N

N
N

HAL

open science

Efficient Pruning of Probabilistic Automata
Franck Thollard, Baptiste Jeudy

» To cite this version:

Franck Thollard, Baptiste Jeudy. Efficient Pruning of Probabilistic Automata. Structural and Statis-

tical Pattern Recognition, Dec 2008, Orlando, United States. pp.65-75. ujm-00322818

HAL Id: ujm-00322818
https://ujm.hal.science/ujm-00322818
Submitted on 9 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://ujm.hal.science/ujm-00322818
https://hal.archives-ouvertes.fr

Efficient Pruning of Probabilistic Automata’

Franck Thollard and Baptiste Jeudy

Université de Lyon,
Université Jean-Monnet,
Laboratoire Hubert Curien UMR CNR 5516,
{franck.thollard,baptiste.jeudy}@univ-st-etienne.fr

Abstract. Applications of probabilistic grammatical inference are limited
due to time and space consuming constraints. In statistical language mod-
eling, for example, large corpora are now available and lead to managing
automata with millions of states. We propose in this article a method for
pruning automata (when restricted to tree based structures) which is not
only efficient (sub-quadratic) but that allows to dramatically reduce the size
of the automaton with a small impact on the underlying distribution. Results
are evaluated on a language modeling task.

1 Introduction

Probabilistic automata have proved to be very useful in many fields. Among these, we
can note natural language processing, e.g. machine translation [1], character recog-
nition [2], ... Unfortunately, some particular tasks such as language modeling for
speech recognition — cannot be achieved because of the time complexity of the algo-
rithms. For example, alergia [3], acyclic-infer [2], MDI [4], DDSM [5], multinomial-
infer [6] have a worst case quadratic complexity.

In these grammatical inference algorithms, an automaton representing the data
is built as a first step. It is then generalized using state merging operations. In this
second step, pairs of states are considered and merged if they are sufficiently close
to be considered equivalent. The algorithms differ in the strategy they use to choose
the pair of states to consider and by the equivalence criteria.

We propose in this article to prune the probabilistic automaton obtained in the
first step by deleting some carefully selected states. Our goal is to get a much
smaller automaton on which the inference will be efficient.

Of course, the pruned automaton is only an approximation of the data. The
deleted states are therefore chosen to minimize the distance between the distributions
before and after the pruning.

The next section provides the notations. Section 3 describes in more details the
problem we address in Sect. 4. A new algorithm is presented in Sect. 5 which is
evaluated in Sect. 6. We then conclude.

2 Definitions and Notations

Let X be a finite alphabet and X* (resp. X) be the set of all strings that can be built
from X, including (resp. not including) the empty string denoted by A. We denote
Y =XU{A}L

! This work was supported by the BINGO2 project (ANR-07-MDCO 014-02).

A language is a subset of X*. By convention, symbols in X will be denoted by
letters from the beginning of the alphabet (a, b, ¢, ...) and strings in X* will be denoted
by end of the alphabet letters (..., z,y, 2).

A stochastic language D is a probability distribution over X*. We denote by
Pp(z) the probability of a string € X* under the distribution D or Pp () if
the distribution is modeled by a syntactic machine A. The distribution must verify
erz* P’D(Z‘) =1

A sample S is a multi-set of strings: as samples are usually built through sampling,
one string may appear more than once. The number of times a string x appears in S
is its multiplicity and is denoted |S|,. The cardinality of sample S is the total number
of strings in the sample (each counted with its multiplicity): |S| = > ¢ [S|. The
empirical finite-support distribution associated with S will be denoted as Dg and is
defined by: Pp,(z) =1S|./|S].

2.1 Probabilistic Automata

Definition 1. A Deterministic Probabilistic Finite state Automaton DPFA is a tuple
A=(Q 4, X, 64, q0, DA), where Q 4 is a finite set of states; gy € Q 4 is the initial state;
X is the alphabet; 64 : Q4 X X — Q4 15 a transition function; py4 : Q4 x X' — Rt
are transition probabilities such that

Vg € Qa, > palga) = L (1)
acey’

For each state ¢, the probability p(q,A) is not associated with a transition. It
represents the probability that the string ends at ¢q. Functions § 4 and p 4 are extended
recursively from X to X*.

The probability of a string s according to a DPFA A is then defined as: Py(s) =
pA(qo,) X pa(04(qo0,8),\) if s # X and P4(X) = pa(qo, A) else. If (1) holds, these
probabilities define a probability distribution D 4 over X™.

For a state ¢, I'"(q) is the set {a € X : p(q,a) # 0} of the letters labeling the
outgoing transitions. We also define the set of the descendants of ¢ as desc(q) = {p:
there is a path from ¢ to p in A} [J{¢} (we consider that ¢ € desc(g)). This definition
can be extended to a set of states D: desc(D) = |J,p desc(g). Finaly, the size of a
DPFA A, noted |A|, is defined as its number of states.

2.2 Probabilistic Prefix Trees

Definition 2. A probabilistic prefix tree automaton PPTA is a particular case of
DPFA where the underlying graph (defined by the states and the non zero probability
transitions) is a tree rooted at the initial state qg.

A PPTA built from a sample S (denoted PPTAg) is the prefix tree built on S.
Transitions which are not in the prefix tree are added as loops with zero probabilities.
Other probabilities are estimated using state frequencies: the state frequency of ¢ € @
with respect to a sample S is defined as freqgs(q) = -, cuves:(go.u)—q) |Sle- The
transition probability p(q, a) is then estimated by freqq(d(g, a))/freqqs(q) and p(g, A)
is computed in order to satisfy (1). Given this construction, the distribution induced
by PPTAg and Dg are identical. More details on probabilistic automata can be found
in [7].

Figure 1(a) presents a PPTA built from the sample S = {a, cct, cct, cc, gatt, gat,
gat, ga, gatt}.

(a) Ppra built with sample
S = {a, cct, cct, cc, gatt, gat, gat, ga, gatt} (b) Same PrTA with states {1,4} deleted
and a smoothing state ¢s added.

Fig.1. A PpTA and a pruned smoothed PPTA. States are labeled by their numbers and
their frequencies freqg. Dashed arrows represent smoothed transitions.

2.3 Smoothing Probabilistic Automata

Smoothing discrete distributions is a widely studied field (see [8] for a survey). It has
been addressed mainly in real world applications (speech recognition [8], information
retrieval [9], ...) as it has shown to dramatically improve the estimate of discrete
distributions. Moreover, smoothing must be taken into account from the theoreti-
cal point of view (see [2,10] for some links between smoothing and learnability of
probabilistic automata). We will therefore consider here smoothed automata.

When the main model cannot parse the input string, a back-off transition is
dynamically built that goes to a back-off model (an unigram model) in which the
end of the parsing is done. The probability Py(a),a € XU{A} is estimated by |a|/||S]|
where |al is the frequency of the letter a in S and ||S]| the total number of symbols in
S. This smoothing technique uses a parameter 0 < ¢ < 1. The smoothed transition
probability Psmootn 1S estimated by:

frea0la.)) = jf 4 ¢ [+ (q)

psmooth(q, CL) = { freq(q)

K.Py(a) else @)

(freq(Q)*Zaeer() freq(d(qﬂ))),g .
Psmooth (¢, A) = frea(q) if p(q, A) # 0 (3)
K-Pu(3) if p(¢,\) =0

where value K is chosen to ensure that (1) holds.
In practice, to apply this smoothing, the PPTAis modified in three steps:

1. a new smoothing state (called ¢;) is added. For all a in X, §(¢s,a) = g5 and for
all a in X', p(gs,a) = Py(a);

2. all transitions with a zero probability in the PPTA are redirected to gs;

3. the transition probability p is replaced by the smoothed one psmooth-

If this smoothing state is added to a PPTA, the resulting automaton is no longer
strictly speaking a PpTa. We call such an automaton a smoothed PprTA. In the
following, all PPTAs are assumed to be smoothed.

Fig. 1(b) presents the smoothed automaton obtained after pruning states 1 and
4.

2.4 Deleting states

We will prune a given automaton A = (Q, X, 4, qo, p) by removing a state qq (¢4 #
¢s)- In order to maintain a complete automaton, the incoming transitions of ¢4 are
redirected to ¢s. After the deletion of ¢4, several states may become unreachable
from the initial state and are also deleted. This set of unreachable states is denoted
U4(ga)- The formal definition of the automaton Ag; = (Q',¥,0’,¢(.p’) obtained
from A by deleting qq is then: Q' = Q \ Ua(qa); §'(q,a) = ¢qs if 6(q,a) = qq, else
0'(q,a) = 6(q,a); q) = qo; p' is the restriction of p to @'. Note that the obtained
automaton still respects equation (1) and thus defines a stochatic language.

The deletion operation is commutative (i.e., removing state ¢ and then state ¢’
is equivalent to removing state ¢’ and then state ¢) and we can therefore define A,
the automaton obtained from .4 by deleting a set of states D.

Given an automaton A and two sets of states D and D', if they have the same set
of descendants (i.e., desc(D) = desc(D’)), then Ap = Ap (for instance, the PpTa
of figure 1(b) can be obtained by deleting D = {1,4,6} or D = {1,4}). In a PpTa,
there is a minimal set D among those having the same descendants ({1,4} in our
example). We call this set a cut set of state and is formally defined as a set D such
that for every ¢, ¢’ in D, q ¢ desc(¢').

Next section presents the dissimilarity measure used to quantify the modification
of the distribution induced by the pruning method.

2.5 Kullback-Leibler Divergence

The dissimilarity between two distributions will be evaluated through the Kullback-
Leibler divergence [11]:

D(x
KL(D,D') == Y D(x)log D,((x)) (4)
rxeX*

Although this divergence is not a metric, some nice properties hold, e.g. it is
positive and it bounds the L; distance from above [12]. The divergence is not sym-
metric. One of the distribution thus takes the role of a reference one. In term of
information theory, K L(D,D’) represents the number of bits one must pay by cod-
ing messages drawn according to D using an optimal code derived from D’. In our
case, the distribution represented by the PPTA will serve as the reference.

3 Problems Setting

Depending on the application, the PPTA can be very large (e.g., several million
states). When processing these models (e.g., applying a grammatical inference algo-
rithm, or using such model as is), the size of the model can be problematic (most
of inference algorithms have a quadratic complexity). A reduction of the size of the
model is thus needed.

We follow an approach consisting in doing lossy compression: we want to find
a trade-off between the size of the automaton and divergence. We define the loss
function between two automata 4 and A’ by:

KL(AA)

LA = =TT

(5)

In our case, the automaton A’ is obtained from A by deleting some states. We
will focus on two optimization problems:

1. Find the cut set of states D such that £(A, Ap) is minimal.

2. In the previous problem, there is no control on the number of deleted states. In
practice, we want to delete a significant number of states. The second problem
is thus to find the optimal cut set of states D with the constraint that the total
number of deleted states |desc(D)]| is above a given threshold.

4 Problems Solutions

In this section, the goal is to find efficiently the optimal set of states D. Given a
sample S, the algorithm will proceed in two steps: first build the PPTAg and then
find the set D. In order to be efficient even with large automata, the numerator of
(5) must be computed efficiently.

4.1 Computing the Divergence Between two Automata

Carrasco [13] proposed an efficient way to compute the divergence between two dis-
tributions when they are represented by two DPFA A = (Q, X, 4, qo,p) and A" =
(Q', X,0",q4,p"). The computation of KL(A, A’) is made by summing state diver-
gences:

KL(AA) =" > kg,) with ki(¢,q') = cqq Y plg,a) 1ogffgq;“)) (6)
1€EQ q'€Q’ acx’ pa,a

and

Coq = Z p(qo, ©) where L, o = {x € X* : 6(q0.2) = q A& (¢),z) =4’} (7)

$€Lq1q/

If A and Am are the automata of the running example, we have L7 7z = {gat},
Lg,q, = {cct}, Ls 2 =0, cz.7 = palqo. gat) = % X % X % (where € is the smoothing
parameter, see (2), Sect. 2.3).

Equation (6) is very general and applicable to any automata. Its computation
complexity is O(|.A|.|.A’].|X|) times the complexity of the computation of the coeffi-
cients ¢4,/ In his paper, Carrasco gives an iterative method that converges to the

values of these coefficients.

4.2 Pruning Automata

In this section, (6) is simplified in the case where A" = Ap for some set of states
D. The automaton A = (Q, X, ,qo,p) is a complete DPFA with a smoothing (or
unigram) state denoted by ¢s. We consider the deletion of a set of states D of A
(gs ¢ D). The resulting DpFA is A = (Q', X,9, 40, p')-

Lemma 1.

KLAAR) = Y kla.0) (8)

gE€desc(D)

The (omitted) proof of this lemma is based on the fact that most of the kl(q, ¢’)
are zero because either ¢(q,¢') = 0 or p(q,a) = p'(¢’, a). The complexity of computing
KL(A, Ap) is therefore less than O(].A|.|X]) times the complexity of the computation
of the coefficients ¢, 4,. However, we still need to find the optimal set of states D,
and it is of course not possible to test all subsets of Q.

Another important point is that, in a PPTA, ¢, 4, does not depend on the set of
deleted states D and therefore neither does ki(q, ¢s). It means that it is possible to
compute kl(q, qs) for all ¢ and then consider several possibilities for the cut set of
states D without recomputing the kl values.

4.3 Solutions of the Optimization Problems

Given a cut set of states D and following (8), the loss function is now

,C(.A .,4*) _ KL(A, Aﬁ) _ qudesc(D) kl<qaqs) (9)
P A - A5 |desc(D)|
which is the average value of kl(q, ¢s) on all deleted states q € desc(D).One can easily
shows that the optimal cut set of states D (for our first problem) consists of only one
state: the state gop¢ that minimizes the average kil of its descendants. The whole set
of deleted states is therefore limited to the branch desc(gopt).

Preliminary experiments showed that this branch is often reduced to only one
state in practice. Since our goal is to delete a significant number of states, we will
focus on the second problem in which we want to delete at least nb states. It can be
solved with a recursive algorithm. For each subtree of the PPTA (rooted in ¢) and for
all 0 < i < nb, the algorithm computes the optimal cut set of states D(q, i) C desc(q)
to delete with the constraints that |desc(D(q,))| > i and L(A, .Am) is minimal.
However, this algorithm has a complexity O(nb.|A|.|X|) which is too high for large
PpTA and large values of nb (we want to be able to have nb of the order of |A|). We
present a heuristic in the next section.

5 Algorithm and Complexity

We focus here on our second problem, i.e., to find a cut set of states D = {q1, .., qx }
such that:

— |desc(D)| > nb;
= D minimires £(A Ap) = ZESEERI with ofg) = Sesfee e
which is the weighted average of the v(q;) with weights |desc(g;)].

If the g; could be chosen without constraints in (), this problem could be solved by:

1. For each state ¢ € Q, compute v(q) and |desc(q)| (these values can be computed
in time O(|.A|) using a recursive traversal of the PPTA);

2. Construct a list L =< g1, ... > by sorting the states ¢ in increasing order of v(q)
in time O(].A|. log | A|) (notice that the first element of this list is gopt, the solution
of the first problem);

3. Take the shortest prefix < qi,...,qx > of L such that the sum of the weights of
q1,---,qk 18 greater than nb.

4. Take {q1,...,qr} as D.

This algorithm is optimal and has complexity O(|.A|.log|.A|). However, in our
problem, the set D must be a cut set of states, i.e., there cannot exist two states p
and ¢ in D such that p € desc(q). Our heuristic is to replace the third and fourth
steps by:

3’. Take the shortest prefix < q1,...,qx > of L such that, when considering in this
prefix only the states that are not descendant of one another, the sum of their
weights is greater than nb. This can be done in time O(].A|) by marking each
descendant of each state ¢; and summing only the weights of the non marked
states.

4’. Take the non marked states of this prefix as D.

The complexity of this algorithm is therefore O(].A|.log |A|).

6 Experimentations

We will evaluate the pruning first by analyzing the increment of the KL w.r.t. the
number of states pruned. Then we measure its impact on grammatical inference by
comparing the result of the inference when started from a pruned PPTA and from a
non-pruned PPTA.

6.1 KL behavior with respect to the number of states pruned

In order to evaluate the quality of the pruning procedure, the second algorithm is
used to compute a cut set of state D for different pruning thresholds nb (minimal
number of states to delete).

Fig. 2. KL w.r.t. the number of states pruned

0.005

0.003 - 1

0.002 - —

0.001 - 4

KL between the original aut. and the prune one

0t i i ! . I
100000 200000 300000 400000 500000 600000
states pruned

Figure 2 presents the divergence K L(A, Ap) with respect to nb. The input PpTA
A has 868,851 states (built on the wall street journal task, see section 6.3). We expect

the KL to increase monotonically. It is however noticeable that it is almost flat up
to 400,000 states pruned (that is 46% of the automaton’s states). The pruning is in
practice efficient as it takes less than 20 seconds on a recent PC machine! (including
Input/Output time). This value is negligible with respect to the 91 hours needed for
the inference on the whole learning set (see table Sect. 6.3).

This means that the distribution D4 represented by the pruned automaton is
close to the distribution represented by A even when a large number of the states
are deleted. We thus expect to be able to use the pruned model Az as a replacement
for the PPTA A built with the full training sample.

6.2 Evaluation measure

We will evaluate the pruning method in the context of language modeling. In many
probabilist grammatical inference algorithms [3 6], a PpTA is built from a sample as
a first step of the inference. It is then generalized by merging equivalent states. The
algorithms differ in the way equivalence of states is considered.

These algorithms are evaluated through the ability of the resulting automata to
parse new strings, that is by the per symbol log-likelihood of strings = belonging to a
test sample S according to its underlying distribution:

1 ||
LL(S) = —m Z |S|:r ZIOgPA(5A(QO, 371552---5171‘71,371')
T€S i=1

where x; is the i-th symbol of z and |S|, its multiplicity in S. This average log-
likelihood is related to the KL divergence between an unknown target distribution
and the hypothesis by considering the test sample as the empirical estimates of the
unknown distribution [11].

The test sample perplexzity PP(S) is most commonly used for evaluating language
models. It is given by PP(S) = 2-L(5), The minimal perplexity PP = 1 is reached
when the next symbol z; is always predicted with probability 1 from the current state
q; (i-e. p(6(qo,x1...25-1),x;) = 1) while PP = |X| corresponds to random guessing
from an alphabet of size |X|.

6.3 The Wall Street Journal Task

The data used are drawn from the Wall Street Journal database, a large syntactically
annotated corpus subdivided in 25 sections. We followed the preprocessing used by
[14]: Sections 0 to 20 were used as the training set (962,612 words), sections 21 and
22 were used as a development set (48,024 words) and sections 23 and 24 serve as the
test (101,189 words). Digit numbers were replaced by a unique character. Following
[14], the 10,000 most frequent words were kept and the remainder were transformed
in a unique symbol unknown. In order to make the data more realistic for a speech
to text task, the punctuation was removed and the words transformed in their lower
case form. The average length of the sentences is 22 words and the size of X is around
10000.

We applied the pruning algorithm on the PPTA built on the whole training set
(868,851 states) with different levels of pruning (number of deleted states ranging

! The machine used is a linux box with a 3 Ghz processor and 1 GB of memory.

from 100K to 600K). The MDI [4] algorithm is then applied on each of these pruned
Pp1As. The MDI algorithm depends on a parameter « that controls the generalization
rate. To choose the value of this parameter, several inferences were performed on each
PprTA with o ranging from 0.00008 to 0.01. The value that gives the best perplexity
on the development set is chosen. The following table gives the best value of a and
the total time spent to compute all automata for all values of a.

Then, the best automaton (corresponding to the best value of «) is evaluated by
its perplexity computed on the test set (see table). The size of this best automaton
is also given (# states post inference).

Test set results of the inference using pruned PpTA

% states pruned 0 11%(23%|35%|46 %|57%|69%
states pruned (x1000)|| 0 | 100|200 |300 | 400 | 500 | 600
a (x107%) 212|212 2 1 1
Total time (h) 91172161 47| 60 | 20 | 8
PPypi(test) 549|550 | 564 | 547 | 564 | 567 | 568
states post inference ||451|463 |458|422| 434 [1989|1863

7 Discussion

As can be seen in the above table, the test set perplexity of the inferred model does
not change significantly up to a pruning level of 35% of the states. This is consistent
with Fig. 2. We can also notice that the pruning has little influence over the size of
the inferred automaton (at least for pruning levels below 46%).

It is worth stressing that the optimal value of the parameter « at different pruning
thresholds does not change a lot. The pruning can thus be used to estimate the
optimal parameter « in a less demanding situation. Only one inference will then be
done on the full PPTA using the optimal setting of the pruned one.

Related work : language modeling is classically done using n-grams. As the size of
the corpora increases, increasing the size of n improves the prediction. Unfortunately,
the size of the model dramatically increases in n. In [15] Stolcke proposed to prune
the n-gram model using an entropy based criterion similar to ours. As it is applied on
n-gram, such a pruning will remove the estimation of part of sentences and not end
of sentences as we do. Another main difference is the length of the removed chunk.
In our case, the size of the chunk we can remove is not bounded as with n-gram. If a
very long sentence appears once, our pruning method will remove the whole branch,
which will not be the case with n-gram.

Regarding the prediction performances, we need to mention that the MDI algo-
rithm is outperformed by the unpruned trigram model that obtains a test set per-
plexity of 1652. Many improvements can nevertheless be achieved at the grammatical
inference level: use another algorithm [5, 6, 16], or use preprocessing techniques (e.g.
word clustering [17], bagging [18]) or post-processing techniques (e.g. combining au-
tomata [5]).

? The trigram considered here used a Kneyser-Ney smoothing [8].

10

8 Conclusion and Further Work

We presented in this article an efficient way to prune a smoothed PPTA. We showed
that we can dramatically reduce the size of the automaton keeping a great similarity
between the distributions represented by the original automaton and the pruned one.
We then showed, on a reasonable language modelling task, that the pruning can be
seen as a preprocessing technique before applying grammatical inference algorithm.
The performance of the learning algorithm is not changed up to a pruning level of
35% of the states of the initial automaton.

From a theoretical view point, we intend to study pruning of general automata,
which leads to both computational and theoretical problems, since the efficient com-
putation of Az is more complicated to achieve in the general case. From the practical
point of view, it is of great interest since the pruning could be applied as a post-
processing step after the inference, leading to smaller models that perform similarly.

References

1. Casacuberta, F., Vidal, E.: Machine translation with inferred stochastic finite-state
transducers. Computational Linguistics 30(2) (2004) 205-225

2. Ron, D., Singer, Y., Tishby, N.: On the learnability and usage of acyclic probabilistic
finite automata. In: Proceedings of COLT 1995. (1995) 31-40

3. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a state
merging method. In: Second ICGI. (1994) 139-152

4. Thollard, F., Dupont, P., de la Higuera, C.: Probabilistic DFA inference using Kullback-
Leibler divergence and minimality. In Langley, P., ed.: ICML, Morgan Kaufmann (2000)

5. Thollard, F.: Improving probabilistic grammatical inference core algorithms with post-
processing techniques. In: ICML’01, Morgan Kauffman (2001) 561-568

6. Kermorvant, C., Dupont, P.: Stochastic grammatical inference with multinomial tests.
In: ICGI. Volume 2484 of LNCS. (2002) 149 160

7. Vidal, E., Thollard, F., de la Higuera, C., , Casacuberta, F., Carrasco, R.C.: Proba-
bilistic finite-state machines — Part I and II. IEEE trans. on PAMI 27(7) (2005)

8. Goodman, J.: A bit of progress in language modeling. Technical report, Microsoft
Research (2001)

9. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to
information retrieval. ACM Trans. on Information Systems 22(2) (2004) 179-214

10. Clark, A., Thollard, F.: Pac-learnability of probabilistic deterministic finite state au-
tomata. JMLR 5 (2004) 473-497

11. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecom-
munications. John Wiley & Sons (1991)

12. Abe, N., Warmuth, M.: On the computational complexity of approximating distribu-
tions by probabilistic automata. Machine Learning 9 (1992) 205-260

13. Carrasco, R.C.: Accurate computation of the relative entropy between stochastic regular
grammars. RATRO TIA 31(5) (1997) 437-444

14. Charniak, E.: Immediate-head parsing for language models. In: 10th Conf. of the
Association for Computational linguistic, ACL’01. (2001)

15. Stolcke, A.: Entropy-based pruning of backoff language models. In: DARPA Broadcast
News Transcription and Understanding Workshop. (1998) 270-274

16. Callut, J., Dupont, P.: Learning partially observable markov models from first passage
times. In: ECML. (2007) 91-103

17. Dupont, P., Chase, L.: Using symbol clustering to improve probabilistic automaton
inference. In: ICGI. Volume 1433 of LNAI., Springer (1998) 232-243

18. Thollard, F., Clark, A.: Shallow parsing using probabilistic grammatical inference. In:
ICGI. Volume 2484 of LNCS. (2002) 269282

