N

N

Signal to noise characterization of an inverse
problem-based algorithm for digital inline holography

Jérome Gire, Christophe Ducottet, Loic Denis, Eric Thiébaut, Ferréol Soulez

» To cite this version:

Jérome Gire, Christophe Ducottet, Loic Denis, Eric Thiébaut, Ferréol Soulez. Signal to noise charac-
terization of an inverse problem-based algorithm for digital inline holography. ISFV13, 13th Interna-
tional Symposium on Flow Visualization, Jul 2008, Nice, France. pp.Session 39, ID226. ujm-00297147

HAL Id: ujm-00297147
https://ujm.hal.science/ujm-00297147
Submitted on 6 Feb 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://ujm.hal.science/ujm-00297147
https://hal.archives-ouvertes.fr

ISFV13 - 13th International Symposium on Flow Visualization
FLUVISU12 - 12th French Congress on Visualization in FluigdWanics
July 1-4, 2008, Nice, France

Signal to noise characterization of an inverse
problem-based algorithm for digital in-line holography

J Giré"?#, C Ducottet?, L Denis-3, E Thiébaut, F Soule2?
1 Laboratoire Hubert Curien (ex-LTSI) ; CNRS, UMR5516 ; Unisigé Jean Monnet;
18 rue Pr Benoit Lauras, F-42000 Saint-Etienne, France
2 Université de Lyon, Lyon, F-69000, France ; Université Lylgvilleurbanne, F-69622, France ;
Centre de Recherche Astronomique de Lyon, Observatoirgoie, L
9 avenue Charles André, Saint-Genis Laval cedex, F-695@hcE ; CNRS, UMR 5574 ;
Ecole Normale Supérieure de Lyon, Lyon, France

4 Institut Supérieur des Techniques Avancées de SaintiEgje®aint-Etienne, France

KEYWORDS:. o o _
Main subject(s): digital holography; in-line holography; inverse problem;

signal to noise ratio;
Fluid: micro-particles, jet flows, tracking

ABSTRACT: In-line holography is a 3D imaging technique which has besedufor many years,
especially in experimental fluid mechanics for the 3D lagation and sizing of micro-particles
from the acquisition of a single 2D image (hologram). Thisht@que is easily usable in an
industrial environment thanks to its simple setup.

We have recently presented an algorithm of hologram arslyased on an “inverse problem”
approach. This method find the best model which can explaimdéhogram and this is realized
iteratively by removing at each step the contribution of de¢ected particle. This method can
overcome some limitations of classical approach: like thiaigement of the accessible studied
field.

Nevertheless, some questions remain on the limitationseofiethod. We propose in this paper
an analysis of the evolution of the signal to noise ratio ity the limitations like the size of the
studied field, the effect of the cleaning of already deteptaticles during the process and the
influence of the noise generated by the other particles.
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1 Introduction

In-line holography is a 3D imaging technique which has beseduduring many years, especially
in experimental fluid mechanics [1, 2]. In particular, touret the 3D localization and sizing of
small objects from the acquisition of a single 2D image (godon). The digital version of this
technique uses a direct recording on a sensor and a dig@aegsing of holograms without any
optical reconstruction [3, 4]. Thanks to the simple expenial setup and the easy operating, the
technique is usable in a real industrial environment.

Numerous techniques have been developed to analyze mactiolp holograms [3, 4]. They are
mostly based on digital reconstruction by the simulatiorholiogram diffraction. These methods
are often limited to low concentrated holograms due to theénisic speckle noise which is a major
problem in in-line holography [5, 6]. Some techniques haserbdeveloped to reduce it, like off-axis
or in-line recording and off-axis viewing technique [7, 819, 11]. These techniques overcome some
problems like speckle noise but require a more complex setup

We recently proposed a new approach for the hologram primggld®2, 13]. This approach, based
on an “inverse problem” formulation, consists in searcliorghe parameters of localization and size
of each particle by minimizing the difference between tr@orded hologram and the model of this
hologram. This minimization is made iteratively by lookifwy, at each iteration, the parameters
of the most likely particle and then subtracting the conititn of this particle from the initial data
(cleaning). The parameters of the particle are determingdo steps: an extensive search over a
given sampling of the parameter space, followed by a lodalegment step performed by non-linear
optimization.

This approach was tested on both synthetic and real holagrdime obtained results showed an
improvement of the accuracy of the particles localizatiod an increase in the accessible field of
view beyond the size of the sensor. A study of some benefithigfapproach have already been
realized [14].

Nevertheless, a lot of questions about this algorithm hageicbeen studied. In particular:

* the limit size of the studied field

« the benefit of the cleaning step[14]

* the influence of the noise and of the other particles dutegoptimization step
* the influence of experimental parameters.

The present article proposes a detailed study of the behaiviloe algorithm. For that purpose, we
define a signal to noise ratio (SNR) adapted to the algorithtvanpropose a study of its evolution
during iterations of the algorithm for different levels aidkground noise.

In section 2 we recall the principle of the processing alyomi based on an “inverse problem”
approach. Then we propose, in section 3, a definition of tpeato noise ratio for this approach and
describe the method to calculate it. Then we study, in se@ithe evolution of the SNR and finally
we describe, in section 5 the behavior of the algorithm.

2 Principle of the algorithm based on inverse problem

In that study, we consider digital holograms of a set of sighéparticles recorded in the in-line
holography configuration (Gabor setup) (figure 1). We adtlites problem of recovering the position
and size of all the recorded particles from a given digitdbgoam.

The principle of the approach we propose in/[12] is to constidis problem as an “inverse prob-
lem”. The associated direct problem is the computation efititensity function in the hologram
plane given the position and size of all the particles. Tatgel problem, known as the recording
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model determination, is well known and particularly simpiethe context of Fresnel’s diffraction
approximation. We then propose to solve the “inverse prabley minimizing the difference be-
tween the recorded hologram and the model of this hologrdms mMinimization is made iteratively
by looking for, at each iteration, the parameters of the mksly particle and then subtracting the
contribution of this particle from the initial data (cleagj.

This section recalls briefly the recording model, the “imeéproblem” formulation and its iterative
resolution. A more detailed presentation can be found in {82

2.1 Recording model of the hologram

Beam expander YA PC
and spatial filter CCD
seeded flow
J . I
' z — @
Laser < Soe : <« AX ~——"
Tl C |
XYz} H

Figure 1: The in-line holography setup

We consider an in-line holographic setup (see figure 1) whierdied particles are illuminated by
the laser beam and both reference wave and object waveerdgeahd are recorded by the detector
(typically a CCD sensor). The resulting hologram expresssoa sum of terms depending on the
location and size of each particle. In the case of digitabgrphy of spherical micro-particles, each
particle is described by few parametdsg, i, Z, k}: X, Y, Z represent the spatial coordinates and
the radius. The notations and coordinate system we use am@atized in figure 2. The simplified
expression of hologram intensity measured by the deteatobe written as follows [13]:

(xy) =lo— 3 OkGk(X—XY—Yi) +lbg(X.Y) (1)
&

whereay is an amplitude factor of the diffraction pattern of #h particle,lp represents the incident
intensity on the sensor angly the background noise. The functigr(x,y) represents the diffraction
pattern of one particle and is given by the following equatio

n_r& e <2nrk\/x2 +y2> sin <n(x2 +y2)> @

gk(X,y) = v " "

whereA is the laser wavelength. Let us notice that the speckle mhisgo second order interference
terms is negligible compared to the amplitude of the difftatpatterns of the other particles (Meng
[5]). We therefore neglect this noise. The background nfliggx,y)) comprises the noise due to
experimental setup, due to the electronic noise and duestquhntization noise.

The detector is a matrix of siz&(N;j), thus the intensity is only known on discrete valug§) (
The recorded data(1) on the piXelj] are:

n
dfi, jl=lo— Y agli, j] +Ingfi, J] 3)
=
wheregili, j| = gk(X— Xk, Y — Yk) With X—x = IAE andy —yx = JAE.

This recording model of a hologram is an additive model: thlgram intensity consists of the
sum of the diffraction-patterns of threparticles plus a remaining background ndigg
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Figure 2: Notations used in the hologram model.

2.2 Inverse problem formulation

The experimental digital hologram is given as a matrix o&d#it j|. The inverse problem consists in
finding the valudo, {0k }k=1, n and the set of parameters of the particl&g i, Z, '« }k=1,...n Which
best model this hologram.

We denotesn|i, j| the parametric model of the hologram defined as:

.’. —n— n .,. 4
m(i, j] =lo kzlakgk“ il (4)

The latter inverse problem can be expressed as a globaliaption problem. It consists in finding
the optimal set of parameters which minimizes the penalbction 7 of weighted least squares
defined by:

2= (mi, j] - dfi, j])? (5)

The operatmz represents a weighted sum over the matrix of pixBisN;). For any matrixali, j],
w

itis defined as:
N Nj

Saliij=y 3 wiilali) ©)
W i=1j=

wherew/i, j] is a weight matrix taking into account the truncation effeetl possible dead pixels and
can be defined as:

(7)

Wi, j] = 1 if the pixel (,]) is measured,
1771 0 otherwise.

2.3 lIterative particle detection

We have proposed an iterative algorithm to solve this prolparticle per particle by a local opti-
mization [12].
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At iteration/, the parameter§x;,y,, z,r,} of the ¢-th particle are determined by minimization of
the weighted least-squares penalty function

7=y (myfi, ] - dyf. ) ®)

W

wheremy[i, j] is the intensity contribution of théth particle and,[i, j] is the centered residual data
at the/-th step.
myli, j], which can be considered as the model of#tik particle, is given by:

meli, j] = le— o geli, ] (9)

with 1, the incident intensity on the residual hologram.
ds[i, j] represents the residual centered hologram after remol@ngdntribution of the — 1 first
particles. It can be detailed from equations (3) and (4) bevis:

/-1
df['?]]:d[la”—i_ zakgk[laj]—i_af (10)
k=1

whereay corresponds to the centering constant such as:
> di,j] =0. (11)
w

If we optimize with respect tdy anda, for other parameters fixed, it can be shown [13] that the
minimization of %, is equivalent to the maximization of th@ criterion defined by:

Q= = 2 (12)

wheregy is a centered version @f such that:

S Gili.j] =0 (13)

3 Proposed definition of the signal to noise ratio

Some important questions about the previous algorithm hatget been studied. In particular, we
infer that the first iterations are delicate since few p&tidhiave been removed. In the same way we
don’t know precisely what are the accurate limits for the sizthe analyzed field, and for background
noise or for the number of particles.

The aim of this section is to define a signal to noise ratio (SBRpted to the study of these
guestions. This ratio, defined at a given iteration of thenoghtion algorithm, will evaluate the
relative contribution of a signal term corresponding to dptimized particle and two noise terms
respectively due to the other remaining particles and dibatground noise.

We first present a definition of the signal to noise ratio. Tivenpropose a numerical method to
compute it.
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3.1 Definition of the SNR

At iteration/, residual data are given by equation (10) and includingr(§10), we have:

n

defi, j] =lo—aqeli, j] — ; O Okli, ]+ Inglis j] + & (14)
k=/+1

by inserting((14) in (12), and tacking accountszijg[i, j]=0
w

1| e L
Q= Sl aezge 161+ Y oy gl ] Gl +Z|bg| i16e[i, 1] (15)
Z é J/ k_ +1 w D) J/
W ~~ ~ -~
t1 to t3

During the optimization step, we search for paramefejsy; ,z,r,} of the functiong; which
maximize. In this equation three components can be distinguishigdhé energy on the sensor of
the /-th particle, {2) the contribution of residual particles, artgl) the contribution of the background
noise.

To study the efficiency of the optimization, we can modelgfignd (3) as two random compo-

nents: .
tp= Gili, j]Ge[i, ] (16)
P
whereGyli, j] is a random process defined by:
Gli, j] = 9z.r (1A& — X, JAE —Yi) a7
whereXy, Yk, Zx, R are random variables.
t3 =" Ingli, ] Geli, J] (18)
w

wherelyg is a random process (background noise).
Then, we can define the signal to noise ratio as:

¢
"R )

where var is the statistical variance operator.
As (t2) and (3) are statistically independent, we have:

var(tz +t3) = var(tp) + var(ts) (20)

Similarly, theGy processes are identical and each other independent as passupat there isn’t
any interaction between particles. We can denote tGeand we have:

var(ty) = (k;1a|(> var(zG- : gg[i’”) 21)
—o2(n—1) var(ZG' i @g[i,j]) 22)
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if o are identical and equal ty.
The noise variance can also be simplified if the nbigés stationary. Its expression becomes:

var(ts) = var(lng) 5 [, j] (23)
= 0pg > G711, ] (24)

whereadyg is the standard deviation of the background noise.
According to equations (20), (21) and (23), the signal tseaatio|(19) becomes:

2
o3 (5 i)
an—0pvar( Y GOl ) +oFy ¥ i

w

SNR = (25)

3.2 Numerical calculation

In this subsection, we consider that variance of the backgtooise is known and that the set of
particles is uniformly distributed into a rectangular spladomainB. We then present the numerical
calculation of the value of the previous SNR for any itenatio

Given the iteration number and the parameters of the pardptimized at step, all the terms
of equation 25 are easily calculable except the varianchehbise term due to the other particles
defined as:

varty) —var( ¥ Gii j10 1. 26)

3.2.1 Cleaning effect

Let us notice that the influence of the cleaning must be takEnaccount in the calculation of this
variance. Indeed, as the particles are removed from theghanip the statistical distribution of the
remaining particles changes. More precisely, withoutitaglccount the influence of noise, particles
are removed in decreasing order of energy. In the case of ydisperse particles, the ones of higher
energy are the ones located on the optical axis, and theiggdecreases with the distang (o the
optical axis.

As the sensor is a square, at stgpll the particles located in a square of size ffave been
removed. As the particles are supposed to be uniformlyiliged, we approximately can link the
iteration number and the distancg to the optical axis by:

2_ &
T
whereSis the projected surface of the volume containing the gagjandn is the number of parti-
cles.
Then, at each iteratiod, the remaining particles are uniformly distributed overamain By

defined as the initial domaiB deprived of the square cylinder of sizp @entered on the optical axis.
From that point, the statistical variancetptan be calculated as:

var(ty) = E(t) —E(tp)? (28)

P (27)

We detail in the following subsections how each componefwsugt;) are calculated.
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3.2.2 Calculation of E(t5)
As we saw in section 3.1,
Gli, j] = grz(IA& — X, JAE —Y) (29)

WhereX.,Y,Z,Rare random variables.
We suppose that these variables are independents andmalyifdistributed on intervals such as:

(X,Y) € B=[Xa, Xp] x [Ya, Yp] (30)
= [Za, Zp)] (31)
R = [Ra,Ry] (32)

When patrticles are removed, the domBirs deprived of the square of sizp.2The variableX
andY are randomly distributed oB, = B \ squarg0, 2p)

E(y) = {z SN (33)
” ! g, dxdyd 34
—/B/ . szb_zaRa R, 3 0er 0 dxclydzg (34)
D G2rGr =) Gor (I =X, JAE—yp) Gr(IAE — X, JAE — ) (35)
= Ger (B&(i —1),08(j — ') Ge(iAE, jAZ) (36)
with
x =N (37)
y =j'8 (38)

If we notegy i, j] = 9z (IAE, jAE), for i’ andj’ integer, we have:

zgzrgz (Gzr W) [I", J'] (39)

wherex is the discrete convolution product.
If we approximate the integral ony by a discrete sum ofi, j’], the equation (33) becomes:

L NE2 1 Z P

EW)~ (B 77 R Rb// 3 (g I fdzar (40)

Azz (1) 5\ il ol
= W I’ 41
1(Bp) (i@%esp(g ) gé)[ 2 “

where L
()

9 ZbRa Re Za/ gzrdzdr (42)
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3.2.3 Calculation of E(t%)

In the same way, we have:

AEZ 1 1 Zo (R o
E(t¥) = - ' i"dzd 43
() I(Bp)za_ZbRa—Rb/Za /Ral (i,7%eap(g’ *WGp)°[I", ] dzdr (43)

4 Study of the SNR evolution

In this section, we study the evolution of the SNR duringatems of the algorithm for different
levels of background noise. We first define the parameter®loighams used. Then, the study is
done both theoretically using the expression given in te®ipus section and experimentally using
a set of simulated holograms. Finally, we compare the resut conclude on the validation of the
theoretical study and approximations made in the cal@nati section 3.2.

4.1 Parameters of the study

Area of 2000
particles

Area of 500
particles

Sensor
125
particles

2L

4L

() (b)

Figure 3: (a) Example of a hologram simulation [141024x 1024 made with 2000 par-
ticles (radius of50um) spread throughout a volume 27.44 x 27.44 x 50mm located at
z0 = 250mm. The pixel size &7 x 6.7um and the laser wavelengthG$532um. The holo-
gram is coded on 8 bits depth. (b) lllustration of the digtitibn of particles throughout the
volume: 125 particles are located on the sensor (dark graaaof width L), 500 out-of-
field particles are located on the white area (4 times the seagea), and 1500 particles
are located around the white area (in the light gray part) efhcorresponds to the noise.

We consider particles with constant radigghat are randomly distributed under a uniform prob-
ability law throughout a volume centered on the optical axid located at the distanzg The holo-
grams (example in figure 3a) are realized with a sensor of X034 (pixels size of & x 6.7um)
placed at abouty = 250mmfrom the studied volume. Figure 3b illustrates the transvelistribution
of 2000 particles (radius of p0n) throughout the volume of 244 x 27.44 x 50mm 125 patrticles
are located on the sensor (dark gray rectangle), 500 ofi¢ldfparticles are located on the white
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rectangle (4 times the sensor surface), and 1500 partickeeated in the light gray part. These
latter particles are not detected by the algorithm (sineg #re outside of the explored field of view).
They therefore contribute to the noise. The light gray megla corresponds to the projected surface
of the volume (16 times the sensor surface). The laser wagtiieas 0532um This parameters have
already been used in reference [14]. We add to this hologratmita Gaussian noise with a variance
depending on a percentage of the hologram amplitude.

4.2 Theoretical study

The signal to noise ratio can be calculated theoreticalgoating to the equation (25). For that,
three components have to be calculated for different distsmfrom the hologram center: the energy
of a particle, the variance of the other particles (accgydmsection 3.2), and the variance of the
background noise. To simplify the calculation of the ternresponding to the variance of the other
particles (ie equations (40) and (43)), we take the samadtlaffigal distance for all the particles as
the mean longitudinal distanazg, = 225mm Then, using the relation ih (27), the SNR can be plotted
as a function of the iteration number or of the distapdeom the optical axis.
On figure 4, we can see several curves of the SNR plotted fiaréift level of background noise.

Signal to noise ratio

35

w
o

in-field

B
)
S

SNR level (dB)
N
-~

=
[¢)]

Iy
o

out-of-field

25%

50 200 400 600 800 1000 1200
Distance from the center (pixels)

Figure4: Theoretical curves of the SNR evolution as a function of iteudce to the optical
axis. The SNR is plotted for different background noisel léepending on a percentage of
the hologram amplitude (from 0% to 25%). The vertical dogtilfine represents the sensor
border.

4.3 Numerical experimentation

In this subsection, we study the evolution of the SNR fromréslts of the analysis of simulated
holograms for different levels of noise. For that, the comgras of the SNR are estimated, during the
iterations of the inverse algorithm using the optimal pagters given by the algorithm.

The component; of @, (15) and can be obtained from the energy of the particle. Tdtesscal
variance of the noise (componemisandts) is estimated by the computation of the spatial variance
of the numerator ofQ, on a square ring around the hologram center with a radiugsponding
to the distancep. On figure 5, we can see several curves of SNR for differenkdracind noise
levels (white Gaussian noise). The variance of backgrowmgercorresponds to a percentage of the
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hologram amplitude: 0% for (5a) to 25% for (5f) with a step &6 Between each figure. Theoretical
curves (see section 4.2) are plotted in blue and ones ctdduba the simulated hologram in red. The
vertical dot-dash line represents the sensor border. Thedmbal line shows the SNR limit value (see
section 5).

Signal to noise ratio

Signal to noise ratio

35 30 T 0
30r
251
=) )
= 25f Z
) )
g £20
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7 20 : Z :
e ' @ '
: 15 :
15 T '
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10 : e : ’ 10 : et : ‘
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Distance from the center (pixels) Distance from the center (pixels)
(@) (b)
Signal to noise ratio Signal to noise ratio
30 T T T T T 30 T T T T
25¢
25f
= )
z = 20¢
£20 : E
e E &
% : Z 15 T
) H n '
15 : : )
' ° 10 in-field i+ out-of-field
in-field H out-of-field H
10 . —t : y 5 : s : y
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Distance from the center (pixels) Distance from the center (pixels)
() (d)
Signal to noise ratio Signal to noise ratio
30 —— 30 — "
25r, L + ; :+ +++*+ out-of-field 25f *: ' I ' out-of-field
T R R
& s {8 @
T 20p ' = 20¢
5] ' o)
= : & .
e : _
£15 T £ 15 T
@ ' @ ' v
10F  in-field 10F  in-field
5O 200 400 600 800 1000 1200 50 200 400 600 800 1000 1200
Distance from the center (pixels) Distance from the center (pixels)

(€) (f)

Figure 5: Evolution of the SNR during the detection of particles. Tégcal curves are
plotted in blue and ones calculated on simulated hologrameed (+). The evolution
is studied for several noise levels. The variance of baakgionoise corresponds to a
percentage of the hologram amplitud&o for (a) to 25%for (f) with a step 06% between
each figure. The vertical dot-dash line represents the sebsmer. The horizontal line
shows the SNR limit value (see section 5).
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4.4 Comparison and validation

In this section we compare the theoretical curves (secti®dnof the signal to noise ratio to the curves
obtained by the analysis of simulated holograms (sectidh 4.

When particles are on the sensor area, we can observe (figarlafje dispersion of the exper-
imental points. When patrticles are located out-of-field thanpare close to the theoretical curve.
This dispersion at the beginning is mainly due to the deteatrder of particles. Indeed, at this point,
particles are not detected as a function of the distan@es a consequence, the variance of the noise
mainly varies as a function of the local neighborhood of tadiple. On the contrary, out-of-field
particles are detected as a function of their distance topkieal axis and the SNR curves on the sim-
ulations are in agreement with the theoretical ones. Anatberce of dispersion in experimentations
is due to the influence of the variation of the longitudinasifion z of particles. In the theoretical
calculation we take this parameter constant (see sect&n 4.

For the three first curves (5a and 5b), we can see that the SNiRedheoretical curves is higher
than the one of the simulated hologram. It can be explaineddaltional sources of noise which
appear during the iterations of the algorithm. For examgles to quantization errors or mismod-
elling, the contribution of a given patrticle is not totallgmoved during the cleaning step. This effect
increases the background noise level and decreases theddiR but-of-field particles.

On the whole, we can consider that the model is in good agneewiéh the numerical experi-
mentations. Even if the theoretical model does not exaethetrin the same way as the algorithm,
especially for in-field particles, it is a good tool to expldhe SNR evolution. It gives an average
value of the evolution of the SNR for a given setup, and a gegtimation of the particle density and
background noise level.

5 Analysis of the algorithm behavior

In the first part of the curvep(< 512), the particles are in the field. The noise is dominatethby
remaining particles. The SNR is quite constant (it is sliglrmicreasing and then slightly decreasing)
because the decrease in the particle energy is roughly cmsafel by the decrease of the noise due to
cleaning. In the second part, the SNR is increasing until @imam. The particles energy continue
to decrease, but the noise due to the remaining particlessdinportant so as the SNR is increasing.
Then the background noise becomes to be significant andthmitcreasing of the SNR. In the third
part, the background noise is dominant and the SNR is dengeastil the algorithm stops.

We remark that the effect of the cleaning helps us to detetebffield particles even far away
from the hologram borders and as consequence it allows &mgmthe size of the studied field. The
effect of the cleaning provides a great improvement wheretisea high number of particle in the
studied field. It has a lower effect when the background nisiseery high compared to the noise
generated by other particles or when the density of parisdiaw.

According to figure 5 we can roughly estimate a limit distabhegond which the algorithm does
not detect particles anymore. We can then derive a limit SMRhé case of figures 5a to 5c¢ the
detection is not limited by the background noise but onlyaose we choose to stop the algorithm
after the detection of 500 particles. For figures 5d to 5f tetection is limited by the background
noise level. For these curves we can define a limit value asthR beyond which the particles are no
longer detected. We estimate this value to 15dB by averapm@NR value of the farthest particles
from the optical axis (represented by an horizontal line garg 5).

The previous value can help to define working limits of theoaltpm. Given the setup parameters,
the background noise and the number of particles, a theal&NR curve can be calculated. If the
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SNR of particles located in the center=€ 0) is below the limit SNR, the starting of the algorithm may
be critical: the first particles may not be correctly detdced/or estimated. If the SNR at starting
is high enough, the limit size of the studied field can be estia by finding the greatest distaree
having a SNR greater than the limit SNR. These last statenmens$ be verified on more detailed
experimentations.

6 Conclusion

We have proposed in this contribution a signal to noise sttioly of our inverse problem approach
based algorithm. This study relies on a definition of the SM&pted to the optimization criterion. It
allows the study of the evolution of the SNR during the itenas of the algorithm for different levels
of noise.

We have shown that this theoretical SNR can be numericalbutzded if the statistical distribu-
tions of the particles parameters are given. Then, aftemgpeadison of the theoretical results with
numerical experimentations on simulated holograms, we kalidated our theoretical approach.

Finally, the shape of the curves as a function of the partitd¢éance have been analyzed for
different levels of background noise. A limit SNR has beeghhghted on the curves providing a
way to define the working limits of the algorithm.

Future work has to be realized to confirm the precise influentee limit SNR on real holograms.
The proposed SNR definition can also be used to study thet effexperimental parameters as the
hologram distance, the number of particles or the numbenxaigp of the sensor. It can also be
noticed that the proposed approach can be adapted for thesN{Rof other digital inline holography
algorithms.
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