
HAL Id: ujm-00319697
https://ujm.hal.science/ujm-00319697

Submitted on 9 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Overview of Web Content Adaptation
Jérémy Lardon, Mikaël Ates, Christophe Gravier, Jacques Fayolle

To cite this version:
Jérémy Lardon, Mikaël Ates, Christophe Gravier, Jacques Fayolle. Overview of Web Content Adap-
tation. 10th International Conference on Entreprise Information Systems - ICEIS 2008, Jun 2008,
Barcelone, Spain. pp.384-387. �ujm-00319697�

https://ujm.hal.science/ujm-00319697
https://hal.archives-ouvertes.fr

OVERVIEW OF WEB CONTENT ADAPTATION

Jérémy Lardon, Mikaël Ates, Christophe Gravier, Jacques Fayolle
DIOM Laboratory, ISTASE, University Jean Monnet, rue du Dr P. Michelon, Saint-Etienne, France

{jeremy.lardon, mickael.ates, christophe.gravier, jacques.fayolle}@univ-st-etienne.fr

Keywords: HCI, web content adaptation, limited browsing devices.

Abstract: Nowadays Internet contents can be reached from a vast set of different devices. We can cite mobile devices
(mobile phones, PDAs, smartphones) and more recently TV sets through browser-embedding Set-Top Boxes
(STB). The diverse characteristics that define these devices (input, output, processing power, available band-
width, . . .) force content providers to keep as many versionsas the number of targeted devices. In this paper,
we present the research projects that try to address the content adaptaption.

1 INTRODUCTION

Numerous devices allow the user to browse the Inter-
net these days. Nevertheless the resources found on
the Web are designed for personal computers. Tak-
ing into account all their characteristics : screen size,
resolution, mouse and keyboard, software installed
(flash, video players, . . .), it clearly appears that mo-
bile devices as well as browser-embedded Set-Top
Boxes offer less capabilities in terms of input, output,
processing power, or bandwidth. That’s the reason
why solutions must be found to unite internet con-
tents with the limitations of such devices, henceforth
referred as limited devices.

This paper lists previously imagined solutions to
solve the above problem above. As a side note and
in order to remain brief and revelant, we have made
the choice to focus on the last decade and to cite one
publication per research project.

In order to structure our presentation, we rely
on the Model-Driven Engineering (Gerber et al.,
2002). As figure 1 shows, there are two paths to
adapt an user interface (UI) to a new device: di-
rect code to code transformation (or transcoding) or
re-engineering which passes through three steps :
reverse-engineering, model to model transformation
and forward-engineering. The main difference be-
tween these two approachs is that the former tries to
address the transformation in a higher level of abstrac-

tion, while the later takes the web page code as sup-
port of the transformation.

Figure 1: Re-engineering versus transcoding.

Thus our paper is organized as follows: Sec-
tion 2 presents the publications using the reverse-
engineering process. Section 3 deals with the projects
in which adaptation techniques are directly used on
the code. Finally section 4 concludes.

2 RE-ENGINEERING OF USER
INTERFACES

In this section, we summarize what is, to our
knowledge, the major research on UI re-engineering
in general and the hard point that is reverse-
engineering.

2.1 Omini

In (Buttler et al., 2001), the authors present the Omini
system that aims to extract objects of interest from
web pages. The Omini object extraction process is
divided in three phases. The first is the preparation
of the web document: retrieval of the page, transfor-
mation to a well-formed web document, and conver-
tion to a tag tree representation. Afterwards objects
of interest are located in the page. This phase has
two steps: the object-rich subtree extraction and the
object separator extraction. Finally, objects of inter-
est are extracted thanks to the result of the previous
phase.

The main concern of this paper is the identifica-
tion of object separators. In this goal, five heuristics
are compared with their combinaitions. As a conse-
quence, the combinaition of the five heuristics shows
the best results on the cached pages from 50 different
web sites.

2.2 MORE

(Gaeremynck et al., 2003) focus on discovering the
models behind web forms. The main challenge they
address is to discover the relationship between strings
and widgets. These relations are mutually exclusive
as they assume that each entity (string or interactor)
plays a unique role, for example a string can’t at the
same time a caption and a hint for a interactor.

The starting point of the study is a collection of
facts extracted from the web page: description of the
entities (“S1 is a string” or “I2 is an iteractor”), rela-
tionships between those entities (“S1 is a caption for
I2” or “S1 is a hint for I2”), Facts are then ma-
nipulated through a forward chain rule system. Three
types of rules are defined : deduction rules to produce
new facts from selected facts, exclusion rules to deter-
mine if two facts are mutually exclusive and the scor-
ing rules to order facts depending on the properties of
the interactors involved.

The model recovery algorithm can be summed up
as follows. As long as there remains unprocessed
facts, facts are created thanks to the deduction rules.
Resulting facts that, when combined, have less chance
to create future conflicts (or exclusions) are selected.
The second selection amongst them is based on the
scoring rules to get the larger set of compatible facts.
Only the finally selected facts expand the set. The re-
mainder of the created facts that do not pass the two
selections are discarded and the loop continues.

The result is a list of relations between strings and
interactors which then can be used to split a form.

2.3 Web RevEnge

Web RevEnge (Paganelli and Paternò, 2003) was de-
velopped to automatically extract the task models
from a web application, i.e. multiple web pages.

In order to do so, they begin to compute each page.
The DOM of the page is parsed to find links, interac-
tion objects (such as<input> tags), their groupings
(forms, radio button groups), and finally frames. As
the task models are represented in ConcurTasksTrees
(Paternò, 2000), task model representations of each
page are graphs with a root element and link nodes to
other pages.

To build the task model of the whole web appli-
cation, the process uses the home page as its starting
point. All links being represented in the task model,
one replaces the internal links (in the same site) with
the task models of the targeted pages.

2.4 WARE and WANDA

Even though presented in the same publication (Lucca
and Penta, 2005), WARE and WANDA are web appli-
cation reverse-engineering tools that were developped
independently. The former adresses the static analysis
of web applications. The latter intervenes upstream
by extracting information from the php files.

WARE implements a two-step process. Revelant
information is retrieved from the static code (mainly
HTML) by extractors. Then abstractors take the pre-
vious result as input and abstract them. The final out-
put is a UML representation of the web application.

WANDA does the same work but on dynamic
data instead of static data. Dynamic information is
collected during web application executions and be-
comes the support of the extraction that creates UML
diagrams.

Bringing them together permits us to identify
groups of equivalent dynamically built pages if there
are enough execution runs.

2.5 ReversiXML and TransformiXML

ReversiXML and TransformiXML (Bouillon et al.,
2005) are respectively a tool to reverse-engineer web
pages and a tool to transform abstract representations
from one context of use to another.

For this purpose, Bouillonand al. takes Cameleon
framework (Calvary et al., 2003) as reference for
the development process. In order to express any
abstraction level of the UI, they rely on UsiXML
(http://www.usixml.org).

About the reverse-engineering part, the derivation
from code source to any abstraction level is done

thanks to derivation rules, functions interpreted at
design- and run-time. The output of this first stage
is an UsiXML file that represents the graph of the UI
in the selected abstraction level.

The transformation takes place at any level of ab-
straction. As UsiXML has an underlying graph struc-
ture, the model transformation system is equivalent to
a graph transformation system based on the theory of
graph grammars.

3 TRANSCODING

In constrast to the re-engineering, transcoding di-
rectly manipulates the code of the UI. So we put them
on the same level and ordered them chronologically.

3.1 Top Gun Wingman

This research project (Fox et al., 1998) was motivated
by the use of 3Com PalmPilot as a web browsing de-
vice. However the browser used on the PalmPilot is a
split web browser, i.e. that it needs a dedicated server
to run, in addition to the software on the device. The
server side, that operates as a proxy lets workers do
the adaptation, which is splited into 4 processes:

• image processing

• HTML processing

• aggregation to build contents from one or more
sites on a topic

• zip processor to list the archive contents in HTML

3.2 Digestor

Digestor (Bickmore et al., 1999) aims at filtering and
automatically re-authoring web pages to display on
small screen devices. We focus on the re-authoring
use of this project. The implementation of Digestor
takes place between the client and the server, in a
proxy server. To perform the transformations on
pages, Bickmore and Schilit rely on fifteen techniques
grouped in three groups:

1. Outlining: displays only section headers as links
that point to new pages displaying the texts under
the headers,

2. First sentence elision: uses the same technique
but the first sentences of each block become links
to the rest of the block,

3. Indexed segmentation: segments the page into
sub-pages containing a given number of items,

4. Table transformation: splits a page between re-
gions, such as sidebars, headers and footers,

5. Image reduction or elision: reduces or sup-
presses images from the page, replaces images
with a reduced image or the ALT text pointing to
the original image.

Given these techniques, the question of which
techniques to use and in what order remains. The re-
sponse to this question is a heuristic planner which
explores all possibilities and gives them a score es-
timated from the screen area required to display the
new page. The process is recursive until the docu-
ment version is judged good enough or there is no
candidate. In this case the best estimated version is
returned.

3.3 Power Browser

(Buyukkokten et al., 2000) also take advantage of a
proxy architecture. In addition to transforming the
pages, Power Browser manages the navigation. That’s
why it is more drastic than the previous proxy-based
solution about the re-authoring.

Indeed all images are replaced by their ALT prop-
erty value. In the same way all white spaces are col-
lapsed to save screen space. Tables and lists are re-
formatted in text block.

In the other hand the navigation is made easier
by the use of shortcuts and of tree control to display
links.

3.4 Web page structure detection

The approach exposed in (Chen et al., 2003) proposes
to facilitate navigation and reading on small screen
devices. To do so, a thumbnail is available when the
user first requests a page. In the tumbnail, each se-
mantic block is colored and makes possible the choice
of what part of the web page the user wants to see in
detail.

This approach allows the page to be split into
blocks. The block identification part of the process
parses the DOM tree to find:

1. high-level content blocks such as<center> tags,
header, footer, and left/right side bars,

2. explicit separators:<hr> tags, rows in a table
(<tr>), <div>, any tag with border properties,

3. implicit separators by using pattern recognition
and clustering on tag names and properties.

4 CONCLUSION

As we saw in this paper, web UI adaptation comes
in two flavours: transcoding and re-engineering.

While the former can be considered as more basic,
by acting directly on the code, transcoding techniques
are easier to implement.

On the contrary, the later relies on higher levels of
abstraction. A practical case, in which re-engineering
is more suitable, is the adaptation of a page with a
<select> list (without amultipleattribut) to a device,
on which only the<input type=“radio“> tag is sup-
ported. Both tags denote a list with one selectable
option, but staying at a concrete level doesn’t permit
to know that the underlying interaction object is the
same for both tags. Nevertheless the main drawback
of the re-engineering is its cost.

Therefore both approaches are complementary:
fast low level modifications through transcoding and
costly more abstract transformations thanks to re-
engineering.

What result would the combination of both ap-
proaches give? We plan to explore the possibility to
bring them together in our future work in order to an-
swer this question.

REFERENCES

Bickmore, T. W., Girgensohn, A., and Sullivan, J. W.
(1999). Web page filtering and re-authoring for mo-
bile users.Computer Journal, 42(6):534–46.

Bouillon, L., Limbourg, Q., Vanderdonckt, J., and Mi-
chotte, B. (2005). Reverse engineering of web pages
based on derivations and transformations. InWeb
Congress, 2005. LA-WEB 2005. Third Latin Ameri-
can.

Buttler, D., Liu, L., and Pu, C. (2001). A fully automated
object extraction system for the world wide web. In
Proceedings of the 2001 International Conference on
Distrubuted Computing Systems (ICDCS’01), pages
361–370, Phoenix, Arizona.

Buyukkokten, O., Garcia-Molina, H., Paepcke, A., and
Winograd, T. (2000). Power browser: efficient web
browsing for pdas. InCHI ’00: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 430–437, New York, NY, USA. ACM.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouil-
lon, L., and Vanderdonckt, J. (2003). A unifying ref-
erence framework for multi-target user interfaces.In-
teracting With Computers Vol. 15/3, pages 289–308.

Chen, Y., Ma, W.-Y., and Zhang, H.-J. (2003). Detecting
web page structure for adaptive viewing on small form
factor devices. InWWW ’03: Proceedings of the 12th
international conference on World Wide Web, pages
225–233, New York, NY, USA. ACM.

Fox, A., Goldberg, I., Gribble, S. D., and Lee, D. C. (1998).
Experience with top gun wingman: A proxy-based
graphical web browser for the 3com palmpilot. InPro-
ceedings of Middleware ’98, Lake District, England,
September 1998.

Gaeremynck, Y., Bergman, L. D., and Lau, T. (2003). More
for less: model recovery from visual interfaces for
multi-device application design. InIUI ’03: Proceed-
ings of the 8th international conference on Intelligent
user interfaces, pages 69–76, New York, NY, USA.
ACM.

Gerber, A., Lawley, M., Raymond, K., Steel, J., and Wood,
A. (2002). Transformation: The missing link of mda.
In ICGT ’02: Proceedings of the First International
Conference on Graph Transformation, pages 90–105,
London, UK. Springer-Verlag.

Lucca, G. A. D. and Penta, M. D. (2005). Integrating static
and dynamic analysis to improve the comprehension
of existing web applications. InWSE ’05: Proceed-
ings of the Seventh IEEE International Symposium on
Web Site Evolution, pages 87–94, Washington, DC,
USA. IEEE Computer Society.

Paganelli, L. and Paternò, F. (2003). A unifying reference
framework for multi-target user interfaces.Interna-
tional Journal of Software Engineering and Knowl-
edge Engineering, World Scientific Publishing 13(2),
pages 169–189.

Paternò, F. (2000). Model-based design of interactive appli-
cations.Intelligence, 11(4):26–38.

