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Abstract. In this paper, we address the problem of searching for a
pattern in a plane graph, i.e., a planar drawing of a planar graph. To do
that, we propose to model plane graphs with 2-dimensional combinatorial
maps, which provide nice data structures for modelling the topology of
a subdivision of a plane into nodes, edges and faces. We define submap
isomorphism, we give a polynomial algorithm for this problem, and we
show how this problem may be used to search for a pattern in a plane
graph. First experimental results show the validity of this approach to
efficiently search for patterns in images.

1 Introduction

In order to manage the huge image sets that are now available, and more partic-
ularly to classify them or search through them, one needs similarity measures.
A key point that motivates our work lies in the choice of data structures for
modelling images: These structures must be rich enough to describe images in a
relevant way, while allowing an efficient exploitation. When images are modelled
by vectors of numerical values, similarity is both mathematically well defined and
easy to compute. However, images may be poorly modelled with such numerical
vectors that cannot express notions such as adjacency or topology.

Graphs allow one to model images by means of, e.g., region adjacency rela-
tionships or interest point triangulation. In either case, graph similarity measures
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Fig. 1. (a) and (b) are not isomorphic plane graphs; bold edges define a compact plane
subgraph in (c), but not in (d).

have been investigated [CFSV04]. These measures often rely on (sub)graph iso-
morphism —which checks for equivalence or inclusion— or graph edit distances
and alignments —which evaluate the cost of transforming a graph into another
graph. If there exist rather efficient heuristics for solving the graph isomorphism
problem* [McK81,SS08], this is not the case for the other measures which are
often computationally intractable (NP-hard), and therefore practically unsolv-
able for large scale graphs. In particular, the best performing approaches for
subgraph isomorphism are limited to graphs up to a few thousands of nodes
[CFSV01,ZDST07].

However, when measuring graph similarity, it is overwhelmingly forgotten
that graphs actually model images and, therefore, have special features that
could be exploited to obtain both more relevant measures and more efficient
algorithms. Indeed, these graphs are planar, i.e., they may be drawn in the
plane, but even more specifically just one of the possible planar embeddings is
relevant as it actually models the image topology, that is, the order in which
faces are encountered when turning around a node.

In the case where just one embedding is considered, graphs are called plane.
Isomorphism of plane graphs needs to be defined in order to integrate topological
relationships. Let us consider for example the two plane graphs drawn in Fig.
1(a) and 1(b). The underlying graphs are isomorphic, i.e., there exists a bijection
between their nodes which preserves edges. However, these plane graphs are not
isomorphic since there does not exist a bijection between their nodes which both
preserves edges and topological relationships.

Now by considering this, the isomorphism problem becomes simple [Cor75],
but the subgraph isomorphism problem is still too hard to be tackled in a sys-
tematic way. Yet we may argue that when looking for some pattern in a picture
(for example a chimney in a house, or a wheel in a car) we may simplify the
problem to that of searching for compact plane subgraphs (i.e., subgraphs ob-
tained from a graph by iteratively removing nodes and edges that are incident
to the external face). Let us consider for example the plane graphs of Fig. 1.

4 The theoretical complexity of graph isomorphism is an open question: If it clearly
belongs to NP, it has not been proven to be NP-complete.
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The bold edges in Fig. 1(c) constitute a compact plane subgraph. However, the
bold edges in Fig. 1(d) do not constitute a compact plane subgraph because edge
(4,3) separates a face of the subgraph into two faces in the original graph.

Contribution and outline of the paper. In this paper, we address the problem
of searching for compact subgraphs in a plane graph. To do that, we propose
to model plane graphs with 2-dimensional combinatorial maps, which provide
nice data structures for modelling the topology of a subdivision of a plane into
nodes, edges and faces. We define submap isomorphism, we give a polynomial
algorithm for this problem, and we show how this problem may be used to search
for a compact graph in a plane graph. Therefore we show that the problem can
be solved in this case in polynomial time.

We introduce 2D combinatorial maps in Section 2. A polynomial algorithm
for map isomorphism is given in Section 3 and submap isomorphism is studied
in Section 4. We relate these results with the case of plane graphs in Section 5,
and we give some experimental results that show the validity of this approach
on image recognition tasks in Section 6.

2 Combinatorial Maps

A plane graph is a planar graph with a mapping from every node to a point in 2D
space. However, in our context the exact coordinates of nodes matter less than
their topological organisation, i.e., the order nodes and edges are encountered
when turning around faces. This topological organisation is nicely modelled by
combinatorial maps [Edm60,Tut63,Cor75].

To model a plane graph with a combinatorial map, each edge of the graph
is cut in two halves called darts, and two one-to-one mappings are defined onto
these darts: the first to link darts belonging to two consecutive edges around a
same face, the second to link darts belonging to a same edge.

Definition 1. (2D combinatorial map [Lie91]) A 2D combinatorial map, (or
2-map) is a triplet M = (D, 81, f2) where D is a finite set of darts; 51 is a per-
mutation on D, i.e., a one-to-one mapping from D to D; and B3 is an involution
on D, i.e., a one-to-one mapping from D to D such that Py = ,82_1

We note (y for ﬁfl. Two darts ¢ and j such that i = S(j) are said to be
k-sewn. Fig. 2 gives an example of a combinatorial map.

In some cases, it may be useful to allow §; to be partially defined, thus
leading to open combinatorial maps. The intuitive idea is to add a new element
€ to the set of darts, and to allow darts to be linked with e for 8; and/or fSs.
By definition, V0 < i < 2, f;(¢) = e. Fig. 3 gives an example of open map (see
[PABLO7] for precise definitions).

Finally, Def. 2 states that a map is connected if there is a path of sewn darts
between every pair of darts.

Definition 2. (connected map) A combinatorial map M = (D, 51, B2) is con-
nected if Vd € D,¥d' € D, there exists a path (di,...,dy) such that di = d,
dy =d and V1 <i < k,3j, € {0,1,2},d;41 = Bj,(d;).
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Fig. 2. Combinatorial map example. Darts are represented by numbered black seg-
ments. Two darts 1-sewn are drawn consecutively, and two darts 2-sewn are concur-
rently drawn and in reverse orientation, with little grey segment between the two darts.

—
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Fig. 3. Open combinatorial map example. Darts a, b, d, f and g are not 2-sewn.

3 Map Isomorphism

Lienhardt has defined isomorphism between two combinatorial maps as follows.

Definition 3. (map isomorphism [Lie94]) Two maps M = (D, f1, 52) and M' =
(D', 81, 8%) are isomorphic if there exists a one-to-one mapping f : D — D',
called isomorphism function, such that Vd € D,Vi € {1,2}, f(8:(d)) = BL(f(d)).

K2

We extend this definition to open maps by adding that f(e) = ¢, thus enforcing
that, when a dart is linked with e for 3;, then the dart matched to it by f is also
linked with e for /3.

An algorithm may be derived from this definition in a rather straightforward
way, as sketched in [Cor75]. Algorithm 1 describes the basic idea which will be
extended in section 4 to submap isomorphism: We first fix a dart dg € D; then,
for every dart df, € D', we call Algorithm 2 to build a candidate matching func-
tion f and check whether f is an isomorphism function. Algorithm 2 basically
performs a traversal of M, starting from dy and using ; to discover new darts
from discovered darts. Initially, f[dp] is set to df, whereas f[d] is set to nil for
all other darts. Each time a dart d; € D is discovered, from another dart d € D
through B; so that d; = B;(d), then f[d;] is set to the dart d; € D’ which is
linked with f[d] by 8.

Complezity issues. Algorithm 2 is in O(|D]). Indeed, the while loop is iterated
|D| times as (i) exactly one dart d is removed from the stack S at each iteration;
and (ii) each dart d € D enters S at most once (d enters S only if f[d] = nil,
and before entering S, f[d] is set to a dart of D’). In Algorithm 1, the test of
line 4 may also be performed in O(]D|). Hence, the overall time complexity of
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Algorithm 1: CHECKISOMORPHISM(M, M)

Input: two open connected maps M = (D, 81, 32) and M’ = (D', 31, 33)
Output: returns true iff M and M’ are isomorphic

1 choose dyp € D

2 for dj, € D' do

3 f < TRAVERSEANDBUILDMATCHING (M, M, do, dj)

4 if f is a bijection from D U {e} to D' U {e} and
vd € D, Vi € {1,2}, f[Bi(d)] = Bi(f[d]) then

5 L return true

6 return false

Algorithm 2: TRAVERSEANDBUILDMATCHING (M, M’, dy, df))

Input: two open connected maps M = (D, 1, 32) and M’ = (D', 81, 83) and an
initial couple of darts (do,dj) € D x D’
Output: returns an array f: DU {e} — D' U {¢}
for every dart d € D do: f[d] + nil
fldo] « do
let S be an empty stack; push dp in S
while S is not empty do
pop a dart d from S
for i € {0,1,2} do
if Bi(d) # € and f[B:(d)] = nil then
L f18i(@)] « Bi(fld])
push 8;(d) in S

© 00N O AW N

10 fle] <€
11 return f

Algorithm 1 is O(|D|?). Note that it may be optimised (without changing its
complexity), e.g., by detecting failure while building matchings.

Correction of Algorithm 1. Let us first note that if checkIsomorphism(M, M)
returns true, then M and M’ are isomorphic as true is returned only if the
isomorphism test of line 4 suceeds.

Let us now show that if M and M’ are isomorphic then checkIsomorphism (M,
M) returns true. If M and M’ are isomorphic then there exists an isomorphism
function ¢ : D — D'. Let dg € D be the dart chosen at line 1 of Algorithm 1.
As the loop lines 2-5 iterates on every dart djj € D', there will be an iter-
ation of this loop for which dj, = ¢(dp). Let us show that for this iteration
traverseAndBuildMatching(M, M’, dy, d)) returns f such that Vd € D, f[d] =
©(d) so that true will be returned line 5. Claim 1: When pushing a dart d in S,
fld] = ¢(d). This is true for the push of line 3 as f[dp] is set to d = p(dy) at
line 2. This is true for the push of line 9 as f[B;(d)] is set to B.(f[d]) line 8 and
fld] = ¢(d) (induction hypothesis) and ¢(d) = d' = ¢(B;(d)) = Bi(d") (by def-
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Fig. 4. Submap example. M is a submap of M’ as it is obtained from M’ by deleting
darts k to r. M" is not a submap of M’ as the injection f : D” — D wich matches
darts 1 to 10 with darts a to j does not verify Def. 4: $2(2) = € and f(2) = b but
B5(b) # € and f~'(B5(D)) is not empty because f~'(d) = 4.

inition of an isomorphism function). Claim 2: Every dart d € D is pushed once
in S. Indeed, M is connected. Hence, there exists at least one path (do,...,d,)
such that d,, = d and Yk € [1;n],3jx € {0,1,2},dr, = B, (dk—1). Therefore, each
time a dart d; of this path is popped from S (line 5), d;41 is pushed in S (line
9) if it has not been pushed before (through another path).

4 Submap Isomorphism

Intuitively, a map M is a submap of M’ if M can be obtained from M’ by
removing some darts. When a dart d is removed, we set 8;(d’) to e for every dart
d’ such that 8;(d’) = d.

Definition 4. (submap) An open combinatorial map M = (D, 51, B2) is isomor-
phic to a submap of an open map M’ = (D', B, BS) if there exists an injection
f:DU{e} — D' U{e}, called a subisomorphism function, such that f(e) = € and
Vd € D,Vi € {1,2}, if Bi(d) # € then BL(f(d)) = f(Bi(d)) else either Bi(f(d)) =€
or [71(Bi(f(d))) is empty.

This definition derives from the definition of isomorphism. The only modi-
fication concerns the case where d is i-sewn with e. In this case, the definition
ensures that f(d) is i-sewn either with ¢, or with a dart d’ which is not matched
with a dart of M, i.e., such that f~1(d’) is empty (see example in Fig. 4).

Note that if M is isomorphic to a submap of M’, then M is isomorphic to
the map M" obtained from M’ by restricting the set of darts D’ to the set of
darts D" = {d € D'|3a € D, f(a) = d}.

Algorithm 3 determines if there is a submap isomorphism between two open
connected maps. It is based on the same principle as Algorithm 1; the only
difference is the test of line 4, which succeeds if f is a subisomorphism function
instead of an isomorphism function. The time complexity of this algorithm is
in O(|D| - |D’|) as traverseAndBuilMatching is called at most |D’| times and
its complexity is in O(]D]). Note that the subisomorphism test may be done in
linear time.
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Algorithm 3: CHECKSUBISOMORPHISM(M, M)

Input: two open connected maps M = (D, 81, 32) and M’ = (D', 31, 33)
Output: returns true iff M is isomorphic to a submap of M’

1 choose dyp € D

2 for dj, € D' do

3 f < TRAVERSEANDBUILDMATCHING (M, M, do, dj)

4 if f is an injection from D U {e} to D' U{¢'} and

vd € D,¥i € {1,2}, i(d) # e = f(B:(d)) = BL(F(d) o
then

)
vd € D,Vi € {1,2}, Bi(d) = € = Be € D, f(e) = Bi(f(d
5 L return true

6 return false

Concerning correctness, note that proofs and evidences given for isomorphism
are still valid: We solve the submap isomorphism problem with the same method
as before, except that function f is now an injection instead of a bijection.

5 From Plane Graphs to Maps

In this section, we show how to transform the problem of finding a compact
plane subgraph inside a plane graph into the problem of finding a submap in a
map, thus allowing to use our polynomial algorithm.

Let us first precise what we exactly mean by (compact) plane (sub)graph
isomorphism. Let us consider two graphs G; = (N1, E1) and G2 = (N3, Es) that
are embedded in planes and let us note o(i, j) the edge which follows edge (i, )
when turning around node ¢ in the clockwise order. We shall say that

— (1 and G4 are plane isomorphic if there exists a bijection f : Ny — Ny which
preserves (i) edges, i.e., V(4,j) € N1 x Ny, (4,7) € E1 < (f(3), f(j)) € Ez and
(ii) topology, i.e., (i, j) € Ey, 0(i,j) = (k,1) < o(f(i), f(7)) = (f(k), F(I));

— G is a compact plane subgraph of G5 if G1 is plane isomorphic to a compact
subgraph of G5 which is obtained from G5 by iteratively removing nodes
and edges that are incident to the external face.

Note that the pattern may be a partial subgraph of the target. Let us consider for
example Fig. 1c. Edge (1,5) needs not to belong to the searched pattern, even-
though nodes 1 and 5 are matched to nodes of the searched pattern. However,
edge (4,3) must belong to the searched pattern; otherwise it is not compact.
To use submap isomorphism to solve compact plane subgraph isomorphism,
we have to transform plane graphs into 2-maps. This is done by associating a
face in the map with every face of the graph except the external face. Indeed, a
2-map models a drawing of a graph on a sphere instead of a plane. Hence, none of
the faces of a map has a particular status whereas a plane graph has an external
(or unbounded) face. Let us consider for example the two graphs in Fig. 1la and
Fig. 1b: When embedded in a sphere, they are topologically isomorphic because



8 G. Damiand et al.

one can translate edge (d,c) by turning around the sphere, while this is not
possible when these graphs are embedded in a plane. In order to forbid one
to turn around the sphere through the external face, graphs are modelled by
open 2-maps such that external faces are removed: Only S5 is opened, and only
external faces are missing. Such open 2-maps correspond to topological disks.

Finally, a strong precondition for using our algorithms is that maps must
be connected. This implies that the original graphs must also be connected.
However, this is not a sufficient condition. One can show that an open 2-map
M modelling a plane graph G without its external face is connected if G is
connected and if the external face of G is delimited by an elementary cycle.

Hence, submap isomorphism may be used to decide in polynomial time if G
is a compact plane subgraph of G5 provided that (i) G; and G2 are modelled by
open 2-maps such that external faces are removed, and (ii) external faces of Gy
and Gy are delimited by elementary cycles.

This result may be related to [JB98,JB99] which describe polynomial-time
algorithms for solving (sub)graph isomorphism of ordered graphs, i.e., graphs in
which the edges incident to a vertex are uniquely ordered.

6 Experiments

This section gives some preliminary experimental results that show the validity
of our approach. We first show that it allows to find patterns in images, and
then we study scale-up properties of our algorithm on plane graphs of growing
sizes. Experiments were run on an Intel Core2 Duo CPU at 2.20GHz processor.

6.1 Finding patterns in images

We have considered the MOVI dataset provided by Hancock [LWHO3]. This
dataset consists of images representing a house surrounded by several objects.
We consider two different kinds of plane graphs modelling these images. First,
we have segmented them into regions and compute the 2D combinatorial map of
the segmented image using the approach described in [DBF04]. Second, we have
used the plane graphs provided by Hancock. They correspond to a set of cor-
ner points extracted from the images and connected by Delaunay triangulation.
These graphs were then converted into 2D combinatorial maps. In both cases,
we have extracted patterns from original images, and used our approach to find
these patterns.

The left part of Fig. 5 shows an image example, together with its plane
graph obtained after segmentation. This graph consists of 2435 nodes, 4057 edges
and 1700 faces. The pattern extracted from this image corresponds to the car,
composed of 181 nodes, 311 edges and 132 faces. This pattern has been found by
our algorithm in the original image, even when submitted to rotation, in 60ms.

The Delaunay graph corresponding to the corner points is shown on the right
part of Fig. 5. It has 140 nodes, 404 edges and 266 faces. The graph corresponding
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Fig. 5. Finding a car in an image: The original image is on the left. The plane graph
obtained after segmentation is on the middle; the car has been extracted and rotated on
the right and it has been found in the original image. The graph obtained by Delaunay
triangulation and the corresponding combinatorial map are on the right; the car has
been extracted and it has been found in the original image.

to the car has 16 nodes, 38 edges and 23 faces. This pattern has been found by
our algorithm in the original image in 10ms.

Experiments show that our approach always allows one to find these patterns
in the image they have been extracted from.

6.2 Scale up properties

To compare scale-up properties of our approach with those of subgraph isomor-
phism algorithms, we have performed a second series of experiments: We have
randomly generated 3 plane graphs, gso0, g1000 and gsooo which have 500, 1000
and 5000 nodes respectively. These plane graphs are generated by randomly
picking n 2D points in the plane, then by computing Delaunay graph of these
points. For each plane graph g;, we have generated 5 sub-graphs, called sg; 9,
which have k% of the number of nodes of the original graph g;, where k belongs
to {5, 10,20, 33, 50}.

Table 1 compares CPU times of our approach with those of Vflib2 [CFSV01],
a state-of-the-art approach for solving subgraph isomorphism (we present only
results of Vflib2 which is, in our experiments, always faster than Vflib and Ull-
mann). It shows the interest of using submap isomorphism to solve compact
plane subgraph isomorphism. Indeed, if both approaches spend comparable time
for the smaller instances, larger instances are much quickly solved by our ap-
proach. In particular, instances (gs000,5g5000,k%) are solved in less than one
second by our approach whereas it is not solved after one hour of computation
by Vflib2 when k& > 20.

It is worth mentionning here that the two approaches actually solve different
problems: Our approach searches for compact plane subgraphs whereas Vflib2
searches for induced subgraphs and do not exploit the fact that the graphs
are planar. Hence, the number of solutions found may be different: Vflib2 may
found subgraphs that are topologically different from the searched pattern; also
our approach may found compact plane subgraphs that are partial (see Fig. 1c)
whereas Vilib2 only searches for induced subgraphs. For each instance considered
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59i,5% 59i,10% 59i,20% 59i,33% 59i,50%
gi vi2 |map|| vf2 |map vi2 map vi2 map vi2 map
gsoo || 0.08/0.07| 0.04/0.10 0.47/0.03 0.7 10.02 10.4 |0.10
giooo|| 4.7 10.21|| 2.54/0.07 0.55/0.05 7.31{0.06 12.7 {0.06
gso00([12.3 0.28((156.5 |0.31}(;3600. 0.31/4,3600. 0.31]4,3600. 0.31

Table 1. Comparison of scale-up properties of submap and subgraph isomorphism
algorithms. Each cell gives the CPU time (in seconds) spent by V{lib2 and our submap
algorithm to find all solutions. > 3600 means that Vflib2 had not finished after one
hour of computation.

in Table 1, both methods find only one matching, except for sgsg00,10% Which is
found twice in gs5g90p by vilib2 and once by our approach.

7 Discussion

We have defined submap isomorphism, and we have proposed an associated
polynomial algorithm. This algorithm may be used to find compact subgraphs
in plane graphs. First experiments on images have shown us that this may be
used to efficiently find patterns in images.

These first results open very promising further work. In particular, our ap-
proach could be used to solve the subgraph isomorphism problem in polynomial
time for classes of planar graphs which admit polynomial numbers of planar em-
beddings. Also, generalisation to 3 and higher dimensional combinatorial maps
is immediate. Hence, our approach could be used to find subsets of compact
volumes in 3D images.

Submap isomorphism leads to exact measures, which may be used to check
if a pattern belongs to an image. We plan to extend this work to error-tolerant
measures such as the largest common submap, which could be used to find the
largest subset of edge-connected faces, and map edit distances, which could be
used to measure the similarity of maps by means of edit costs.

Finally, more relevant results in the image field could be obtained by inte-
grating geometric information: combinatorial maps may be labelled by features
extracted from the modelled image such as, e.g., the shape or the area of a face,
the angle between two segments, or the length of a segment. These labels may be
used to measure map similarity by quantifying the similarity of labels associated
with matched cells.
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