Position models and language modeling

Arnaud Zdziobeck and Franck Thollard

Université Jean Monnet, Saint-Etienne
Laboratoire Hubert Curien, UMR CNRS 5516
arnaud.zdziobeck@bvra.univ-st-etienne.fr

thollardQuniv-st-etienne.fr

Abstract. In statistical language modelling the classic model used is
n-gram. This model is not able however to capture long term depen-
dencies, i.e. dependencies larger than n. An alternative to this model is
the probabilistic automaton. Unfortunately, it appears that preliminary
experiments on the use of this model in language modelling is not yet
competitive, partly because it tries to model too long term dependen-
cies. We propose here to improve the use of this model by restricting the
dependency to a more reasonable value. Experiments shows an improve-
ment of 45% reduction in the perplexity obtained on the Wall Street
Journal language modeling task.

1 Introduction

In statistical language modelling, the n-gram model is broadly used. This model
allows to model dependencies of size n. By using non shadowing smoothing, the
n-gram model will also capture dependencies smaller than its order n.

With the increase of the size of the corpora, researchers attempt to increase
the size of the history in m-gram models. Unfortunately, the data sparseness
problem is getting more an more important as the size of the order of the model
(i.e. the history) augments. Moreover the size of the model dramatically in-
creases, even if some pruning techniques can be applied with a small impact on
the prediction power of the model [15, 16].

As the improvements with the n-gram model tend to be harder and harder to
obtain, another strategy could be to consider other models. An alternative is to
use probabilistic automata, which, in general, have a greater expressive power.
On the contrary to the non probabilistic case, non-deterministic automata have
a greater power of expression than the deterministic one. See [20] for a presen-
tation of probabilistic finite state machines and their associated algorithms. As
the use of non-deterministic machines is much more complex (e.g. parsing for
example is much less efficient in the non deterministic case), most of the work
has been concentrated on deterministic ones.

9 This work was supported by the BINGO2 project (ANR-07-MDCO 014-02).

I

Even if many algorithms exist for inferring deterministic probabilistic finite
state automata (DPFA for short), their successful application mainly appears in
contexts with small vocabularies and short sentences (e.g character recognition
[14], shallow parsing [18]). Unfortunately, work is still needed in the domain of
statistical language modelling as size of the vocabulary is generally large, and
more importantly, sentences length are, on average, quite long.

We think that DPFA can be accurate up to a moderate length, that is on
part of sentences. We follow here a windowing approach in which the sentences
to model are split into windows of a given size, and a model is learned on each
window. The parsing is then made using all the automata.

Next section presents the notations used. We then present some preliminary
experiments that demonstrate the relevance of modeling strings by chunks. Our
experimental set up will follow together with the results. We then conclude.

2 Definitions and notations

Let X be a finite alphabet and X* (resp. X 1) be the set of all strings that can
be built from X, including (resp. not including) the empty string denoted by A.
We denote X' = XU {A}. A language is a subset of X*.

A stochastic language D is a probability distribution over X*. We denote
by Pp(z) the probability ! of a string € X* under the distribution D. The
distribution must verify Y . Pp(z) = 1. If the distribution is modeled by
some syntactic machine A, the probability of x according to the probability
distribution defined by A is denoted P4(z).

A sample S is a multi-set of strings: as samples are usually built through
sampling, one string may appear more than once. The number of times a string
x (resp a symbol z;) appears in S is denoted |S|z (resp. |S|z;). The number of
symbols x; € X in S is denoted by [|.S]|.

The goal of a statistical language model consists in providing a probability
to strings of X*. This is classically estimated using the chain rule:

m

Pz =z129...2y) = P(z1) X HP(:L‘l | z1...21-1) (1)
1=2

This decomposition requires the estimate of a long dependency term P(z; |
T1... 1‘171).

In the following, we recall the n-gram model in which a bound on the history
is assumed, and the probabilistic automata which can model unbound depen-
dencies.

1 As usual, we denote P(z) as P(X = z) for any discrete random variable X.

11T

2.1 The n-gram model

The n-gram assumption considers that
Pz |z coxa) ~ Ploy | 212 (—1))

that is that the probability of a symbol depends only on the n — 1 preceding
ones.
Each probability is estimated using maximum likelihood:

‘S‘zl7n+lml—n+2---zl

Pz | z1.. . 21— (n=1)) =

|S|9017n+19017n+2---1‘171

A special case of the n-gram model is the unigram model (n = 1), noted

U: for each symbol z; € X, Py(z;) = “T‘STF This model can be represented as

a one state automaton, with a looping transition for each symbol of the alphabet.

When dealing with large vocabularies, either the numerator or the denom-
inator of the previous equations can have a null estimate. Hence a smoothing
strategy needs to be set in order to provide a non null probability on each n-gram.

2.2 Probabilistic Automata

Definition 1. A Deterministic Probabilistic Finite state Automaton DPFA is a
tuple A=(Qa, X,04,q0, PA), where:

— Q4 is a finite set of states;

— o € Q4 is the initial state;

— X is the alphabet;

— 04 :Qa XX — Q4 is a transition function;

— pa:Qax X — R are transition probabilities such that

VeeQa, Y palgsa) = 1. (2)

acX’

For each state ¢, the probability p4(g, A) is not associated with a transition.
It represents the probability that the string ends at ¢.

Functions d 4 and p 4 can be extended recursively from X to X*.

The probability of a string s according to a DPFA A is then defined as:
Pu(s) = pa(qo,s) x pa(d4(qo,8),N) if s # X and Py(X) = pa(qo, A) else. If (2)
holds, these probabilities define a probability distribution D4 over X* [20].

This definition of DPFA considers only complete automata, i.e. functions
p and § are defined for all pairs of state and symbol. If an automaton is not
complete, then transitions with zero probabilities can be added to get a complete
automaton without changing its distribution D 4.

The automaton considered being deterministic and the size of the vocabulary
being constant through the paper, the size of a DPFA A is defined as its number

v

Fig. 1. Probabilistic automaton with a smoothed state

/a\
g
W= V7]

-2 ue)

of states and will be noted |.A|.

Figure 1 presents a smoothed DPFA, smoothing being drawn using dash lines.

The probability of string cb according to this automaton is % X % X %.

3 Building language models

As seen in section 2.1, the n-gram model is estimated by counting term frequen-
cies in a training corpus. We address in this section the building of probabilistic
automata. In most of the probabilistic grammatical inference algorithm a first
tree shape model is built that represents the maximum likelihood estimate of
the training data. A second step is then used to generalize this model. This is
done by merging states that are considered close according to some distance
and some tolerance parameter « [2,10, 19]. The algorithms differ in the distance
used. We will consider here the MDI algorithm [19] as i) it uses a global crite-
rion for comparing state and ii) the merging criterion favors small models. The
automata produced are thus quite compact as compare to the ones output by
the other algorithms. For our purpose, the MDI algorithm can be seen as a black
box that takes as input a training set and a tuning parameter « and provides,
as the output, a probabilistic automaton.

4 Smoothing language models

As mentioned above, smoothing language models is needed to handle the sparse
data problem. This is mandatory either from a practical point of view [4,7] or
from the theoretical one [13,14] . The main strategy consist in removing some
probability mass from the seen events and redistribute them on the unseen ones.
A back-off model, usually less accurate but more general, is used to provide a
redistribution of the probability mass more realistic than, say, a uniform one.

A%

The classic smoothing scheme for n-gram is the Kneyser-Ney smoothing [11]
while smoothing probabilistic automata is still an widely open problem (see [6,
17] for some attempts).

In [17] smoothing a probabilistic automaton is done at a state level. A value
€ is removed from each transition. This leaves a probability mass that can be
redistributed, according to the unigram model, to estimate the probability of
the symbol for which no transition exists. In order to keep the model compact,
this smoothing scheme is done dynamically at parsing time. As an illustration,
state 1 of figure 1 is explicitly smoothed: two smoothed transitions are added
and goes to the unigram state Y. The ps values are estimated with the unigram
adequately renormalized by €/5 + ¢/5 + /5, as this represents the probability
mass saved respectively from the stopping probability, and the outgoing original
transitions "¢” and "b”.

5 Motivations

We made some preliminary experiments on the ” Air Travel Information Sys-
tem” (ATIS) corpus[8]. Even though it is now considered a small corpus it is
large enough to make relevant preliminary work. In Fig. 2 we compute the av-
erage probability estimated by the unigram model, a probabilistic automaton
inferred by the MDI algorithm [19] and a trigram model smoothed by Kneyser-
Ney smoothing [11]. As can be seen, apart from the very beginning and the
very end of the sentences?, it appears that, the unigram and the trigram per-
formances are not much influenced by the position in the sentence. This is not
the case however for the probabilistic automaton as its prediction tends to the
unigram one as the position increases. What can be noticed however is the fact
that both the trigram and the automaton have a peak of performance at the
same point (namely at position 3). The curve labelled ”raw aut” accounts for
the average of the probabilities provided by the automaton when it can parse
the string (that is when no smoothing is required). It is interesting to see that
this predictions are, on average, rather good.

This means that, when it can parse, the automaton is rather good. An in-
terpretation of the difference between this curve and the one of the smoothed
automaton, is that the automaton suffers from under-generalization, and the
parsing at that point is usually done by the unigram model. Unfortunately,
tuning the grammatical inference parameter in order to build a more general
automaton will decrease the prediction performances at the beginning of the
sentence. In order to circumvent this problem, we propose here to build a model
for which the generalization will depend on the position. As the models inferred
by MDI are quite compact (few hundred of states), we can combine several DPFA
without fear of facing any storage problem.

2 Before position 3, the trigram does not have information to model properly con-
ditional probabilities. Above position 23, very few strings exists (namely 34) that
makes any interpretation suspicious.

VI

Fig. 2. Prediction power w.r.t the position
0.6 T T T T T

05 - raw aut .

04k “,“ i

“_trigram
02} i

Dev set average probabilities

i . automaton

01} 4 4

unigram

0 5 10 15 20 25 30
Position in the string

6 Experiments

The analysis above were conduct on the small ATIS task. In order to evaluate
the position model on a more up to date database, we now consider the Wall
Street Journal database.

6.1 The Wall Street Journal Task

The data used are drawn from the Wall Street Journal database [12], a large
syntactically annotated corpus subdivided in 25 sections. We followed the pre-
processing used by [3]: Sections 0 to 20 were used as the training set (962,612
words), sections 21 and 22 were used as a development set (48,024 words) and
sections 23 and 24 serve as the test (101,189 words). Digit numbers were re-
placed by a unique character. The 10,000 most frequent words were kept and
the remainder were transformed in a unique symbol unknown. In order to make
the data more realistic for a speech to text task, the punctuation was removed
and the words transformed in their lower case form. The average length of the
sentences is 22 %(=+ 10) words and the size of X is around 10000.

6.2 Experimental protocol

We present here the experimental protocol we followed. According to the Fig. 2
we consider that probabilistic automata are not able to handle cleverly histories
of size greater than 10. Each string is thus split in different chunk (position 1

VII

to 10, 8 to 15, ...). A model is inferred on each chunk and the final parsing will
change the model as the position changes to another chunk. As can be seen on fig
2, the parsing at the very beginning of the sentence do not have enough evidence
to provide good estimate. Moreover, as the position increases, smoothing is more
likely to appear. For theses reasons, we propose to make an overlap between the
chunks.

Defining the size of the overlap is not easy, as there is no reason that a good
overlap size at the beginning of the string will be relevant at the end of the
string. We therefore propose to have a lot of concurrent overlaps and to learn
which one is relevant and which one is not.

The strings are thus split using different overlapping chunks (e.g 1-5, 1-6, 1-7,
ooy 1-15, 3-11, 3-12, ...). For each chunk we inferred a probabilistic automaton®.
A given position (say 8) will be covered by different chunks (e.g. 6-10 and 7-
12). We make chunks of different size (ranging from 5 to 15 words) at different
position (ranging from 0 to 58). Given the small amount of data at far position,
a unique automaton is inferred from position 61. We will note C* (resp. A?)
the set of chunks that covers position ¢ (resp. the set of automata inferred on
chunk C?). Obviously, all the automata in A* do not have the same accuracy in
their probability estimate: as seen on Fig. 2 depending on the position in the
automaton during the parsing, the probability estimated by the model do not
have the same accuracy. The probability estimated at position ¢ by our position
model will be an interpolation of the probabilities provided by the automata in
A'. We note X} the weight of an automaton A} € A’

More formally, the probability of a string will be computed as :

Plx =x1..00) = H Z /\é- X Py (zi]z1...2i-1)

pos=i A§ €Al
The values of the)\é- coefficients are evaluated using an EM procedure.

Fig. 3 shows the average probability of what we call the position model (curve
named 638 auts”) at different positions. As a point of comparison, the average
probability is also provided for the trigram model and the automaton inferred
on the full strings. It is interesting to notice that the position model starts to
be relevant from position 20 and outperforms the trigram from position 40.
Unfortunately, as the number of strings of length greater than 40 is quite small,
this performance does not compensate the bad results obtained at the beginning;:
the position model is outperformed on average by the trigram. Another point
should nevertheless be considered: despite the fact we used many automata, the
overall size of our model is still quite reasonable as it is far smaller than the
size of the trigram. Moreover, it appears that some of the)\é- are quite small as

3 Here again, a set of inferences is done by varying the MDI parameter o from 0.0008
to 0.1. The best automaton according to its dev set performance is selected.

VIII

Fig. 3. Prediction power w.r.t the position

0.2

T
638 automata
200 automata -
Trigram --------
Unigram

0.15 |

0.1 |

Average probabilities

0.05 |-

10 20 30 40 50 60 70
Positions in the strings

compare to other ones. We thus propose to reduce the size of the overall position
model by iteratively removing the automaton that has the smallest weight.

Fig. 4 shows the behavior of the position model when we remove some au-
tomata. Note that on the contrary to the over figures, the quality criterion used
is the perplexity: the smaller the perplexity on a given data set, the better the
model predicts the strings of this set. This measure is linked, on the one hand,
with the Kullback-Leibler divergence between the model and the development
set, and on the other hand, on the inverse of the (geometric) average of the
probabilities assigned by the model. See e.g. [20] for more detail on this measure
and its links to the average on the test set string probabilities.

On Fig. 4 we can see that the our pruning strategy can save up to 50% of the
size of the position model with a small impact on the development set perplexity
(curve 7200 auts” on fig 3).

For sake of comparison, the table 1 presents the test set perplexity of the posi-
tion model as compare with the Trigram model (with a Kneyser-Ney smoothing).
We include the size of the model 4 and see first the that more compact model
is the automaton inferred on the whole data set (name ”full aut”). This model
however performs rather badly as its perplexity is around 550 (as compare to
the 150 of the trigram). The ”All aut” model is the one in which all the 638
automata were kept. Using this model we obtain 45% of perplexity reduction,
the size of the model being reasonable. When concern with the size of the model,

4 The size of the trigram model is computed as the sum of the number of entries of
the different hash tables.

IX

Fig. 4. Perplexity w.r.t the model size
1800

Per‘p-size
1600 - } -
1400 |- ’ p
> 1200 | e
<
=
& 1000 |- L\ E
]
w
>
<] \
O 800 L E
K
600 |- l,\ |
S
400 [AN b
200 ! ! ! ! !
0 50000 100000 150000 200000 250000 300000

Overall size: sum of the nb of states

we can see that the 200 auts model is a good tradeoff between size and predic-
tion as the gain in size (w.r.t the All aut model) is interesting as regard to the
prediction performances.

Table 1. Test set perplexity on the WSJ task.

Model #states|Perp (test)
3-grams |1,589,844|150
Full Aut 451|556
100 auts| 32,609(399
200 auts| 54,083|381
All aut | 252,026|364

7 Conclusion and further work

We presented in this article a position model for statistical language modeling
using DPFA. This position model is evaluated on the Wall Street Journal task. It
achieve a test set perplexity reduction of 45% at the expense of having a bigger
model. This model is still smaller than the trigram one.

In the near future, we want to consider the tradeoff between the size of the
model and the prediction power. To this end, some trigram compression method
(e.g. [9]) or trigram pruning methods (such as [16,15]) will be compare to the
automaton’s size, adequately compacted by compressing method [5]).

Another improvement can come from the use of other more recent probabilis-
tic grammatical inference algorithms such as [1] and other smoothing schemes
[6]-

References

1. J. Callut and P. Dupont. Learning partially observable markov models from first
passage times. In FCML, pages 91-103, 2007.

2. R. C. Carrasco and J. Oncina. Learning stochastic regular grammars by means of
a state merging method. In Second ICGI, pages 139-152, 1994.

3. E. Charniak. Immediate-head parsing for language models. In 10th Conf. of the
Association for Computational linguistic, ACL’01, 2001.

4. S. F. Chen. Building Probabilistic Models for natural Language. PhD thesis, Har-
vard University Cambridge Massachusetts, May 1996.

5. J. Daciuk and G. van Noord. Finite automata for compact representation of lan-
guage models in NLP. In CIAA, pages 65-73, 2001.

6. P. Dupont and J.C. Amengual. Smoothing probabilistic automata: an error-
correcting approach. In Intl. Coll. on Grammatical Inference (ICGI), 2000.

7. Joshua Goodman. A bit of progress in language modeling. Technical report,
Microsoft Research, 2001.

8. L. Hirschman. Multi-site data collection for a spoken language corpus. In DARPA
Speech and Natural Language Workshop, pages 7 14, 1992.

9. C. Kenneth, H. Ted, and G. Jianfeng. Compressing trigram language models with
Golomb coding. In Joint EMNLP-CoNLL, pages 199-207, 2007.

10. C. Kermorvant and P. Dupont. Stochastic grammatical inference with multinomial
tests. In ICGI, pages 149-160, 2002.

11. R. Kneser and H. Ney. Improved backing-off for m-gram language modeling. In
Intl. Conf. on Acoustic, Speech and Signal Processing, pages 181-184, 1995.

12. M. Marcus, S. Santorini, and M. Marcinkiewicz. Building a large annotated corpus
of English: the Penn treebank. Computational Linguistics, 19(2):313-330, 1993.

13. D. McAllester and R. Shapire. On the convergence rate of the good-turing estima-
tors. In Conf. on Computational Learning Theory, pages 1-66, 2000.

14. D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic proba-
bilistic finite automata. In Proceedings of COLT 1995, pages 31 40, 1995.

15. V. Siivola, T. Hirsimki, , and S. Virpioja. On growing and pruning kneser-ney
smoothed n-gram models. In IEEE Transactions on Audio, Speech and Language
Processing, volume 15, 5, pages 1617 1624, July 2007.

16. A. Stolcke. Entropy-based pruning of backoff language models. In DARPA Broad-
cast News Transcription and Understanding Workshop, pages 270-274, 1998.

17. F. Thollard. Improving probabilistic grammatical inference core algorithms with
post-processing techniques. In ICML’01, pages 561-568. Morgan Kauffman, 2001.

18. F. Thollard and A. Clark. Shallow parsing using probabilistic grammatical infer-
ence. In ICGI, pages 269-282, 2002.

19. F. Thollard, P. Dupont, and C. de la Higuera. Probabilistic DFA inference using
Kullback-Leibler divergence and minimality. In ICML, 2000.

20. E. Vidal, F. Thollard, C. de la Higuera, , F. Casacuberta, and R. C. Carrasco.
Probabilistic finite-state machines — Part I and 11. PAMI, 27(7), 2005.

