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ABSTRACT

We present a new blind deconvolution method for video sequence.

It is derived following an inverse problem approach in a Bayesian

framework. This method exploits the temporal continuity of both ob-

ject and PSF. Combined with edge-preserving spatial regularization,

a temporal regularization constrains the blind deconvolution prob-

lem, improving its effectiveness and its robustness. We demonstrate

these improvements by processing various real video sequences ob-

tained by different imaging techniques.

Index Terms— blind deconvolution, denoising, image recon-

struction, video signal processing.

1. INTRODUCTION

The problem of reconstructing a signal using observation blurred by

unknown process is called blind deconvolution. Nowadays, blind

image deconvolution receives increasing attention from the aca-

demic world (see [1] for a review). Although, many authors use

video sequences in a super-resolution framework (a multi-frame

blurred observation of the same scene (see e.g. [2]), to our knowl-

edge, few of them have studied the specific problem of blind video

sequence deconvolution [3]. In this paper, we propose to use the

temporal correlations in video sequence to design an effective blind

deconvolution algorithm.

2. MODEL DESCRIPTION

The video sequence g(s, t) observed in a direction s is composed

of T successive images gt(s) taken at different instant t between its

beginning t1 and its end tT . It is given by:

g(s, t) =

"
h(s, t|s′, t′)x(s′, t′)ds′dt′ + n(s, t), (1)

where x(s′, t′) is the object brightness at instant t′, h(s, t|s′, t′) is the

point spread function (PSF), and n(s, t) account for the noise (source

and detector). The PSF h(s, t|s′, t′) is the observed brightness distri-

bution at instant t in the direction s for a point source located at the

instant t′ in direction s′.

For data sampled on N pixels, Eq. (1) can be written in a matrix

form:

g = H · x + n, (2)

where g = (gT
t1
, . . . , gT

tT
)T and x = (xT

t1
, . . . , xT

tT
)T are vectors of size

N · T , n is a N · T random vector and H is a N · T × N · T matrix.

In this study, we make two major assumptions. First, there is no

temporal spread (gt = Ht ·xt+nt ,∀t) and H becomes block diagonal.

Then, the PSF is shift invariant (isoplanatic) and Ht can be expressed

using spatial convolution product ∗ and its first row ht:

gt = ht ∗ xt + nt. (3)

Under circulant approximation, this can be evaluated rapidly using

FFTs.

3. BAYESIAN APPROACH

In blind deconvolution both the object vector and the PSF h (defined

by h = (hT
1 , . . . , h

T
T )T), of size N · T , must be estimated using (N · T )

measurements in g.

Following [4], the “maximum a posteriori” solution is:

{x, h}MAP
= arg max

{x,h}

Pr{x, h|g}. (4)

From Bayes’ theorem, assuming x and h are independent:

Pr{x, h|g} =
Pr{g|x, h}Pr{x}Pr{h}

Pr{g}
(5)

and since Pr{g} does not depend on the model, we can write:

{x, h}MAP
= arg max

{x,h}

(Pr{g|x, h}Pr{x}Pr{h}) . (6)

Maximizing Pr{x, h|g} is equivalent to minimizing

ε(x, h) = − log Pr{x, h|g} = Φlkl(x, h; g) + Φobj(x) + Φpsf(h), (7)

The penalizing function to minimize defined in Eq. (7) is the sum

of three terms : a likelihood penalty Φlkl(x, h; g) ensuring the agree-

ment between the model x∗ h and the data g, and two regularization

penalty Φobj(x) and Φpsf(h) introducing subjective a priori knowl-

edge about the object and the PSF respectively.

3.1. The likelihood penalty term

For Gaussian noise, the likelihood penalty reads:

Φlkl(x, h; g) = [g − m(x, h)]T · C−1
noise · [g − m(x, h)], (8)

where Cnoise is the covariance matrix of the noise and m(x, h) the

model. Using Eq. (2) the model is defined as:

m(x, h) = H · x, (9)



and is evaluated using Eq. (3) for all t. For uncorelated noise, Cnoise

is diagonal and Eq. (8) simplifies to:

Φlkl(x, h, g) =
∑

t

∑

k

wk,t

(

(Ht · xt)k − gt,k

)2
, (10)

where 1/wr,t is the noise variance for pixel k of frame t. This model

can cope with non-stationary noise and can be used to express con-

fidence on measurements on each pixel of the data. Thus it can deal

with unmeasured pixels on the sensor (1/σ2
= 0 for such pixels).

3.2. a priori on the object

As the different dimensions of the object are not homogeneous, we

take a separable regularization term:

Φobj(x) = µobj
Ψobj(x) +

T
∑

t=1

λ
obj
t Θobj(xt) , (11)

where Ψobj(x) is a temporal regularization and Θobj(xt) is a spatial

regularization at each instant t.

3.2.1. Spatial regularization on the object

There are many different kinds of spatial regularization used in im-

age reconstruction. As the noise mostly contaminates high frequen-

cies, smoothness is the most effective regularization constraint to

avoid amplification of noise. To avoid oversmoothing of sharp fea-

tures caused by quadratic regularization we choose an edge preserv-

ing regularization. This is achieved by taking, at each instant t:

Θobj(xt) =
∑

k

∑

v∈Vk

ϕ

(

xt,k − xv

dv

)

, (12)

where xv is the value of a pixel v in the neighborhood Vk of pixel

k (here a V8 neighborhood) and dv its distance to this pixel. In this

work, we choose a l1–l2 norm. This norm is asymptotically quadratic

(resp. linear) for small (resp. large) pixel differences compared to the

threshold η. It is defined by:

ϕ(u; η) = 2 η2 [

|u|/η − log (1 + |u|/η)
]

, (13)

The value of the parameter η is not critical for the reconstruction and

can be approximately fixed once for all to the value of one quan-

tization level. In that case, this regularisation is close to a pure ℓ1
regularization that promote sparsity of gradient[5], but it can be min-

imized faster by our optimization algorithm.

3.2.2. Temporal regularization on the object

If the scene evolution is slow compared to the time sampling, a

smoothing temporal regularization, similarly to the spatial regular-

ization but along the time axis, can be defined.

3.3. a priori on the PSF

As for the object, our PSF regularization term is split in:

Φpsf(h) = µpsf
Ψpsf(h) +

T
∑

t=1

λ
psf
t Θpsf(ht) . (14)

3.3.1. Spatial PSF regularization

As there are many different cause of blur (defocus, motion, diffrac-

tion, diffusion...), there are a lot of totally different shapes of PSF. In

this context we choose a parametric function p(θ) (Gaussian, gener-

alized Gaussian, Lorentzian...) to set the prior shape of the PSF, then

the regularization becomes [6]:

Θpsf(h) = (h − p(θ))TW(h − p(θ)), (15)

where W is a weight matrix. In our work to constraint the PSF to

be increasingly close to the prior shape as it moves away from its

center, we consider a diagonal W with a power law on the diagonal.

The functions p(θ), chosen according to the experimental conditions

shall have few parameters (width, orientation).

3.3.2. Temporal PSF regularization

As for the object, if the PSF evolution is slow compared to the

time sampling, a quadratic smoothing temporal regularization can

be used, e.g. :

Ψpsf(h) =

T−1
∑

t=2

(2 ht − ht−1 − ht+1)2 , (16)

4. ALGORITHM SUMMARY

In this Bayesian framework, reconstructing the de-blurred video se-

quence amounts to determine the couple {x+, h+} that minimizes the

criterion defined in Eq. (7), which writes:

ε =Φlkl(x, h; y) + µobj
Ψobj(x) + µpsf

Ψpsf(h)

+

T
∑

t=1

(

λ
obj
t Θobj(xt) + λ

psf
t Θpsf(ht)

)

,
(17)

The optimal reconstructed image x+ and PSF h+ depend on the value

of each parameter (four hyper-parameters per frame).

4.1. Hyper-parameters Setting

To simplify the determination of hyper-parameters, we have made

several simplification hypothesis. We suppose the noise statistical

property, the image dynamic and the PSF shape identical in each

frame. As a consequence: (i) the object spatial hyper-parameters

in each frame are identical ; (ii) the PSF spatial hyper-parameters

in each frame are identical. Thus we only have now four hyper-

parameters (λobj, λpsf , µobj and µpsf).

Despite this simplification, choosing the optimal values of the

hyper-parameters is cumbersome and difficult. Whether methods

such as generalized cross-validation (GCV)[7] or the L-curve [8]

are suitable for this task deserves an extensive study which is out

of the scope of this paper. In the present work, we simply choose

hyper-parameter values by visual inspection of the resulting image.

4.2. Minimization Method

An alternating minimization[9, 10] scheme is used to minimize the

criterion.

1. initialize the PSF with its prior shape h(0)
= p(θ) ,

2. estimate the optimal object x(k+1) given the PSF h(k),

3. estimate the optimal PSF h(k+1) given the object x(k+1),



4. repeat steps 2 and 3 until convergence or after a defined num-

ber (k) of iterations.

In order to determine the optimal image x+ and PSF h+ in our

inverse problem approach, one has to minimize a criterion with re-

spect to a very large number of variables (all the pixel values for

every frames). To that end, we used the VMLM-B algorithm [11]

which is a limited memory variant of the variable metric method with

BFGS updates [12]. This algorithm, which can further accounts for

bound constraints on the parameters. We make use of these bound

constraints to enforce PSF positivity. This algorithm has proven ef-

fectiveness for image reconstruction and only requires the computa-

tion of the penalty function to be minimized and its gradient. The

memory requirement is a few times the size of the problem.

5. EXPERIMENTAL RESULTS

This algorithm was used with different experimental data sets from

both medical and biological fields, and with different dynamical

imaging techniques.

5.1. Coronarography

(a) Raw image (b) Reconstruction of 1(a)

Fig. 1. One frame of a coronarography sequence

The coronarography is a radiological exam to observe coronary

arteries (heart arteries). This gives short (several seconds) video se-

quences displaying the motion of an impervious to X-ray product in

the coronary arteries. These sequences are examined by cardiologist

to localized obstacle in the arteries, possibly responsible of an heart

attack.

Ten sequences were acquired with the same system, and were

then processed with the same assumptions. Several item can be no-

ticed by a simple observation of the raw data (see Fig. 1(a)). (i) The

movement of the heart is too important between successive frames

to use a temporal constraint on the object. So we set µobj = 0. (ii)

As the blur seems to be caused by tissue in the axe of projection, and

as neither the patient nor the acquisition system was moving during

the recording, the PSF is supposed to be constant. As consequence,

µpsf = ∞ or equivalently ht = h1 ∀t. In that case the number of un-

known parameters on the PSF is divided by T , increasing the compu-

tation speed. (iii) The measured area is not square and is cropped by

some parts of the apparatus which remains the same in every frames

of every sequences. This is taken in account in the a priori weight

map W estimated by a basic thresholding and shown in Fig. 2(b) :

wk,t = wk =

{

1 if k-th pixel is measured,

0 otherwise.
(18)

The prior PSF p(θ) has a Lorentzian shape with only one parame-

ters: the full width at half maximum θ. Finally only three hyper-

parameters have to be determined to perform this blind deconvolu-

tion: λpsf , λobj and θ.

(a) Estimated PSF (b) Weight map

Fig. 2. Estimated PSF and weight map used for coronarography

sequence shown in Fig. 1

These sequences of about 75 frames of 512 × 512 pixels were

processed in about 80 seconds per frames on a Pentium IV CPU at

3.60 GHz. The assumption of an identical PSF in every frames of

a same sequence considerably constrains the PSF and improves the

convergence of the h+ determination stage. A further relaxing of

this temporal constraint on the PSF, does not show significant im-

provements and thus the assumption of a constant PSF is verified. A

frame of one of the studied sequences is shown Fig. 1(a), along with

the coresponding restored frame and the estimated PSF Fig. 2(a). Al-

though the working quantization was very small (at most 10 levels

between pixels in the arteries and the background), a visual assess-

ment shows the effectiveness of our technique. Motion perception

in the deconvolved video sequences is greatly improved as the sep-

aration of the coronaries and the background is enhanced. Let us

point out that the cropped area does not disturbed the deconvolution,

even for pixels close to the border of this area. These unmeasured

parts were just filled with uninformative smooth background in ac-

cordance with the smoothing prior. These restored sequences were

shown to cardiologists who confirmed the potential utility of the pre-

sented technique. If this method proves efficiency with with noisier

sequences, they can consider a decrease of the X-ray beam to de-

crease the irradiation of the patient.

5.2. Confocal Microscopy

Fig. 3. Mitochondria: frames from the raw sequence (right) and the

blind deconvolution (left).

Confocal microscopy is an optical technique used for imaging

with short depth of field, eliminating out of focus images. In this

experiment, a fluorescence product was used to mark mitochondria



in a “non beating HL-1” cell [13]. Temporal evolution of these mi-

tochondria was observed by confocal microscopy. As in the coro-

narography case and for the same reasons, the assumptions µobj = 0

and µpsf = ∞ are made. Both raw image and its coresponding frame

in reconstructed sequence are presented in Fig. 3. The raw sequence

is very noisy and the results clearly demonstrates similar ability of

regularized blind deconvolution to not only enhance the resolution

but also to reduce the noise.

5.3. Conventional Microscopy

Fig. 4. Epithelial Cell: frames from the raw sequence (right) and the

blind deconvolution (left).

A sequence of epithelial hair cells taken with conventional trans-

mission microscope was processed by our method. It is composed of

400 frames of 253×178 square pixels. In this sequences, the depth of

field is relatively thick and, as cilia move in the spatial three dimen-

sions, successive focalisations and defocalisations of the same cilium

can be observed. The blur on these cilia can be divided in blur due to

the apparatus, which is isoplanatic and out of focus blur, which is not

isoplanatic. As our method cannot cope with none isoplanatic PSF

we tried to remove only the blur due to the apparatus which were

considered isoplanatic and identical on every frames (µpsf = ∞). As

only the hairs are moving rapidly, a segmentation based on temporal

variation of pixels is made. A temporal constraint µobj is set for the

pixels of the background and the cell, but it is relaxed for pixels near

cilia (µobj = 0). A frame of both raw and deconvolved sequences are

shown in Fig. 4. On several pixels, disturbing diffraction figures due

to dust on a glass of the apparatus can be seen. This phenomenon is

taken into account by setting the weight these pixels at w2
k
= 0 as in

Sec. 5.1. Even in this difficult case, our method achieves to improve

resolution of both hairs and inner structures of the cell.

6. CONCLUSION

This paper presents a new method for blind deconvolution of video

sequences. We exploit both spatial and temporal continuity to

achieve a good characterization of the PSF and then a good video

sequence blind deconvolution. This method had proven its capability

and robustness with various experimental data.
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