
HAL Id: ujm-00366564
https://ujm.hal.science/ujm-00366564

Submitted on 9 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Log Pre-Processing and Grammatical Inference for Web
Usage Mining

Thierry Murgue

To cite this version:
Thierry Murgue. Log Pre-Processing and Grammatical Inference for Web Usage Mining. UM 2005,
2005, Édimbourg, United Kingdom. pp.43-50. �ujm-00366564�

https://ujm.hal.science/ujm-00366564
https://hal.archives-ouvertes.fr

Log Pre-Processing and Grammatical Inference

for Web Usage Mining

Thierry Murgue1,2

1 EURISE, University of Saint-Étienne 23, rue du Dr Paul Michelon
42023 Saint-Étienne cedex 2 – France

2 RIM, École des Mines de Saint-Étienne 158, Cours Fauriel
42023 Saint-Étienne cedex 2 – France

thierry.murgue@univ-st-etienne.fr

Abstract. In this paper, we propose a Web Usage Mining pre-
processing method to retrieve missing data from the server log files.
Moreover, we propose two levels of evaluation: directly on reconstructed
data, but also after a machine learning step by evaluating inferred gram-
matical models. We conducted some experiments and we showed that
our algorithm improves the quality of user data.
Keywords: log pre-processing, web usage mining, grammatical infer-
ence, evaluation

1 Introduction

Web Usage Mining is a complex process used in order to extract knowledge
about users of a web site. It is composed of many steps as described in Fig.1, from
selecting relevant data to knowing how users browse on a web site. Web Usage

Mining was first introduced in 1997 [1] as the “discovery of user access patterns
from Web servers”. To select, to clean and to format available data are real chal-
lenges. The kind of information which is the most used in this context is the Web
server log files. Already in 1995, Catledge and Pitkow used logs for the character-
ization of “Browsing Strategies” [2]. Other types of data can be used in this topic
of research, such as client data (mouse gestures, keyboard events,. . .) or user
physical behavior (eye movements, arm gestures,. . .), but they are really hard
to obtain. As a consequence, most work in this research field depends on server
log files. Due to some network architectures and features (cache and proxy),
log data are often irrelevant and noisy. Pre-processing is therefore a crucial is-
sue for learning. Machine learning methods for Web Usage Mining include
frequent sequences learning [3, 4] and more structural models such as Hidden
Markov Models (Hmms) [5, 6]. More recently, researchers have worked on gram-
matical models: n-grams [7], and stochastic automata with classical grammatical
inference methods [8].

In this paper, we propose a method for handling the problem of noisy and
irrelevant data in log files. We present an algorithm to reconstruct the data and
we evaluate it. We use stochastic inference to learn users behaviors and we show
that reconstructed data leads to better models.

Knowledge

Selection

Cleaning

Formatting

Machine Learning

Evaluation

Fig. 1. Web Usage Mining process

We will first present the problem we want to deal with. The description of
an algorithm to reconstruct the log data in order to obtain reliable ones follows:
the method depends on some heuristics which try to detect improbable paths
on navigation. Two sets of experiments show that we can retrieve some pieces
of information which were lost due to caches. Finally, we conclude and propose
alternative protocols in order to test log processing methods.

2 Our Problem

In order to mine user behavior, we have to extract from log files each visit
of users to the web site: a visit is considered as a set of pages requested in a
single semantic goal (without any embedded objects such as pictures and so on).
We will see that they are missing and erroneous data in server log files. Before
starting to explain our problem, we have to say more about logs.

The World Wide Web Consortium (W3C) recommends to use the common

log file format to record required fields [9].

Table 1. a common log record

F1 F2 F3 F4 F5 F6 F7

161.3.6.51 - - [30/Oct/2001:20:13:27 +0100] "GET / HTTP/1.1" 403 293

Generally, a log record is composed of (see Table 1):

– remotehost field (F1): the address of the machine which makes the request.

– rfc931 field (F2): the remote login name of the user. Actually, for obvious
security reasons, this field is almost always blank.

– authuser field (F3): the username as which the user has authenticated him-
self. This field is only filled when an authentication process is used.

– date field (F4): data and time when the server receives the request.
– request field (F5): the request line exactly as it came from the client.
– status field (F6): a return code informing the client of the request processing

status.
– bytes field (F7): the content-length of the answer transferred.

Servers record chronologically each hit into the log files: a hit can be a real
page request, but also an error or an embedded document request which is not
related to the navigation of the user. First of all, we have to filter the logs,
by deleting all useless items such as error reporting, non-supported requests (for
example, in our preliminary version we did not process any page with parameters
as index.php?id=12&it=la). The result of filtering raw data is a sequence of
logs, which represents only a part of user navigation: actually, many requests
never reach the server.

In order to reduce network traffic and to speed up the transfer of data on the
Internet, the almost totality of browsers (mozilla-firefox, opera, IE,. . .) imple-
ment a local cache. In [10], caching is defined as “a mechanism that attempts to
decrease the time it takes to retrieve a resource by storing a copy of the resource
at a closer location”. Consequently, when a user requests a page:

1. the cache checks if it has already been viewed by the user (typically when
user has hit back button);

2. (a) if not, the client sends the request to the server;
(b) else, the cache produces the answer but the server never receives the

request and so can’t record it.

This is the first problem due to the network features: it implies that some data
is missing in server log files.

Another place where a cache can be, and it is called global cache in this con-
text, is on a proxy server: a proxy is a machine somewhere in-between client and
server; its goal is to increase the security and to make easier the administration
of a machines set (a domain) by allowing only connection to external web servers
from the proxy. Thus, a machine from the protected domain can request a page
only to the proxy:

1. the proxy checks in its own cache, if it has already been viewed by one of
the users using the proxy;

2. (a) if not, the proxy forwards the request to the server: in this case, the
from field recorded into the logs is the proxy address and not the client
address;

(b) else, the cache produces the answer but the server never receives the
request and so can’t record it.

In this configuration, external servers receive requests only from the proxy, so in
the log files, we can’t distinguish where the request comes from.

So, to retrieve the exact visits of each user, we have to deal with different
kinds of noise: erroneous data, when the from address is a proxy and not the real
user’s machine and missing data, when the cache instead of the server supplies
the answer.

3 Reconstructing data: algorithm WhichSession

In order to retrieve the missing data and correct the wrong data, we suppose
that the web site corresponding to the server is known: we model the web site
by a graph where nodes represent pages and links represent hypertext links into
the page. The heuristics we use detect inconsistent sequences of pages in the user
navigation: the algorithm WhichSession is described below.

Algorithm 1: WhichSession

Data: h(0) //page we want to class

foreach k ∈ opened sessions do

if hk(1) → h(0) then
Store(k, h(0)) /*add h(0) in session k and exits */

min back length = ∞;
//the number of backward steps, we have to follow to find a linked page
foreach k ∈ opened sessions do

for 2 ≤ i ≤ |hk| do

if hk(i) → h(0) then

if min back length > i then
min back length = i ;
min session = k; break;

if min back length < ∞ then
/*we found an inconsistency into log records, we have to include a part of

the history in order to have a linked path into the web site */
Add_Missing_Values(min session, min back length);
Store(min session,h(0));

else
/*there’s no available page in histories: add a new session */
l = New_Session();
Store(l,h(0));

The symbol → is used to indicate that there is a hypertext link from the first
page to second one. Some notations are to be defined: for the situation at the
current time, there are some sessions opened and we want to store the current
log record h(0) into the right session, the one corresponding to the unique user

who requests the page. We have to select the best session, by scrolling through
the history of opened sessions (hk is the history of the session k, hk(i) is the
ith page of hk), and choosing the one which has the minimum backward steps
required to find a link to the current page.

4 Artificial data experiments

4.1 Artificial Data presentation

In order to have reliable data to test our reconstructing method, we generated
artificial logs according to possible paths in a web site. We select a page and
we compute a path with some “navigation errors” that could typically have been
produced by hitting the back button or no taking the shortest path. The site
is composed of 105 different pages, the average length of generated paths is
10.9 pages. At this step, we obtain a reference complete set of logs l0 without
erroneous data. Then we simulated some caches from which we obtained l1 and
finally rebuilt the data l2 from l1 using algorithm WhichSession.

4.2 Data evaluation

We first carried out a set of experiments on these data by computing two ratings
between l0 and l1 on one hand, and between l0 and l2 on the other hand: one
measures the difference between the number of detected visits (d#), the other
the Levenshtein’s distance (dL) [11] for each visit. In order to do that, we have
to re-assign logs into their reference visit because of the lack of detected visits.

As an example, if we have a set of three visits (vi) with two pages (A and B)
into the reference artificial data such as:

reference visits l0 cached ones l1 reconstructed ones l2
v0 = [A, B, A] v0 = [A, B, B, A] v0 = [A, B]
v1 = [B, B, A] v1 = [B] v1 = [B, B, A]
v2 = [A, B] v2 = [A, B]

One can compute d#(l0, l1) = 1, d#(l0, l2) = 0. By comparing date of logs
(it is possible because we have generated the data), we can reorganize l1 into
v0 = [A, B], v1 = [B, A] and v2 = [A, B] and then compute dL(l0, l1) = 3,
dL(l0, l2) = 1.

Results of the experiment are shown in Fig. 2.
We can see that the two ratings are better when the data are reconstructed by

our method. Actually, reconstruction permits to retrieve correct missing data:
that helps to detect the end of a visit, and gives better knowledge about the
navigation.

This protocol allows testing the method only if we know exactly the initial
visits without any kind of noise. With real data, we can’t have this a priori

knowledge, so we decided to learn grammatical models and to test them.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

number of reference visits

Cached data
Reconstructed data

d
#

(a) d#

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

number of reference visits

Cached data
Reconstructed data

d
L

(b) dL

Fig. 2. d# and dL behaviors

4.3 Models evaluation

Data for this set of experiments are the same as for the preceding one: we gen-
erated them. Here, instead of computing ratings on cached and reconstructed
visits, we used them to learn grammatical models. We learn stochastic models
which can predict the next most probable symbol of a sequence: here sequences
represent visits and symbols are pages. We use the Mdi [12] algorithm to learn
such a model for the cached data and such a model for the reconstructed ones.

We generated also a sample set of ideal visits: for each visit step, we compared
the real next page in the visit with the most probable one proposed by the model.
We count a success if the pages represent the same one, and a failure otherwise.

Results are shown in Fig. 3.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 3 4 5 6 7 8 9 10

su
cc

es
s

ra
te

page’s rank in the visit

Cached data
Reconstructed data

Fig. 3. Success rate in learning task on cached and reconstructed data

As presented in [4], it is a hard problem to predict a page after the few
first ones, so usually authors do not try to check after the 7th page and their
success rate really depends on the number of site pages. In our case, on different
data, we can see that without any reconstruction, after the 5th page, we can
not predict anything. But, with our method we learn better models and we can
predict with a higher probability the next page. At each fixed position in the
visit, we do better prediction, and for a fixed success rate, we can predict at a
further position.

5 Real data problem

Experiments on artificial data can help us to test the reconstruction of data, but
the main problem is to mine user behavior, so we have to experiment also on
real data.

For that, we took data from a real server log file (≈ 137000 logs, 100 pages,
mean of 11.4 links per page) [13]. Then, we extracted visits from these data
and also from reconstructed ones by our method. Here the protocol is quite the
same as for artificial data: we learned one model for each kind of data (raw and
reconstructed), and we evaluated models.

The main problem in this context is that we do not have perfect data to
use as a sample set. We decided here to test with two different sets: one which
is composed of a part of the log file (not used in learning step) for testing the
model on raw data, and the other is the reconstruction of this same part by our
method for testing model on reconstructed data.

We describe in Fig. 4 the results.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 3 4 5 6 7 8 9 10

su
cc

es
s

ra
te

page’s rank in the visit

Cached data
Reconstructed data

Fig. 4. Success rate in learning task on raw and reconstructed data

When we use reconstruction, results are better. Actually, we can view the
two types of data as two different kinds of answers for the problem: learning
model on raw data comes to predict the next page requested for the servers,
taking into account not only the user behavior but also the disruptive caching

features; the model on reconstructed data can be viewed as a true user behavior
model without any other kind of perturbation.

6 Conclusion

In this paper, we showed on artificial data that reconstructing log files data can
avoid some perturbations due to caching features. With both types of evaluation,
ratings on data and prediction evaluation, results are better with reconstruction.

On the real data, there remains a problem: which data can be used to evalu-
ate models? We do not have perfect data to test the quality of the reconstruction:
testing on reconstructing sample set introduces a small bias. In an optimal con-
text, we have to have complete data and cached ones in order to test exactly the
predictions model.

Results given by grammatical inference are really interesting: they are as
good as other types of models shown in state of the art for the usage mining. We
want to continue in this field by showing that these models which permit long
term dependence are really good for this task.

References

1. Cooley, R., Srivastava, J., Mobasher, B.: WEB Mining: Information and Pattern
Discovery on the World Wide Web. In: Proceedings of ICTAI’97. (1997)

2. Catledge, L.D., Pitkow, J.E.: Characterizing Browsing Strategies in the World-
Wide Web. Computer Networks and ISDN Systems 27 (1995) 1065–1073

3. Frias-Martinez, E., Karamcheti, V.: A Prediction Model for User Access Sequences.
In: WEBKDD Workshop: Web Mining for Usage Patterns and User Profiles. (2002)

4. Géry, M., Haddad, H.: Evaluation of Web Usage Mining Approaches for User’s
Next Request Prediction. In: Proc. of WIDM’03, New Orleans (2003) 74–81

5. Pitkow, J., Pirolli, P.: Mining Longest Repeating Subsequences to Predict World
Wide Web Surfing. In: Proceedings of USITS’99. (1999)

6. Bidel, S., Lemoine, L., Piat, F., Artières, T., Gallinari, P.: Statistical Machine
Learning for Tracking Hypermedia User Behaviour. In: MLIRUM - UM Workshop,
Pittsburgh (2003)

7. Borges, J., Levene, M.: Data Mining of User Navigation Patterns. In: WEBKDD.
(1999) 92–111

8. Karampatziakis, N., Paliouras, G., Pierrakos, D., Stamatopoulos, P.: Navigation
Pattern Discovery Using Grammatical Inference. (In: Proc. of ICGI04) 17–56

9. Luotonen, A.: The Common Log File Format (1995)
http://www.w3.org/Daemon/User/Config/Logging.html.

10. Pitkow, J.: In Search of Reliable Usage Data on the WWW. In: Proceedings of
the Sixth International WWW Conference, Santa-Clara, CA (1997) 451–463

11. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals. Soviet Physics - Doklady 10 (1966) 707–710 Translated from Doklady
Akademii Nauk SSSR, Vol. 163 No. 4 pp. 845-848, August 1965.

12. Thollard, F., Dupont, P.: Entropie relative et algorithmes d’inférence grammaticale
probabiliste. In: Conférence sur l’apprentissage automatique, CAP’99, Paris (1999)
115 – 121

13. Eurise: Web site. http://eurise.univ-st-etienne.fr (2002)

