix-2 Montgomery 
multiplication algorithm for 3m -bit 
operands 1 1 00,0, , , , ,m mX x x x x , Y
and M .
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In the Alg. 3 

1 1 0
0

2 0,0, , , , , 2
m i

i m m
i

X x x x x x M , (2) 

1
1 0

0

ˆ ˆ 2 , , , ,0 4
m i

i m
i

Y y y y y M , (3) 

where 32mr , , 2X Y M (two times larger than 
in Alg. 2 so can be reused for the following MM in 
Alg. 1) and 12 2m mM  is an m -bit number (the 
same as in the Alg. 2). Note that Ŷ  in (3) is the left 
shifted version of Y , with 0ˆ 0y . This 

modification simplifies the computation of iq
compared to the Alg. 2. The loop of the Alg. 3 is 
executed three more times ( 3m ) than in the Alg. 
2, what ensures that the inequalities  

3 , 0,1, , 2iS M i m (4)

and

3

3

MM ,

2 mod 2

m

m

Z S X Y

XY M M
  (5)  

always hold.  
The result of MM ,Z X Y  in the Alg. 3 can 

thus be reused as an input X  and Y  for the next 
MM. This modification avoids the originally 
proposed final correction step (comparison and 
subtraction shown in the Alg. 2) and makes a 
pipelined execution of the Montgomery 
exponentiation algorithm much simpler. 

In typical applications (e.g. RSA, ECC), input 
operands X , Y  are transformed into Montgomery 
domain by pre-multiplication with a factor 

22 modm M  (Alg. 2) or 2 62 modm M  (Alg. 3). The 
final MM with value 1 ( MM ,1A A  in Alg. 1) 
makes the final result smaller than M (without any 
final correction step in Alg. 3) and provides the 
result modXY M  [7, 16]. 

4. MULTIPLE-WORD RADIX-2 
MONTGOMERY MULTIPLICATION 
ALGORITHM

Operations in Alg. 2 and Alg. 3 are performed on 
full-precision operands and do not provide 
scalability shown in Fig. 1. A scalable algorithm 
requires a word-oriented processing. Let us consider 
w -bit words. For operands with m -bit precision, 
1 ( 1) /e m w  words are required for Algorithm 

2. An extra bit used in the calculation of 1e  is 
required since it is known that iS  (the internal 
variable of radix-2 algorithm) is in the range 
0, 2 1M  where M  is the modulus [3]. Thus the 

computations of Alg. 2 must be done with an extra 
bit of precision. The input operands will need an 
extra 0 bit value at the leftmost bit position in order 
to have the precision extended to the correct value. 

The Alg. 3 requires 2 3 /e m w  words in 
order to support extended range of input variables 
X , Y , and internal variable iS . Note that in many 

practical configurations 1 2e e  and no additional 
words are required for the Alg. 3. The operand X
will need two extra 0 bit values at the leftmost bit 
positions in order to have the precision extended to 
the 3m  cycles required by Alg. 3. Note that in 
practical configurations 1024m  (for RSA) or 

160m  (for ECC), so the difference in number of 
cycles is not significant. On the other hand, the 
possibility to remove correction unit from hardware 



design of Alg. 3 greatly simplifies the hardware 
design. 

A scalable algorithm in which operands 
Y (multiplicand) and M (modulus) are scanned 
word-by-word and the operand X  (multiplier) is 
scanned bit-by-bit, was proposed in [3, 5]. It is 
called Multiple Word Radix-2 Montgomery 
Multiplication algorithm (MWR2MM) and it uses 
the following vectors: 

1 1 0

1 1 0

1 1 0

1 1 0

, , , ,

, , , ,

, , , ,

, , , ,

e

e

e

m

M M M M

Y Y Y Y

S S S S

X x x x

 (6) 

where the words are marked with superscripts and 
the bits are marked with subscripts. The 
concatenation of vectors a  and b  is presented as 

,a b . A particular range of bits in a vector a  from 
position i  to position j , j i  is represented as 

...j ia . The bit position i  of the thk  word of a is
represented as k

ia . The details of the MWR2MM 
algorithm (Alg. 4, in this paper it will be referred to 
as MWR2MM_CSA) are given in [3].  

Alg. 3 can be transformed to a multiple word 
form (Alg. 5) in a similar way (here referred to as 
MWR2MM_CPA as its implementation is based on 
application of Carry-Propagate Adders (CPA)). In 
Alg. 5, the notation from (6) is used with the 
exception of X  which is given by (2). The 
MWR2MM_CPA algorithm features the same basic 
characteristics as the original MWR2MM algorithm. 
Thus, the MWR2MM_CSA as well as 
MWR2MM_CPA imposes no constraints on the 
precision of operands. The carry variable C  must be 
from the set 0,1, 2 . This condition is imposed by 
the addition of the three vectors S , M , and ˆ

ix Y
[3]. 

MWR2MM_CSA and MWR2MM_CPA share 
the same data dependencies. Detailed analysis of 
algorithm implementation can be found in [3, 5]. It 
can be directly applied to MWR2MM_CPA 
algorithm, too. The main result of this analysis – the 
possibility to operate in pipelined stages is used by 
FPGA implementations proposed in this paper.  

There are two possible approaches how to 
increase the speed of both algorithms: 

1. To increase the word length w : Typical 
FPGAs provide the EMBs with dual port memory 
feature and configurable word lengths up to 16 bits. 
Since the capacity of EMBs is sufficient for typical 
RSA or ECC operands, in constrained designs it 
makes sense to use only one ( 16w ) or two 
( 32w ) EMBs per algorithm variable. Usage of 
more EMBs per variable is not reasonable for 
currently used operands (say, up to 4096 bits) and 
EMB sizes. This is especially important for 
constrained SoCC designs. 

Alg. 4 The multiple word radix-2 Montgomery 
multiplication MWR2MM_CSA algorithm. 
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Alg. 5 The multiple word radix-2 Montgomery 
multiplication MWR2MM_CPA algorithm. 
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2. To increase the number of pipelined stages 
pN : The hardware structure for both solutions is 

relatively simple and fast. An addition of several 
pipelined stages can increase the overall speed, 
especially if the access to the embedded memory is a 
bottleneck (as it is a case of FPGA with limited 
routing resources for a large w ). However, 
significant increase of the number of pipelined 
stages necessitates a reduction of the complexity of 
one stage. 

The main difference between the 
MWR2MM_CPA and the MWR2MM_CSA 
algorithms is a non-redundant representation of 

iS variables in case of the MWR2MM_CPA with the 
following consequences: 



1. The MWR2MM_CPA algorithm uses less 
(only 80% of MWR2MM_CSA) memory resources 
for the same operand sizes. 

2. The MWR2MM_CPA algorithm does not 
require the final correction unit (MWR2MM_CSA 
algorithm requires at least the final conversion to the 
non-redundant form). 

3. The MWR2MM_CPA algorithm allows a 
simpler computation of internal iq  variable that can 
(potentially) allow simplification of the architecture 
of the MWR2MM_CPA Processing Element (PE). 

4. The MWR2MM_CSA PE is always faster than 
MWR2MM_CPA one because it does not use the 
carry at all. The MWR2MM_CPA PE is slower but 
uses less LEs (so within the same FPGA resources, 
more MWR2MM_CPA PE pipelined stages can be 
used, what can in turn speed up the complete 
solution). 

It is clear, that the speed of the MWR2MM_CPA 
PE depends significantly on the word-length (the 
length of carry chain). However, we can suppose 
that up to a certain word-length maxw w  the speed 
of the MWR2MM_CPA PE is not critical, because 
the final speed is dominated by the embedded 
memory access time. The value maxw  may differ 
between technologies due to the different routing 
and distinct physical layout. The unanswered 
question is whether the maxw  is larger than 16 (or 
32) bits required for economical usage of EMB 
resources in current FPGAs as it was explained in 
Section 2. This is analyzed in the next section. 

5. MWR2MM PROCESSING ELEMENTS 
COMPARISON

The whole computational complexity of both 
algorithms lies in the three additions of w -bit 
operands for computation of 1iS . In the following 
part we describe pipelined implementations of the 
Alg. 4 and 5 optimized for constrained FPGA 
resources.

5.1. Architecture of processing elements 

As the propagation of w  carries is (in general) 
too slow and an equivalent carry look-ahead logic 
requires too many resources, implementation of 
MWR2MM_CSA in [3] uses redundant carry-save 
representation [4]. A w -bit PE architecture 
implementing the MWR2MM_CSA algorithm 
(CSA_PE) based on Full Adders (FAs) is depicted in 
Fig. 2. 

In order to reduce the storage and arithmetic 
hardware complexity, the operands ,X Y , and M
are available in a non-redundant form. The 
intermediate internal sum S  is received and 
generated in the redundant carry-save form 1S , 2 S .

Conversion into binary representation is done 
only at the very end for feeding the intermediate 
result back as X  or Y  for a new computation (e.g. 

next iteration of modular exponentiation). The 
redundant representation of variables requires twice 
as much memory as a non-redundant representation. 
This is a drawback of the MWR2MM_CSA 
algorithm. However, it can be easily mapped into 
FPGA as it was done in [17, 18]. 
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Fig. 2 Block diagram of a CSA-based w -bit 
MWR2MM processing element CSA_PE based on 

full adders (FAs) [3] 
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Fig. 3 Block diagram of a new CPA-based w -bit 
MWR2MM processing element CPA_PE based on 

FAs

Recent FPGAs contain high speed 
interconnecting lines between adjacent logic blocks 
which are designed to provide efficient carry 
propagation. 

The PE architecture presented in this paper is 
optimal for implementation on any FPGA that has 
dedicated carry logic capability (e.g. modern Altera 
and Xilinx FPGAs). The basic organization of the 
data path consists of two layers of conventional 
Carry-Propagated Adders (CPA) as shown in Fig. 3. 
MWR2MM Processing Element (CPA_PE) occupies 
smaller area than that used for MWR2MM_CSA 
(Fig. 2) and uses less embedded memory.  



5.2. Pipelined organization of PEs 

The main advantage of the scalable architecture 
lies in the fact that the PEs can be easily repeated to 
increase throughput [3]. In the pipelined version of 
the multiplier pN  slightly modified PEs (some 
registers have to be added to allow temporary data 
storage) are connected in a cascade (for CPA_PEs 
see Fig. 4).  

The maximum number of pipelined stages is 
found as: 

max

1
2p

eN  (7) 

To keep the control logic simple the number of 
the stages pN  is restricted to values that divide the 
number of words e . In this way, the output of the 
last stage after computation is finished is the final 
result. The total computation time T  (in clock 
cycles) when 

maxp pN N  stages are connected in 
the cascade is 

2 p
p

ewT e N
N

 (8) 

5.3. Performance analysis of scalable CSA_PE 
and CPA_PE 

Tab. 1 and Tab. 2 give results of the 
MWR2MM_CSA and the MWR2MM_CPA PEs 
implementations (including data storage registers 
necessary for the pipelined version) in different 
Altera FPGAs for various word lengths w . The  

results have been obtained with Altera Quartus 
development system, version 4.0. PEs have been 
implemented in parameterized VHDL code. Carry 
chains have been realized using the lpm_add_sub
function from the Library of Parameterized Modules 
(LPM) – a technology-independent library of logic 
functions that are parameterized to achieve 
scalability and adaptability. 

There are several interesting facts that can be 
seen in these tables. With the exception of the 
CPA_PE implemented in the ACEX family, the two 
solutions are technologically independent (as far as 
the area occupation is concerned). 

Tab. 1  PE sizes and speeds for old style Altera 
FPGAs

CPA_PE CSA_PE 
w Size Speed w Size Speed Device

(bits) (LEs) (MHz) (bits) (LEs) (MHz) 
8 66 161 8 81 232 

16 130 129 16 161 202 ACEX [10]
EP1K100-1 32 258 99 32 321 170 

8 59 161 8 81 232 
16 115 129 16 161 202 

APEX [11] 
EP

20K160-1 32 227 99 32 321 170 

Tab. 2  PE sizes and speeds for new style Altera 
FPGAs

CPA_PE CSA_PE 
w Size Speed w Size SpeedDevice

(bits) (LEs) (MHz) (bits) (LEs) (MHz)
8 59 277 8 81 304 
16 115 235 16 161 304 CYCLONE [13] 

EP1C20-6 32 227 221 32 321 304 
8 59 271 8 81 304 
16 115 248 16 161 304 STRATIX [14]  

EP1S10-6 32 227 214 32 321 304 
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Fig. 4 Pipelined organization of the Montgomery MM coprocessor based on pN  CPA_PEs connection and 
separated embedded data memory 



The size (expressed as a number of logic 
elements (LEs) in Altera FPGAs) of the block 
depends almost linearly on the word length w . The 
CSA_PE occupies always more resources than the 
CPA_PE. The most important fact concerns the 
speed of the PEs.

As it could be expected, the CSA_PE is always 
faster and the speed varies either only slightly (for 
old families) or almost not at all (for recent families, 
probably due to enhanced routing possibilities) with 
the word length w . However, the speed of the 
CPA_PE in the older families decreases significantly 
with the word length (about 40% from 8 bits to 32 
bits). Recent Altera devices use an enhanced carry 
chain. The so-called carry-select chain uses the 
redundant carry calculation (hardwired) to increase 
the speed of carry functions. This feature enables to 
get processing times for the CPA_PE comparable to 
the CSA_PE (it is about 10 to 30% slower). Since 
CPA_PE is about 20% smaller, we can improve the 
final speed by increasing number of pipelined stages 

pN . However, this approach does not seem to be 
adequate for the word lengths 32w  bits. 

6. IMPLEMENTATION RESULTS 

An advantage of the use of the SoCC is that 
hardware and software solutions can be compared in 
a better way. In the SoCC both software and 
hardware solutions occupy the same resources. The 
fully software solution needs relatively large logic 
resources and small memory resources to implement 
the processor and sometimes large memory to 
implement the program. The fully hardware solution 
needs larger logic resources and eventually some 
data memory. In a mixed hardware-software design, 
parallel and time critical operation can be done in 
the hardware (dedicated coprocessor) and complex 
sequential and control operations in the software 
(hard- or soft-core processor). In the proposed SoCC 
design the speedup factor of the coprocessor 
application in relationship to the entirely software-
based solution can be measured quite easily: both 
implementations use the same embedded processor, 
e.g. Altera NIOS soft core. 

Altera NIOS CPU [19] is a pipelined general-
purpose RISC microprocessor. NIOS supports both 
32-bit and 16-bit architectural variants. Both of them 
use 16-bit instructions. The processor has a five-
stage pipelined structure with separate instruction 
and data-memory blocks (Harvard memory 
architecture). NIOS can include up to 512 internal 
general-purpose registers. The compiler uses the 
internal registers to accelerate subroutine calls and a 
local variable access. A 32-bit NIOS CPU can 
optionally be configured to include a hardware 
integer multiplier. This hardware is used by the 
MUL instruction to compute 32-bit result in three 
clock cycles2. This option is not supported in the 16-

                                                          
2 When using the MUL option with Altera STRATIX devices, the 
hardware multiplier uses DSP blocks for implementation.

bit NIOS instruction set. In order to obtain realistic 
comparisons, 32-bit NIOS CPU with hardware 
supported MUL instruction was used for software 
implementation. 

We have realized three different systems:  
a) the first one was based on a fully software 

solution implemented on a 32-bit NIOS processor,  
b) the second version used 16-bit NIOS 

processor and the pipelined MWR2MM_CSA 
coprocessor,

c) the third version used 16-bit NIOS and the 
pipelined MWR2MM_CPA coprocessor. 

6.1. Execution times and implementation details 

a) The software implementation of the MM 
algorithm has been written in the NIOS assembly 
language by using known optimization techniques 
for target processor. The Separated Operand 
Scanning (SOS) MM method [20] was used as the 
best method for given NIOS RISC architecture [21]. 
Tab. 3 shows the software MM timings for this fully 
software solution at 50 MHz. 32-bit NIOS processor 
had 2137 LEs and hardware integer multiplier (for 
MUL instruction) had 446 LEs. 

Tab. 3 Execution times of software implementation 
of MM on Altera NIOS development board 
(with APEX EP20K200-2X FPGA) 

Length 
e w Method Multiplication

(ms) 
Squaring 

(ms) 

1024 SOS32MEM 2.40 1.87 
2048 SOS32MEM 9.47 7.24 

b) In the mixed hardware-software design 
multiplication is realized in the hardware as a 
coprocessor. Therefore we did not need the 32-bit 
version of the NIOS core. To reduce resources usage 
the second design has used the 16-bit NIOS 
processor (with area occupation - 1275 LEs), which 
was powerful enough to realize the necessary control 
operations. The coprocessor was based on a 16-bit 
( 16w ) MWR2MM_CSA PE with 6pN
pipelined stages. The coprocessor has thus occupied 
additional 1290 LEs. So the total area occupation of 
the second solution was comparable to that of the 
first solution. The processor has been clocked at 

NIOS 50F  MHz and the coprocessor at 
CSA_MM 150F  MHz. Times necessary for 

Montgomery multiplication and squaring are 
presented in Tab. 4. 

Tab. 4  Execution times of hardware-software 
implementation of MM on Altera NIOS 
development board (with APEX EP20K200-
2X FPGA) for MWR2MM_CSA PE 

Length 
e w Method Multiplication

(ms) 
Squaring 

(ms) 

1024 64 16 MWR2MM_CSA 0.073 0.073 
2048 128 16 MWR2MM_CSA 0.291 0.291 



c) The third design was the same as the second 
one except for type of the coprocessor. It was based 
on a 16-bit ( 16w ) MWR2MM_CPA PE with 

9pN  pipelined stages, so that it has occupied 
about the same area as the coprocessor based on 
MWR2MM_CSA PE in the previous design. The 
processor has been clocked at NIOS 50F  MHz and 
the coprocessor at CPA_MM 100F  MHz. The results 
obtained for this configuration are presented in 
Tab. 5. 

Tab. 5  Execution times of hardware-software 
implementation of MM on Altera NIOS 
development board (with APEX EP20K200-
2X FPGA) for MWR2MM_CPA PE 

Length 
e w Method Multiplication

(ms) 
Squaring 

(ms) 

1024 64 16 MWR2MM_CPA 0.069 0.069 
2048 128 16 MWR2MM_CPA 0.278 0.278 

7. CONCLUSIONS 

In this paper we have evaluated two 
implementation methods of a scalable hardware 
Montgomery multiplier embedded in Altera FPGAs. 
It was shown that PE based on the conventional 
carry-propagated adders provides comparable speed 
results in implementation with constrained FPGA 
resources as originally proposed PE based on carry-
save adders. The new method uses only 80% of the 
embedded FPGA memory resources required for the 
coprocessor based on carry-save adders. The 
proposed implementation method can be applied 
also for FPGAs from other vendors since it uses 
building blocks generally available in modern 
FPGAs - high-speed dual-port embedded memories 
and fast carry-propagated logic.  

Both variants of the Montgomery multiplier 
(MWR2MM_CSA and MWR2MM_CPA) were 
successfully applied also in system implementations 
of RSA algorithm [18] and Elliptic Curve Method 
for factorization [22] (in this case Xilinx Virtex 
FPGA was chosen as a target platform). Thanks to 
the scalability of the MM the implementations are 
highly flexible and provide effective utilization of 
FPGAs resources. 
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