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ABSTRACT

We present a new scheme for deconvolution of heteroge-
neous multidimensional data (e.g. spatio-temporal or spatio-
spectral). It is derived, in a very general way, following an
inverse problem approach. This method exploits the conti-
nuity of both object and PSF along the different dimensions
to elaborate separable constraints. This improves the effec-
tiveness and the robustness of the deconvolution technique.
We demonstrate these improvements by processing real X-
ray video sequences (x,y, t) and astronomical multi-spectral
images (x,y,λ).

1. INTRODUCTION

Nowadays, blind image deconvolution receives increasing
attention from the academic world (see [1] for a review).
Most of these works focus on image deconvolution and
to our knowledge, excepted in the specific super-resolution
field([2]), few of them ([3, 4, 5]) address the problem of de-
convolving multidimensional data (e.g. series of images of a
varying scene taken at different times or wavelengths). In this
paper, we propose an algorithm for blind or conventionnal
deconvolution of such multidimensional data. It uses correla-
tion along every dimension to elaborate constraints and then
perform effective deblurring. First we describe the model of
image formation, then we talk about the likelihood and the
different separable regularizations used in our approach. Af-
ter a quick summary of the algorithm, we show two results in
two different application fields: (i) a blind deconvolution of
medical X-ray video sequences (x,y, t); (ii) a deconvolution
of astronomical multi-spectral images (x,y,λ).

2. MODEL DESCRIPTION

In this paper we consider a multidimensional object f (s) with
heterogeneous dimensions s = (r, t,λ) with r = (x,y) the spa-
tial position, t the time and λ the wavelength. The data g(s)
are given by:

g(s) =
∫

h(s|s′) f (s′)ds′+n(s), (1)

where f (s′) is the object brightness distribution, h(s|s′) is the
point spread function (PSF), and n(s) accounts for the noise
(source and detector). The PSF h(s|s′) is the observed bright-
ness distribution at s for a point source located at s′.

For data sampled on a rectangular grid of N pixels, T
time frames and L wavelength channels, Eq. (1) can be writ-
ten in a matrix form:

g =H · f + n, (2)

where g and f are stacked vectors of size N · T · L, n is a
N ·T ·L random vector and H is a (N ·T ·L)×(N ·T ·L) matrix.
In other words:

gr,λ,t =

∑

r′,t′,λ′

Hr,t,λ;r′,λ′,t′ · fr′,t′,λ′ +nr,λ,t . (3)

If there is no spread between time frames or wavelength
channels or both (e.g. gr,λ,t =

∑

r′ Hr′,t,λ;r,λ,t · fr′,t,λ + nr,λ,t ),
H becomes block diagonal. In addition, if the PSF is shift
invariant (isoplanatic), then Eq. (1) can be expressed using
∗ to denote spatial convolution and the first spatial row of H
ht,λ = [hr,t,λ;∀r] :

gt,λ = ht,λ ∗
(r)

f t,λ+ nt,λ. (4)

Under circulant approximation, this can be evaluated rapidly
using FFT’s.

3. INVERSE PROBLEM APPROACH

In blind deconvolution the object vector f and the PSF h,
both of size N · T · L, must be estimated from only N · T · L
measurements stacked in g. This is a typical inverse problem,
that can be solved in a penalized likelyhood or maximum a
posteriori (MAP) framework [6].

This is achieved by estimating the couple { f+,h+} that
minimizes the cost function ε( f ,h):

{ f+,h+} = argmin
{ f ,h}

ε( f ,h), (5)

ε( f ,h) = Φlkl( f ,h, g)+Φobj( f )+Φpsf(h), (6)

This cost function ε( f ,h) is the sum of three terms: a likeli-
hood penalty Φlkl( f ,h; g) ensuring the agreement between
the model f ∗ h and the data g, and two regularization
penalties Φobj( f ) and Φpsf(h) introducing subjective a pri-
ori knowledge about the object and the PSF respectively.

In the case where the PSF is known (simple deconvolu-
tion), only the object vector f must be estimated. The crite-
rion becomes:

ε( f ) = Φlkl( f ,h, g)+Φobj( f ). (7)



3.1 The likelihood penalty term

For Gaussian noise, the likelihood penalty reads:

Φlkl( f ,h, g) = [g−m( f ,h)]T ·W · [g−m( f ,h)], (8)

where m( f ,h) is the model and W is a weighting matrix ac-
counting for the different noises (observation noise, detector
noise, model errors...) and is the inverse of its covariance
matrix: W = C−1

noise. Using Eq. (2) the model is defined as:

m( f ,h) =H · f , (9)

and can be evaluated using Eq. (4) for every (t,λ). If the
noise is uncorrelated, the weighting matrix is diagonal W =
diag(w) and Eq. (8) simplifies to:

Φlkl( f ,h, g) =
∑

r,t,λ

wr,t,λ

((

Ht,λ · f t,λ

)

r
−gr,t,λ

)2
, (10)

where 1/wr,t,λ is the noise variance for pixel r of frame t and
channel λ. This model can cope with non-stationary noise
and can be used to express confidence on measurements on
each pixel of the data. Since unmeasured data have infinite
variance, we can readily deal with missing (outside the field
of view) or bad pixels as follows:

wr,t,λ
def
=

{

Var(gr,t,λ)−1 if gr,t,λ is measured,
0 otherwise. (11)

Except for very low detector noise (< few e− per pixel),
we can approximate the total noise (Gaussian detector noise
plus Poissonnian signal noise) by a non stationary Gaussian
noise:

wr,t,λ
def
=















(

γmax(gr,t,λ,0) + σ2
r,t,λ

)−1
if gr,t,λ is measured,

0 otherwise,
(12)

where γ accounts for the quantization factor of the detector
and σ2

r,t,λ
is the variance of other approximately Gaussian

noise (for example read-out noise) on the pixel (r, t,λ).

3.2 Separable a priori

As the different dimensions of the object are not homoge-
neous, we consider a separable regularization term for the
object:

Φobj( f ) = Θobj( f )+Ψobj( f )+Ξobj( f ) , (13)

where Ψobj( f ) is a temporal regularization, Θobj( f ) is a spa-
tial regularization and Ξobj( f ) is the spectral regularization.

In the same way, we define a separable regularization for
the PSF:

Φpsf(h) = Θpsf(h)+Ψpsf(h)+Ξpsf(h) . (14)

In order to be as general as possible, we use:

Ψ(x ; α) =

∑

r,λ

αr,λΩΨ(x;r,λ), (15)

Θ(x ; β) =

∑

t,λ

βt,λΩΘ(x; t,λ), (16)

Ξ(x ; µ) =

∑

r,t

µr,tΩΞ(x;r, t), (17)

where x = f or h and where the Ω’s are metric functions.
For instance, in Eq. (16), ΩΘ(x; t,λ) is the spatial regular-
ization for a slice of x taken at given (t,λ) and βt,λ is the
corresponding weight. The weights α, β, and µ are so-called
hyper-parameters that have to be properly tuned. In what fol-
lows, we discuss the choice of the metric functions and of the
hyper-parameters.

3.3 Regularizations functions

In image reconstruction many different kind of regularisation
have been considered. In this section, we describe the partic-
ular functions that will be used in our tests.

3.3.1 Quadratic smoothness regularization

As noise mostly contaminates high frequencies, smoothness
is the most effective regularization constraint to avoid am-
plification noise. The regularization function is then defined
by:

Ωsmooth(x; t,λ) =
∥

∥

∥D · xt,λ

∥

∥

∥

2
2 , (18)

where D is a finite difference operator along one or several
homogeneous dimensions. This regularization is often used
for spatial regularization. Using 1st order finite difference,
Eq. (16) can be rewritten as:

Θobj(x ; βobj) =
∑

t,λ

β
obj
t,λ

∑

r

∑

r′∈Vr

∥

∥

∥

∥

∥

xr,t,λ− xr′,t,λ

d(r,r′)

∥

∥

∥

∥

∥

2

2
, (19)

where Vr is the neighborhood of position r and d(r,r′) is the
distance between position r and r′.

3.3.2 Edge preserving smoothness regularization

To avoid over-smoothing sharp features caused by quadratic
regularization an edge preserving regularization can be used.
This is achieved by replacing in Eq. (18) the quadratic norm
by a norm ϕ that penalizes large difference less severely than
quadratic norm:

Ωedge(x; t,λ) =
∑

r

ϕ
[

(

D · xt,λ

)

r

]

, (20)

In this work, we choose a ℓ1–ℓ2 norm. This norm is
asymptotically quadratic (resp. linear) for small (resp. large)
pixel value differences compared to a given threshold. It is
defined by:

ϕ(u;η) = 2η2 [

|u|/η− log(1+ |u|/η)
]

. (21)

where the parameter η is a threshold selecting the level be-
yond which the difference between a pixel and one of his
neighbor is due to an edge, and then must not be smoothed
too much. The value of this parameter η is not critical for the
reconstruction and can be approximately fixed to the value
of one quantization level. In that case, this regularisation is
close to a pure ℓ1 regularization but can be minimized faster
by our optimization algorithm.

With such a regularization function, the object spatial
regularizationΘobj(x ; βobj) defined in Eq. (19) can be rewrit-
ten as:

Θobj(x ; βobj, η)=
∑

t,λ

β
obj
t,λ

∑

r

∑

r′∈Vr

ϕ

(

xr,t,λ− xr′,t,λ

d(r,r′)
; η

)

. (22)



3.3.3 Shape regularization

If the prior on x can be described by a parametric function
p(θ) of parameters θ, the deviation between x and this prior
can then be taken as the regularization penalty [7]:

Ωshape(x; t,λ) = (xt,λ− p(θ))TWshape(xt,λ− p(θ)), (23)

where Wshape is a weighting matrix. The function p(θ),
should have few parameters (width, direction of elonga-
tion...).

This regularization is well adapted to spatial regulariza-
tion of the PSF. As there are many different causes of blur
(defocus, motion, diffraction, diffusion...), there is a lot of to-
tally different PSF shapes. In this context a parametric func-
tion p(θ) (Gaussian, generalized Gaussian, Lorentzian...) can
be chosen to set the prior shape of the PSF.

3.3.4 Spectral regularization for the object

In the case of a chromatic object fr,λ, it is possible to let the
spatial brightness distribution have a high dynamical range
while constraining the spectral distribution to follow approx-
imately the same law pλ through the following regulariza-
tion:

ΩΞ( f ;r, t) =
∑

λ

[

fr,t,λ+∆λ

pt,λ+∆λ

−
fr,t,λ

pt,λ

]2

, (24)

where pλ,t = 1/N
∑

r fr,t,λ is a charateristic synthetic spectrum
(the mean spectrum in Sec. 5.2) at epoch t.

4. ALGORITHM SUMMARY

In our framework, the reconstruction of the the deblurred ob-
ject corresponds to the determination of the couple { f+,h+}
that minimizes the criterion defined in Eq. (6), which writes:

ε =Φlkl( f ,h; g)
+Ψobj( f ; αobj)+Θobj( f ; βobj)+Ξobj( f ; µobj)
+Ψpsf(h ; αpsf)+Θpsf(h ; βpsf)+Ξpsf(h ; µpsf) .

(25)

The optimal reconstructed image f+ and PSF h+ depend on
the particular value of the hyper-parameters α, β, and µ.
Choosing the optimal values of the hyper-parameters is cum-
bersome and difficult. The large number of hyper-parameters
defined in this very general scheme can be drasticly reduced
according to simple rules as explained in Sec. 5.1.1. For
the few (2 or 3) remaining tunable parameters, methods such
as generalized cross-validation (GCV)[8] or the L-curve are
suitable, but deserve an extensive study which is out of the
scope of this paper. In the present work, we simply choose
hyper-parameters values by visual inspection of the resulting
image.

4.1 Minimization Method

In case of blind deconvolution, an alternate minimization
scheme is used to minimize the criterion:
1. initialize the PSF its a priori shape h(0)

= p(θ) ,
2. estimate the optimal object f (k+1) given the PSF h(k),
3. estimate the optimal PSF h(k+1) given the object f (k+1),
4. repeat steps 2 and 3 until convergence or after a defined

number (k) of iterations.

In order to determine the optimal image f+ and PSF h+

in our inverse problem approach, we have to minimize a cri-
terion with respect to a very large number of variables (all
the pixel values for every frames). To that end, we use the
VMLM-B algorithm [9] which is a limited memory variant
of the variable metric method with BFGS updates [10]. This
algorithm, can further account for bound constraints on the
parameters. We make use of this feature to enforce PSF
positivity. This algorithm has proven its effectiveness for
image reconstruction and only requires the computation of
the penalty function being minimized and its gradient. The
memory requirement is a few times the size of the problem.

5. RESULTS

5.1 Coronarography

The coronarography is a radiological exam to observe coro-
nary arteries (heart arteries). This gives short (several sec-
onds) video sequences displaying the motion of an imper-
vious to X-ray product in the coronary arteries. These se-
quences are examined by a cardiologist to localize obstruc-
tion in the arteries caused by atherosclerosis, possibly re-
sponsible of an heart attack. Ten sequences were acquired
and, as the blurring process is unknown, the (x,y, t) object
is reconstructed using the blind deconvolution scheme. Ev-
ery sequences were acquired with the same system and were
processed under the same assumptions.

5.1.1 Regularization and hyper parameters settings

(a) Estimated PSF (30 ×
30)

(b) Weight map (512×
512)

Figure 1: Estimated PSF and weight map used for coronarog-
raphy sequence shown in Fig. 2

Several specificities can be noticed by a simple observa-
tion of the raw data (see Fig. 2(a)) and can be used to define
regularization functions and hyper-parameters for both the
object and the PSF:

(i) A shape constraining regularization as defined in
Eq. (23) with a Lorentzian prior shape p(θ) appears to be
a good prior; hence Θpsf(x ; βpsf) = Ωshape(x). The parameter
θ is then the full width at half maximum of the Lorentzian.

(ii) As the blur seems to be caused by tissue in the axis of
projection, and as neither the patient nor the acquisition sys-
tem was moving during the recording, the PSF is supposed
to be constant. As a consequence, hr,t = hr, ∀t. In that case
the number of unknown parameters on the PSF is divided by
T , increasing the computation speed and robustness.

(iii) The frames contain sharp objects (coronaries) on a
smooth background. We therefor use a edge preserving spa-
tial regularization as defined in Eq. (22): Θobj(x ; βobj, η) =
Ωedge(x , η). Image dynamic is constant in every frames.



As a consequence, both the object and PSF spatial hyper-
parameters and object threshold are constant for each frame:

β
psf
t = βpsf , β

obj
t = βobj, and ηt = η, ∀t. (26)

(iv) The motion of the heart is too important between suc-
cessive frames to make use of a temporal continuity on the
object. So we didn’t use temporal regularization on the ob-
ject, thus Ψobj(x) = 0.

(vi) The noise is assumed to be Gaussian and uncorre-
lated and we use the likelihood penalty defined in Eq. (10).

(vii) The measured area is not square and is cropped by
some parts of the apparatus which remains the same in ev-
ery frame of every sequence. This is taken into account by
simple thresholding and by defining the weight map used in
Eq. (10) as:

wr,t =

{

1 if k-th pixel is above threshold,
0 otherwise. , (27)

and which is shown in Fig. 1(b). Finally only three hyper-
parameters have to be determined to perform this blind de-
convolution: βpsf , βobj and θ.

5.1.2 Results

(a) Raw image (b) Reconstruction of 2(a)

Figure 2: One frame of a coronarography sequence

10 sequences of about 75 frames of 512×512 pixels were
processed in about 80 seconds per frame. The assumption of
an identical PSF in every frames of a same sequence con-
siderably constrains the PSF and leads to a robust estima-
tion of h+. We also tried relaxing this temporal constraint on
the PSF, but it did not show significant improvements, which
confirms the validity of our assumption of a constant PSF.
A frame out of the studied sequences is shown in Fig. 2(a),
along with the corresponding restored frame, the estimated
PSF is shown in Fig. 1(a). Although the working quantiza-
tion interval was very small (at most 10 digital levels between
pixels in the arteries and the background), a visual assess-
ment shows the effectiveness of our technique (especially,
for micro-arteries reconstruction). Motion perception in the
deconvolved video sequences is greatly improved as the sep-
aration of the coronaries and the background is enhanced.
We point out that the cropped area does not impact the de-
convolution, even for pixels close to the border of this area.
These unmeasured parts are simply filled with uninformative
smooth background in accordance with the smoothing prior.
These restored sequences were shown to cardiologists who

confirmed the potential utility of the presented technique. If
this method proves efficiency with noisier sequences, cardi-
ologists can consider a decrease of the X-ray beam to reduce
irradiation of patients and physicians.

5.2 Integral Field Spectrography

The SuperNova factory is a survey using an integral field
spectrograph to observe type Ia supernovae (SNeIa) in the
redshift range 0.03 < z < 0.08 [11]. The observed supernovae
are point source objects on top of the structured background
of their host galaxy. A PSF can be extracted from photo-
metric exposures taken simultaneously to the spectroscopic
exposures.

To assess the performance of our algorithm on (x,y,λ)
images cubes, we process simulation made for the Super-
Nova factory survey. These simulations include realistic PSF
and noise. They produce (15× 15) pixels images at 798 dif-
ferent wavelengths from 3200Å to 5097Å. In this work we
achieve reconstruction of the (x,y,λ) data cube using the ex-
tracted PSF, by a multi-wavelength regularized deconvolu-
tion.

5.2.1 Regularization and hyper parameters settings

As in the coronarography example, observations of the raw
data (see Fig. 3(a)) can be used to defined regularization
functions and hyper-parameters on the object:

(i) The frames contain a smooth and cropped galaxy con-
taminated by strong noise. We use the spatial regularization
function defined in Eq. (19). Due to strong spectral features
(mostly absorption lines and bands), the light flux is highly
variable at the different wavelengths. As a consequence, the
object spatial hyper-parameters have to be different for each
frame. That is why we propose a normalization of these
hyper-parameters by the variance Var(g)λ in each frames λ:

β
obj
λ
=
βobj

Var(g)λ
,∀λ, (28)

hence βobj is the only spatial hyper-parameter to be tuned
instead of 798.

(ii) Our prior is that the spectrum of each pixel approx-
imately follows the same law pλ and we use the regular-
ization defined in Eq. (24) with a single hyper-parameter:
µ

obj
r = µobj, ∀r.

(iii)As the noise is Poissonian and uncorrelated, we use
the likelihood penalty defined in Eq. (10) with weight defined
as in Eq. (12).

(iv) As the PSF is almost as wide as the field of view, the
working area is extended to (32× 32) pixels per frame. The
weights in Eq. (10) of the unmeasured pixels are set to 0.
This extension of the working area is necessary to rigorously
cope with the extent of the PSF, and allows some level of
field of view extrapolation.

Finally only two hyper-parameters have to be determined
to perform this deconvolution: βobj, µobj.

5.2.2 Results

The data processed by our algorithm was simulated with only
the host galaxy at the Supernova minimum. Image taken at
λ= 3968Å, its reconstruction and corresponding ground truth
are shown on Fig. 3. On this figure the reconstruction and the
ground truth are truncated to the field of view of the sensor. A



visual assessment shows the effectiveness of our technique.
Although a strong noise is present in the data, the reconstruc-
tion presents details that were not visible in the data. For
example the bright center of the galaxy which is difficult lo-
calize in the raw data is well resolved in the reconstruction.
The reconstructed spectrum (dashed red) of the central pixel
is shown on Fig. 3(e) with corresponding spectrum of data
(blue dotted) and ground truth (black line).

(a) Raw image (b) Reconstruction (c) True image

(d) PSF at λ = 3968.74Å (e) Spectrum of the central pixel.

Figure 3: Images (15×15) and PSF at λ = 3968.74Å

To quantify the reconstruction quality, we use the Peak
Signal to Noise Ratio (PSNR) which is classically used to
measure improvements of digital image quality. This crite-
rion corresponds to a mean squared error normalized by the
maximum pixel value M:

EPSNR(x̂) = −10 log10

















K−1 M−2
∑

λ,r

(

x̂λ,r − f true
λ,r

)2
















, (29)

where K = N · L is the number of pixels, x̂ and x are respec-
tively the restored and the true images. Thus, the larger is
the PSNR, the better is the reconstruction. We measured
the data distortion EPSNR(g) = 25.9dB and the reconstruction
ones (cropped to the data size) EPSNR( f+) = 36.2dB.

(a) Reconstruction of 3(a) (b) True image

Figure 4: Image (32×32) at λ = 3967Å with extrapolation

If we compare the true image to the reconstruction out-
side of the field of view on Fig. 4 (outside of the grey square),

we see that the extrapolation is not uninformative. The gen-
eral inclined shape of the galaxy is reconstructed and more,
the position of its spiral harms can be guessed on the recon-
struction (especially on the top left corner). If we consider
the extrapolation, the measured PSNR of the reconstruction
is EPSNR( f ) = 33.6dB.

This (x,y,λ) data cube was processed by our algorithm
in several hours. This relative slowness can be explained
by the bad conditioning of the optimization process, as it
must determine the value of (32× 32) pixels per frames us-
ing (15×15) measurements per frame (4 unknown for 1 data)
and propagate information far from the field of view.

6. CONCLUSION

In this paper, we present a new algorithm for deconvolving
heterogeneous multidimensional data. We show results on
two very different data sets. For each we explain the choice
of regularizations according to the data formation. These re-
sults show the strength of separable regularizations for each
dimension for enhancing the the effectiveness and the robust-
ness of both blind and non-blind deconvolution process com-
pared to independent deblurring of successive images.
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