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1École Supérieure de Chimie Physique Électronique de Lyon, F–69616 Lyon, France
2Laboratoire Hubert Curien, UMR CNRS 5516, Université de Lyon, F–42000 St-Etienne, France
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Inline digital holograms are classically reconstructed using linear operators to model diffraction. It has long been
recognized that such reconstruction operators do not invert the hologram formation operator. Classical linear
reconstructions yield images with artifacts such as distortions near the field-of-view boundaries or twin-images.
When objects located at different depths are reconstructed from a hologram, in-focus and out-of-focus images
of all objects superimpose upon each other. Additional processing, such as maximum-of-focus detection, is
thus unavoidable for any successful use of the reconstructed volume. In this letter, we consider inverting
the hologram formation model in Bayesian framework. We suggest the use of a sparsity-promoting prior,
intrinsically verified due to inline holography requirements, and present a simple iterative algorithm for 3D
object reconstruction under sparsity and positivity constraints. Preliminary results with both simulated and
experimental holograms are highly promising. © 2009 Optical Society of America

OCIS codes: 000.0000, 999.9999.

Holography is a two-steps, three dimensional (3D) imag-
ing technique. In the first recording step, the wave
diffracted by the object(s) is stored as a diffraction or
interference pattern on a planar recording medium (holo-
graphic plate or digital camera). The second, reconstruc-
tion step, reveals the 3D nature of the holographic image.

A hologram is optically reconstructed by illuminating
the holographic plate with the same reference wave that
was used in the recording step. It diffracts this incoming
beam, and yields both a real and a virtual image.

Numerical reconstruction techniques almost always
aim at simulating optical (diffraction-based) reconstruc-
tions of holograms. Several methods have been pro-
posed, corresponding to different diffraction models or
approximations (e.g., convolution [1], Fourier [1], frac-
tional Fourier [2], continuous [3] or discrete [4] wavelet
transforms). These approaches suffer from limited sizes
and definitions of digital camera sensors, leading to im-
ages with artifacts on the field-of-view boundaries, and
from the twin-image (i.e., virtual image) problem of in-
line holography.

When several objects located at different distances
are considered, the 3D reconstructed volume presents
diffraction-defocused images of the objects in all but the
in-focus plane of each object (Fig. 1a-b). This is due
to the fact that hologram reconstruction is considered
as wave rather than as 3D transmittance reconstruction
problem. We believe that better reconstructions of ob-
jects can be achieved by considering the hologram re-
construction as an inverse problem, as in [5]. In this let-
ter, we use Bayesian framework with a sparsity-enforcing
prior for hologram reconstructions.

Inline holography is known to be restricted to dilute
media, i.e., transmission holograms are usable only if the

imaged volume is almost empty (or homogeneous). The
sparsity of transmittance in the object domain is there-
fore a natural hypothesis. Note that sparsity in the trans-
formed domain such as in the wavelet domain has been
found to be relevant in digital holography also, which
led to the original auto-focus method [6]. Under sparsity
condition in the spatial domain, the hologram forma-
tion can be considered as linear (i.e., inter-object inter-
ferences may be neglected). The hologram intensity d
is then approximated by the (incoherent) summation of
diffraction patterns created by each object. By denoting
with H the matrix that models diffraction, with ϑ the
unknown transmittance distribution in the object space,
with ε the error accounting for both the physical and
modelling noise and with c a constant, the finite dimen-
sional model is given by:

d = c1−H · ϑ+ ε. (1)

If n is the number of pixels of the hologram, and p
the total number of pixels of a given sampling of the ob-
ject’s volume, then d, 1 and ε are n × 1 matrices (1 is
a vector with n “ones”), ϑ is a p × 1 matrix and H a
n× p matrix. We will consider in the following different
samplings of the object space, and the corresponding H
matrices. When sampling in the object space is identi-
cal to that of the hologram (i.e., a single plane with the
same pixel grid as the hologram), then H is the linear
operator modeling diffraction at finite distance z, e.g.,
the 2D convolution along coordinates (x, y) with kernel
hz(x, y) = sin[π(x2 + y2)/(λz)]/(λz) (λ being the wave-
length).

The hologram reconstruction problem amounts to de-
termining ϑ from data d (1). Due to the missing phase in-
formation in the hologram intensity measurements, this
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problem is ill-posed. Digital holograms are classically re-
constructed by simulating optical diffraction, which cor-
responds to applying the adjoint operator H? to the
data: ϑ̂

adj
= H?d. It is to be noted that the adjoint H?

is not the inverse of H (which is not invertible due to

phase loss), and the reconstruction ϑ̂
adj

suffers from the
limitations that were pointed out in the previous para-
graphs (boundary artifacts, out-of-focus objects, twin-
images). These can be suppressed by considering a reg-
ularized solution to equation (1). The above-mentioned
sparsity condition of the object volume (i.e., diluted vol-
ume), required for equation (1) to hold, naturally trans-
lates into a sparsity-enforcing prior in Bayesian frame-
work.

Recently, a considerable attention has been focused
on the theoretical and practical aspects of finding a
sparse solution to the inverse problem. Basically, there
are two numerical approaches for obtaining a sparse so-
lution (i.e., a solution which is mostly zero except in
some places): greedy techniques that build up the so-
lution incrementally [7], and relaxation techniques that
search for the minimum of a `1 norm penalized maximum
likelihood problem. A greedy approach has been recently
proposed for particle holograms [8, 9]. We consider here
the latter relaxation approach for reconstructing holo-
grams of more general objects. The maximum a poste-
riori estimate with a Laplacian sparsity-promoting prior
and a Gaussian likelihood model leads to the following
minimization problem:

ϑ̂
sparse

= arg min
ϑ,c

½‖1 · c−Hϑ− d‖22 + τ‖ϑ‖1, (2)

with τ a regularizing parameter, ‖ · ‖2 and ‖ · ‖1 the `2

and `1 norms (i.e., for all vector v, ‖v‖22 =
∑
i v

2
i and

‖v‖1 =
∑
i |vi|), respectively.

Equation (2) is a non-smooth, but convex minimiza-
tion problem. Replacing c with its optimal value yields
the more classical form:

ϑ̂
sparse

= arg min
ϑ

½‖H̄ϑ− d̄‖22 + τ‖ϑ‖1, (3)

where d̄ = d− 1
n11td and H̄ = −H + 1

n11tH.
Soft-thresholding iterative algorithms [10] have been

widely used in recent years to solve such minimization
problems. As transmittance is always a positive quan-
tity, we consider solving minimization problem (3) un-
der a positivity constraint, i.e., ∀i, ϑi ≥ 0. This leads
to the modification of the soft-thresholding iterations as
follows:

ϑ̂
(k+1)

= S+
τ

(
ϑ̂

(k)
+ H̄?(d̄− H̄ϑ̂

(k)
)
)
, (4)

with S+
τ the positive soft-thresholding operator, applied

coordinate-wise:

S+
τ (ϑ)i =

{
ϑi − τ

2 if ϑi ≥ τ
2 ,

0 if ϑi ≤ τ
2 .

H̄ and its adjoint H̄? are not stored in practice since
only the computation of the products H̄v and H̄?

w for

any p-dimensional vector v and n-dimensional vector w
is necessary. These products correspond to 2D convolu-
tions which can be efficiently performed with fast Fourier
transform.

The soft-thresholding operator can be straightfor-
wardly generalized by considering a spatially varying
threshold τ ′. It can be useful to account for the differ-
ence between `2 norms of each column of H(dictionaries
H whose elements are unnormalized). To avoid over-
penalizing the elements with small norm, we define τ ′

such that τ ′i = τ
∑
j H

2
ji.

Fig. 1. Reconstruction of a simulated hologram (b) of
two opaque disks located respectively at 100mm and
110mm from the hologram plane (a): (c-d) conventional

reconstruction ϑ̂
adj

; (e-f) sparse reconstruction ϑ̂
sparse

.
Superimposed is the transmittance profile over the line
between I J signs.

We illustrate the application of our method using both
numerically simulated (Fig. 1) and experimental holo-
grams (Fig. 2).

We first simulate a hologram of two opaque spherical
particles, which can be considered to be two opaque disks
under Fresnel approximation. The objects are depicted
in Fig. 1(a), and the simulated hologram in Fig. 1(b).
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Conventional reconstructions ϑ̂
adj

are shown on Fig. 1(c-
d) for each plane. Both out-of-focus and twin-images are
noticeable. Sparse reconstruction gives almost perfect re-
covery of the objects Fig. 1(e-f). An object appears in a
unique plane and the reconstructed value outside objects
is exactly zero.

Fig. 2. Reconstruction of an experimental hologram of a
plane target: (a-b) the hologram and a truncation with
3/4 of the pixels missing; (c-d) conventional reconstruc-

tion ϑ̂
adj

from the full (c) or truncated (d) hologram;
(e-f) sparse reconstruction ϑ̂

sparse
from the full (e) or

truncated (f) hologram.

An experimental hologram of a planar target is dis-
played on Fig. 2(a), and in Fig. 2(b) after truncation
of 3/4 of the pixels. Fig. 2(c-d) show the conventional

reconstruction ϑ̂
adj

obtained from the full or truncated
hologram. The twin-images generate background noise
that is clearly noticeable in the line profile drawn. Re-
construction outside the field-of-view is hardly possible
with conventional techniques due to a very low signal-
to-noise ratio, as illustrated on Fig. 2(d). Sparse recon-
struction gives the images Fig. 2(e-f). Twin-image noise
is almost completely cleared and the target is correctly
reconstructed with the marks and dusts of the target

plate. The target is even partially reconstructed from
the severely truncated data on Fig. 2(f). Some elements
such as the horizontal line of the graduations are lost
since the corresponding horizontal fringes fall outside of
the available data in Fig. 2(b). Vertical lines and dots
are restored, even far from the field-of-view boundaries.
This is in agreement with the recent out-of-field detec-
tion results reported in [9], using a much stronger prior
(in fact, parametric).

This letter is the first demonstration of the effec-
tiveness of sparsity constraints in reconstructing object
transmittance from holograms, using both simulated and
experimental data. The images obtained with our itera-
tive algorithm are free from the artifacts of the conven-
tional methods such as out-of-focus objects and twin-
images. Moreover, thanks to the inverse problem ap-
proach, field-of-view extrapolation is achieved.

Other sparse representations can be easily imple-
mented by changing either the prior or the operator
H. For instance, minimizing the number of significant
wavelet coefficients or the total variation is suitable for
extended objects. Another possibility is to define H as a
dictionary of diffraction patterns for a given set of object
shapes. It would be worth comparing this latter approach
with the greedy detection scheme [8,9].

For applications with dense volumes of objects, a non-
linear operator H(ϑ) could be considered to account for
interferences more accurately, as was done in [5]. Our
algorithm can then be adapted, mostly by replacing the
adjoint operatorH? by the Jacobian of non-linear model
H(ϑ) in equation (4).

The authors are grateful to P. Refregier for fruitful
discussions, and to C. Mennessier and D. Ghosh Roy for
their careful reading of the manuscript.
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C. Goepfert, Journal of the Optical Society of America
A 24, 3708 (2007).

10. I. Daubechies, M. Defrise, and C. De Mol, Communica-
tions on Pure and Applied Mathematics 57, 1413 (2004).

3


