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Abstract

In this paper, we construct an object, called a system of approximate roots of a valuation,
centered in a regular local ring, which describes the fine structure of the valuation (namely, its
valuation ideals and the graded algebra). We apply this construction to valuations associated
to a point of the real spectrum of a regular local ring A. We give two versions of the
construction: the first, much simpler, in a special case (roughly speaking, that of rank 1
valuations), the second — in the case of complete regular local rings and valuations of
arbitrary rank.

We then describe certain subsets C ⊂ Sper A by explicit formulae in terms of approxi-
mate roots; we conjecture that these sets satisfy the Connectedness (respectively, Definable
Connectedness) conjecture. Establishing this for a certain regular ring A would imply that
A is a Pierce–Birkhoff ring (this means that the Pierce–Birkhoff conjecture holds in A).

Finally, we use these constructions and results to prove the Definable Connectedness
conjecture (and hence a fortiori the Pierce–Birkhoff conjecture) in the special case when
dim A = 2.

Introduction

All the rings in this paper will be commutative with 1. Let R be a real closed field. Let
B = R[x1, . . . , xn]. If A is a ring and p a prime ideal of A, κ(p) will denote the residue field
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of p.
The Pierce–Birkhoff conjecture asserts that any piecewise-polynomial function

f : Rn → R

can be expressed as a maximum of minima of a finite family of polynomials in n variables. We
start by giving the precise statement of the conjecture as it was first stated by M. Henriksen
and J. Isbell in the early nineteen sixties.

Definition 0.1.1 A function f : Rn → R is said to be piecewise polynomial if Rn can be
covered by a finite collection of closed semi-algebraic sets Pi such that for each i there exists
a polynomial fi ∈ B satisfying f |Pi

= fi|Pi
.

Clearly, any piecewise polynomial function is continuous. Piecewise polynomial functions
form a ring, containing B, which is denoted by PW (B).

On the other hand, one can consider the (lattice-ordered) ring of all the functions obtained
from B by iterating the operations of sup and inf. Since applying the operations of sup and
inf to polynomials produces functions which are piecewise polynomial, this ring is contained
in PW (B) (the latter ring is closed under sup and inf). It is natural to ask whether the two
rings coincide. The precise statement of the conjecture is:

Conjecture 0.1.2 (Pierce-Birkhoff) If f : Rn → R is in PW (B), then there exists a
finite family of polynomials gij ∈ B such that f = sup

i

inf
j
{gij} (in other words, for all

x ∈ Rn, f(x) = sup
i

inf
j
{gij(x)}).

This paper represents the second step of our program for proving the Pierce–Birkhoff con-
jecture in its full generality. The starting point of this program is the abstract formulation
of the conjecture in terms of the real spectrum of B and separating ideals proposed by J.
Madden in 1989 [26], which we now recall, together with the relevant definitions. For a
general introduction to real spectrum, we refer the reader to [7], Chapter 7, [3], Chapter II
or [33], 4.1, page 81 and thereafter; see also “Bibliographical and historical comments” on p.
109 at the end of that chapter.

Let A be a ring. A point α in the real spectrum of A is, by definition, the data of a prime
ideal p of A, and a total ordering ≤ of the quotient ring A/p, or, equivalently, of the field
of fractions of A/p. Another way of defining the point α is as a homomorphism from A to
a real closed field, where two homomorphisms are identified if they have the same kernel p
and induce the same total ordering on A/p.

The ideal p is called the support of α and denoted by pα, the quotient ring A/pα by A[α],
its field of fractions by A(α) and the real closure of A(α) by k(α). The total ordering of
A(α) is denoted by ≤α. Sometimes we write α = (pα,≤α).

Definition 0.1.3 The real spectrum of A, denoted by Sper A, is the collection of all pairs
α = (pα,≤α), where pα is a prime ideal of A and ≤α is a total ordering of A/pα.

We use the following notation: for an element f ∈ A, f(α) stands for the natural image
of f in A[α] and the inequality f(α) > 0 really means f(α) >α 0.
The real spectrum Sper A is endowed with two natural topologies. The first one, called the
spectral (or Harrison) topology, has basic open sets of the form

U(f1, . . . , fk) = {α | f1(α) > 0, . . . , fk(α) > 0}

with f1, ..., fk ∈ A.
The second is the constructible topology whose basic open sets are of the form

V (f1, . . . , fk, g) = {α | f1(α) > 0, . . . , fk(α) > 0, g(α) = 0} ,

where f1, ..., fn, g ∈ A. Boolean combinations of sets of the form V (f1, . . . , fn, g) are called
constructible sets of Sper A.
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For more information about the real spectrum, see [7]; there is also a brief introduction
to the real spectrum and its relevance to the Pierce–Birkhoff conjecture in the Introduction
to [21].

Definition 0.1.4 Let
f : Sper A→

∐

α∈Sper A

A(α)

be a map such that, for each α ∈ Sper A, f(α) ∈ A(α). We say that f is piecewise

polynomial (denoted by f ∈ PW (A)) if there exists a covering of Sper A by a finite family
(Si)i∈I of constructible sets, closed in the spectral topology, and a family (fi)i∈I , fi ∈ A such
that, for each α ∈ Si, f(α) = fi(α).

We call fi a local representative of f at α and denote it by fα (fα is, in general, not
uniquely determined by f and α; this notation means that one such local representative has
been chosen once and for all).

Note that PW (A) is naturally a lattice ring: it is equipped with the operations of maxi-
mum and minimum. Each element of A defines a piecewise polynomial function. In this way
we get a natural injection A ⊂ PW (A).

Definition 0.1.5 A ring A is a Pierce-Birkhoff ring if, for each f ∈ PW (A), there exist a
finite collection of fij ∈ A such that f = sup

i

inf
j
fij.

In [26] Madden reduced the Pierce–Birkhoff conjecture to a purely local statement about
separating ideals and the real spectrum. Namely, he gave the following definition:

Definition 0.1.6 Let A be a ring. For α, β ∈ Sper A, the separating ideal of α and β,
denoted by < α, β >, is the ideal of A generated by all the elements f ∈ A which change sign
between α and β, that is, all the f such that f(α) ≥ 0 and f(β) ≤ 0.

Definition 0.1.7 A ring A is locally Pierce-Birkhoff at α, β if the following condition
holds. Let f be a piecewise polynomial function, let fα ∈ A be a local representative of f at
α and fβ ∈ A a local representative of f at β. Then fα − fβ ∈< α, β >.

Theorem 0.1.8 (Madden) A ring A is Pierce-Birkhoff if and only if it is locally Pierce-
Birkhoff for all α, β ∈ Sper(A).

Let α, β be points in Sper A.

Conjecture 0.1.9 (local Pierce-Birkhoff conjecture at α, β) Let A be a regular ring
and f a piecewise polynomial function. Let fα ∈ A be a local representative of f at α and
fβ ∈ A a local representative of f at β. Then fα − fβ ∈< α, β >.

There are known counterexamples in the case A is not regular (eg. A = R[x, y]/(y2−x3))
and even with A normal.

Remark 0.1.10 Assume that β is a specialization of α. Then
(1) < α, β >= pβ.
(2) fα − fβ ∈ pβ. Indeed, we may assume that fα 6= fβ, otherwise there is nothing to

prove. Since β ∈ {α}, fα is also a local representative of f at β. Hence fα(β) − fβ(β) = 0,
so fα − fβ ∈ pβ.

Therefore, to prove that a ring A is Pierce-Birkhoff, it is sufficient to verify Definition
0.1.7 for all α, β such that neither of α, β is a specialization of the other.

In [21], we introduced
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Conjecture 0.1.11 (the Connectedness conjecture) Let A be a regular ring. Let

α, β ∈ Sper A

and let g1, . . . , gs be a finite collection of elements of A\ < α, β >. Then there exists a
connected set C ⊂ Sper A such that α, β ∈ C and C∩{gi = 0} = ∅ for i ∈ {1, . . . , s} (in other
words, α and β belong to the same connected component of the set Sper A \ {g1 . . . gs = 0}).

Definition 0.1.12 A subset C of Sper(A) is said to be definably connected if it is not
a union of two non-empty disjoint constructible subsets, relatively closed for the spectral
topology.

Conjecture 0.1.13 (Definable connectedness conjecture) Let A be a regular ring. Let
α, β ∈ Sper A and let g1, . . . , gs be a finite collection of elements of A, not belonging to
< α, β >. Then there exists a definably connected set C ⊂ Sper A such that α, β ∈ C and
C ∩ {gi = 0} = ∅ for i ∈ {1, . . . , s} (in other words, α and β belong to the same definably
connected component of the set Sper A \ {g1 . . . gs = 0}).

In the earlier paper [21] we stated the Connectedness conjecture (in the special case
A = B) and proved that it implies the Pierce–Birkhoff conjecture. Exactly the same proof
applies verbatim to show that the Definable Connectedness conjecture implies the Pierce-
Birkhoff conjecture for any ring A.

One advantage of the Connectedness conjecture is that it is a statement about A (respec-
tively, about the polynomial ring if A = B) which makes no mention of piecewise polynomial
functions.

Our problem is therefore one of constructing connected subsets of Sper A having certain
properties.

Terminology: If A is an integral domain, the phrase “valuation of A” will mean “a valuation
of the field of fractions of A, non-negative on A”. Also, we will sometimes commit the
following abuse of notation. Given a ring A, a prime ideal p ⊂ A, a valuation ν of A

p
and

an element x ∈ A, we will write ν(x) instead of ν(x mod p), with the usual convention that
ν(0) =∞, which is taken to be greater than any element of the value group.

Given any ordered domain D, let D̄ denote the convex hull of D in its field of fractions
D(0):

D̄ :=
{

f ∈ D(0)

∣

∣ d > |f | for some d ∈ D
}

.

The ring D̄ is a valuation ring, since for any element f ∈ D(0), either f ∈ D̄ or f−1 ∈ D̄.

For a point α ∈ Sper A, we define Rα := A[α]. In this way, to every point α ∈ Sper A we
can canonically associate a valuation να of A(α), determined by the valuation ring Rα. The

maximal ideal of Rα is Mα =
{

x ∈ A(α)
∣

∣

∣ |x| < 1
|z| , ∀z ∈ A[α] \ {0}

}

; its residue field kα

comes equipped with a total ordering, induced by ≤α.
For a ring A, let U(A) denote the multiplicative group of units of A. Recall that

Γα ∼=
A(α) \ {0}
U(Rα)

and that the valuation να can be identified with the natural homomorphism

A(α) \ {0} → A(α) \ {0}
U(Rα)

.

By definition, we have a natural ring homomorphism

A→ Rα (1)

4



whose kernel is pα.

Conversely, the point α can be reconstructed from the ring Rα by specifying a certain
number of sign conditions (finitely many conditions when A is noetherian) ([5], [17], [7]
10.1.10, p. 217).

The valuation να has the following properties:
(1) να(A[α]) ≥ 0
(2) If A is an R-algebra then for any positive elements y, z ∈ A(α),

να(y) < να(z) =⇒ y > Nz, ∀N ∈ R. (2)

A να-ideal of A is the preimage in A of an ideal of Rα. See [32] or [3], §II.3 for more
information on this subject.

As pointed out in [21], the points of Sper A admit the following geometric interpretation
(see also [10], [15], [32], p. 89 and [34] for the construction and properties of generalized
power series rings and fields).

Definition 0.1.14 Let k be a field and Γ an ordered abelian group. The generalized formal
power series field k

((

tΓ
))

is the field formed by elements of the form
∑

γ∈Γ

aγt
γ, aγ ∈ k such

that the set {γ | aγ 6= 0} is well ordered.

The field k
((

tΓ
))

is equipped with the natural t-adic valuation v with values in Γ, defined

by v(f) = inf{γ | aγ 6= 0} for f =
∑

γ

aγt
γ ∈ k

((

tΓ
))

. The valuation ring of this valuation

is the ring k
[[

tΓ
]]

formed by all the elments of k
((

tΓ
))

of the form
∑

γ∈Γ+

aγt
γ . Specifying

a total ordering on k and dimF2(Γ/2Γ) sign conditions defines a total ordering on k
((

tΓ
))

.
In this ordering |t| is smaller than any positive element of k. For example, if tγ > 0 for all
γ ∈ Γ then f > 0 if and only if av(f) > 0.

For an ordered field k, let k̄ denote the real closure of k. The following result is a variation
on a theorem of Kaplansky ([15], [16]) for valued fields equipped with a total ordering.

Theorem 0.1.15 ([34], p. 62, Satz 21) Let K be a real valued field, with residue field k
and value group Γ. There exists an injection K →֒ k̄

((

tΓ
))

of real valued fields.

Let α ∈ Sper A. In view of (1) and the Remark above, specifying a point α ∈ Sper A is
equivalent to specifying a total order of kα, a morphism

A[α]→ k̄α
[[

tΓα
]]

(3)

and dimF2(Γα/2Γα) sign conditions.

We may pass to Zariski spectra to obtain morphisms

Spec
(

k̄α
[[

tΓα
]])

→ Spec A[α]→ Spec A,

induced by the ring homomorphism (3) and the natural surjective homomorphism A։ A[α],
respectively.

In particular, if Γα = Z, we obtain a formal curve in Spec A (an analytic curve if the
series are convergent). This motivates the following definition:

Definition 0.1.16 Let k be an ordered field. A k-curvette on Sper(A) is a morphism of
the form

α : A→ k
[[

tΓ
]]

,

where Γ is an ordered group. A k-semi-curvette is a k-curvette α together with a choice of
the sign data sgn x1,..., sgn xr, where x1, ..., xr are elements of A whose t-adic values induce
an F2-basis of Γ/2Γ.
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We have thus explained how to associate to a point α of Sper A a k̄α-semi-curvette.
Conversely, given an ordered field k, a k-semi-curvette α determines a prime ideal pα (the
ideal of all the elements of A which vanish identically on α) and a total ordering on A/pα
induced by the ordering of the ring k

[[

tΓ
]]

of formal power series.

Below, we will often describe points in the real spectrum by specifying the corresponding
semi-curvettes.

Let ν be a valuation centered in a regular local ring A (see §1.1), let Φ = ν(A \ {0}); Φ
is a well-ordered set. For an ordinal λ < Φ, let γλ be the element of Φ corresponding to λ.

Definition 0.1.17 A system of approximate roots of ν is a well-ordered set of elements

Q = {Qi}i∈Λ ⊂ A,

satisfying the following condition: for every ν-ideal I in A, we have

I =







∏

j

Q
γj
j

∣

∣

∣

∣

∣

∣

∑

j

γjν(Qj) ≥ ν(I)







A; (4)

furthermore, we require the set Q to be minimal in the sense of inclusion among those
satisfying (4).

A system of approximate roots of ν up to γλ is a well-ordered set of elements of A
satisfying (4) for all the ν-ideals I such that ν(I) ≤ γλ.

The main results of this paper are:

1. Given a regular local ring (A,m, k), a valuation ν centered at A, as above, and an
element γλ ∈ Φ such that the ν-ideal determined by γλ is m-primary, we construct a
system of approximate roots up to γλ.

2. We construct a system of approximate roots for A and ν under the assumption that A
is m-adically complete.

3. In the situation of the Connectedness (or Definable Connectedness) conjecure we de-
scribe certain subsets C ⊂ Sper A by explicit formulae in terms of approximate roots;
we conjecture that these sets satisfy the Connectedness (respectively, Definable Con-
nectedness) conjecture.

4. In the special case dim A = 2, we use the above results and constructions to prove the
Definable Connectedness conjecture (and hence a fortiori the Pierce–Birkhoff conjec-
ture). We also prove the Connectedness conjecture in dimension 2, provided the ring
A is excellent.

The paper is organized as follows. Sections 1.1 to 1.5 are purely valuation-theoretic; sections
1.2 and 1.4 are devoted to the construction of a system of approximate roots.

The approximate roots Qi are constructed recursively in i. Roughly speaking, Qi+1 is

the lifting to A of the minimal polynomial equation satisfied by inνQi over k
[

{inνQj}j<i
]

in grνA. In sections 1.1 to 1.5, we prove that such systems of approximate roots exist in
two situations: first, for any m-primary ν-ideal J there exists a system of approximate roots
up to ν(J); secondly, there exists a system of approximate roots whenever A is m-adically
complete.

Once these valuation-theoretic tools are developed, we continue with the program an-
nounced in [21] for proving the Pierce-Birkhoff conjecture. We place ourselves in the situa-
tion of Conjectures 0.1.11 and 0.1.13. In §2.1 we describe the separating ideal < α, β > by
describing monomials in the approximate roots (common to the valuations να and νβ) which
generate it. In section 2.2, we give an explicit description of a set C ⊂ SperA\{g1 . . . gs = 0},
containing α and β, which we conjecture to be connected. The set C is described in terms
of a finite family of approximate roots, common to the valuations να and νβ .
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Finally, we prove the Definable connectedness conjecture and hence the Pierce-Birkhoff
conjecture for an arbitrary regular 2-dimensional local ring A; we also prove Conjecture
0.1.11 assuming that A is excellent which provides a second proof of the Pierce-Birkhoff
conjecture in the case of excellent rings. The outline of the proof of the two conjectures is
as follows. First, we use a sequence of point blowings up and Zariski’s theory of complete
ideals (recalled and refined in §3.1) to transform the set C into a set U of a very simple form,
which informally we call a quadrant. Namely, U is the set of all the points δ of Sper A′

(where A′ is a regular two-dimensional local ring obtained after a sequence of blowings up
with regular system of parameters x′, y′), centered at the origin, which induce a specified
total order on k and which satify the sign conditions x′(δ) > 0, y′(δ) > 0 (resp. x′(δ) > 0).
This is accomplished in §3.3.2.

In the special case when A′ is essentially of finite type over a real closed field the connect-
edness of U is well known and follows easily from the results of [7] (which allow to reduce
connectedness of U to that of a quadrant in the usual Euclidean plane). However, for more
general regular rings this result seems to us to be new and non-trivial.

In §3.4, we use results from [3] to reduce the connectedness of U to that of a quadrant
in the usual Euclidean space, assuming the ring A is excellent. This completes the proof of
the connectedness conjecture for excellent regular 2-dimensional rings. In §3.5 we prove the
definable connectedness of U , without any excellence assumptions, by using a new notion of
a graph, associated to a sequence of point blowings-up of a real surface.

Our proof is based on Madden’s unpublished preprint [27]. As well, we would like to
acknowledge a recent paper by S. Wagner [44] which gives a proof of the Definable Connect-
edness and the Pierce–Birkhoff conjecture in the case of smooth 2-dimensional algebras of
finite type over real closed fields.

The overall structure of our proof is similar to that of [27] and [44], with the following
differences:

1. Here, we have tried to present a proof which should provide a pattern for a general
proof of the conjecture, that is, have a hope of generalizing to higher dimensions. In
particular, we went to great lengths to phrase everything in terms of approximate roots
rather than work directly with connected sets as in [27] and [44].

2. We make no assumptions on the real closedness of the residue field ofA which introduces
certain extra complications.

3. Because we work with arbitrary regular two-dimensional rings, we have to overcome a
serious difficulty: proving that the “quadrant” U , defined above, is connected. This
is well known for algebras of finite type over a real closed field (see, for example, [7])
but as far as we can tell, for general rings this result is new and non-trivial. Its proof
occupies most of section 3.5.

Part 1. Valuations and approximate roots.

1.1 Generalities on valuations.

In this section we review some basic facts of valuation theory.
Let A be a noetherian ring and ν : A → Γ ∪ {∞} a valuation centered at a prime ideal

of A. Let Φ = ν(A \ {0}) ⊂ Γ.
For each γ ∈ Φ, consider the ideals

Pγ = {x ∈ A | ν(x) ≥ γ }
Pγ+ = {x ∈ A | ν(x) > γ } . (5)

Pγ is called the ν-ideal of A of value γ.

Remark 1.1.1 It is easy to see that, as A is noetherian, ν(A) is well-ordered.
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Notation. If I is an ideal of A and ν a valuation of A, ν(I) will denote min{ν(x) | x ∈ I}.
We now define certain natural graded algebras associated to a valuation. Let A, ν and

Φ be as above. For γ ∈ Φ, let Pγ and Pγ+ be as in (5). We define

grνA =
⊕

γ∈Φ

Pγ
Pγ+

.

The algebra grν(A) is an integral domain. For any element f ∈ A with ν(f) = γ, we may

consider the natural image of f in
Pγ
Pγ+

⊂ grν(A). This image is a homogeneous element of

grν(A) of degree γ, which we denote by inνf . The grading induces an obvious valuation on
grν(A) with values in Φ; this valuation will be denoted by ord.

We end this section with the notion of a monomial valuation. Let (A,m, k) be a regular
local ring, and u = (u1, . . . , un) a regular system of parameters of A. Let Φ be an ordered
semigroup and let β1, . . . , βn be strictly positive elements of Φ. Let Φ∗ denote the ordered
semigroup, contained in Φ, consisting of all the N0-linear combinations of β1, . . . , βn. For

γ ∈ Φ∗, let Iγ denote the ideal of A, generated by all the monomials uα such that
n
∑

j=1

αjβj ≥ γ

(we take I0 = A). Let x be a non-zero element of A. Let Φx = {γ ∈ Φ∗ | x ∈ Iγ }. Then it is
not difficult to prove that the set Φx contains a maximal element and there exists a unique
valuation ν, centered at m, such that

ν(uj) = βj , 1 ≤ j ≤ n (6)

and
ν(x) = max{γ ∈ Φx}, x ∈ A \ {0}. (7)

This valuation is called the monomial valuation of A, associated to u and the n-tuple
(β1, . . . , βn). A valuation ν, with values in a group Γ, centered in m, is said to be monomial
with respect to u if there exist β1, . . . , βn ∈ Γ+ such that (7) holds for all x ∈ A \ {0}.

For further results on valuations, see also [43] or [45].

The following result is an immediate consequence of definitions:

Proposition 1.1.2 Let Gν be the graded algebra associated to a valuation ν : K → Γ, as

above. Consider a sum of the form y =
s
∑

i=1

yi, with yi ∈ K. Let β = min
1≤i≤s

ν(yi) and

S = { i ∈ {1, . . . , n} | ν(yi) = β} .

The following two conditions are equivalent:
(1) ν(y) = β
(2)

∑

i∈S

inνyi 6= 0.

1.2 Approximate roots up to ν(J) for an m-primary ideal J

Let A be a regular local ring of dimension n, m its maximal ideal, k =
A

m
, u = (u1, . . . , un)

a regular system of parameters and

ν : A \ {0} → Γ

a valuation, centered in m (this means ν(m) > 0).
Let 1 = ν(m) = min{γ ∈ Φ | γ > 0} and Φ1 = {γ ∈ Φ | ∃a ∈ N; γ < a · 1}. For the

sake of simplicity, we will write a instead of a · 1. We shall study the structure of ν-ideals
Pγ where γ ∈ Φ.
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If ν were monomial with respect to u then inνu1, . . . , inνun would generate grνA as a
k-algebra. We are interested in analyzing valuations which are not necessarily monomial.
We fix an m-primary valuation ideal J . The purpose of sections 1.2 and 1.3 is to construct a
system of approximate roots up to ν(J), that is, a finite sequence of elements Q = {Qi}i∈Λ

of A such that for every ν-ideal I in A containing J we have

I =







∏

j

Q
γj
j

∣

∣

∣

∣

∣

∣

∑

j

γjν(Qj) ≥ ν(I)







A (8)

(in particular, the images inνQi of the Qi in grνA generate grνA as a k-algebra up to degree
ν(J)). In this construction, each Qi+1 will be described by an explicit formula (given later
in this section) in terms of Q1, ..., Qi.

The earliest precursor of approximate roots appears in a series of papers by Saunders
MacLane and O.F.G. Schilling [23], [24] and [25]. In dimension 2, they were defined globally
in k[x, y] by S. Abhyankar and T. T. Moh ([1], [2]) and locally by M. Lejeune-Jalabert [20].
See also the papers [18] and [19] by T. C. Kuo, [12] by R. Goldin and B. Teissier and [36] by
M. Spivakovsky, [11] by F.J. Herrera Govantes, M.A. Olalla Acosta, M. Spivakovsky, [39]-[42]
by Michel Vaquié. We also refer the reader to the paper [38] by B. Teissier for a different
approach to the theory of approximate roots in higher dimensions.

Let k =
A

m
=

A

mν ∩A
be the residue field of A. Fix an isomorphism

A

J
∼= k[u1, . . . , un]

J0
,

where J0 is an ideal of k[u1, . . . , un]. In this way, we will view k as a subring of A/J .
We fix, once and for all, a section k → A of the natural map A → k which composed

with the natural map A→ A

J
maps k isomorphically onto its image in

A

J
. The image of k

in A will be denoted by k.

According to Definition 0.1.17, we are looking for a finite set of elements Q = {Qi}i∈Λ,
Qi ∈ A satisfying (8).

Remark 1.2.1 This means, in particular, that the initial forms inν(Q1), inν(Q2), . . . gen-
erate grν(A), up to degree ν(J). In other words, we want to build Q such that, for f ∈ A,
we have inν(f) ∈ k[inνQ] provided ν(f) ≤ ν(J).

Since J is an m-primary ideal, there are only finitely many elements of Φ less than or
equal to ν(J). We proceed by induction on the finite set {γ ∈ Φ | γ ≤ ν(J)}.

Definition 1.2.2 Let E = {Q ∈ A} be a set of elements of A. A generalized monomial Qα

in E is a formal expression

Qα =
∏

Q∈E

QαQ

where αQ ∈ N and αQ = 0 for all Q outside of a finite subset of E.

We order the set of generalized monomials by the lexicographical order of the pairs
(ν(Qα), α).

The semigroup Φ is well ordered. For a natural number λ, γλ will denote the λ-th element
of Φ.

We start by choosing a coordinate system adapted to the situation.

Definition 1.2.3 Take j ∈ {2, . . . , n}. We say that uj is (ν, J)-prepared if either uj ∈ J or
there does not exist f ∈ A such that

inνuj = inνf and (9)

f mod J ∈ k[u1, . . . , uj−1]

k[u1, . . . , uj−1] ∩ J0
. (10)
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The coordinate system u = {u1, . . . , un} is (ν, J)-prepared if uj is (ν, J)-prepared for all
j ∈ {2, . . . , n}.

Proposition 1.2.4 There exists a (ν, J)-prepared coordinate system.

Proof: We construct a (ν, J)-prepared coordinate system recursively in j. Assume that
u1, . . . , uj−1 are already (ν, J)-prepared, but uj is not. Take f ∈ A saitsfying (9) and (10).

Let ũj = uj − f ; then ν(ũj) > ν(uj).
Since there are only finitely many elements of Φ less than ν(J), after finitely many

repetitions of the above procedure, we may assume that uj is (ν, J)-prepared. This completes
the proof by induction on j. �

We construct, recursively in λ, two finite ordered sets Λ(γλ) and Θ(γλ). At each step we
define additional finite ordered sets V(γλ) ⊂ Ψ(γλ) ⊂ Λ(γλ). A typical element of each of
those sets will have the form (Q,Ex(Q)) where Q ∈ A and Ex(Q) is a sum of monomials in
Λ(γλ), written in the increasing order according to the on monomials, defined above. Given
an element (Q,Ex(Q)) ∈ Λ(γλ)∪Θ(γλ), Q is called an approximate root and Ex(Q) is called
the expression of Q. In what follows, we adopt the convention

Θ(γλ) = V(γλ) = Ψ(γλ) = Λ(γλ) = ∅

whenever λ < 0.

For a natural number ℓ, γℓ ≤ ν(J), and for (Q,Ex(Q)) ∈ Λ(γℓ) ∪Θ(γℓ), let In Q denote
the smallest monomial of Ex(Q). Let

In(ℓ) =
{

α ∈ NΨ(γℓ)
∣

∣

∣ ∃(Q,Ex(Q)) ∈ Λ(γℓ) such that Qα = In Q
}

.

Theorem 1.2.5 For a natural number λ, γλ ≤ ν(J), there exist finite ordered sets

V(γλ) ⊂ Ψ(γλ) ⊂ Λ(γλ)

and Θ(γλ) consisting of elements (Q,Ex(Q)), with Q ∈ A and Ex(Q) is a sum of monomials
in V(γλ), increasing with respect to the given order on monomials, and having the following
properties:

ν(Q) < γλ whenever (Q,Ex(Q)) ∈ Λ(γλ) (11)

ν(Q) ≥ γλ whenever (Q,Ex(Q)) ∈ Θ(γλ). (12)

Moreover, for any (Q,Ex(Q)) ∈ Λ(γλ), any monomial Qα appearing in Ex(Q) is a mono-
mial in Ψ(γλ−2) provided Q∈/{u1, . . . , un}. For any (Q,Ex(Q)) ∈ Θ(γλ), any monomial Qα

appearing in Ex(Q) is a monomial in Ψ(γλ−1) provided Q∈/{u1, . . . , un}. An element

(Q,Ex(Q)) ∈ Ψ(γλ) ∪Θ(γλ)

is completely determined by In Q.

Proof: We proceed by induction on λ.
First define Ψ(1) = Λ(1) = ∅ and Θ(1) = {(u1, u1), . . . , (un, un)} where we assume

ν(u1) ≤ ν(u2) ≤ · · · ≤ ν(un).

Let λ > 0 be a natural number such that γλ ≤ ν(J). Assume that for each ℓ < λ we
have constructed sets V(γℓ) ⊂ Ψ(γℓ) ⊂ Λ(γℓ) and Θ(γℓ) having the properties required in
the theorem.

Let
Λ(γλ) = Λ(γλ−1) ∪ {(Q,Ex(Q)) ∈ Θ(γλ−1) | ν(Q) < γλ}. (13)
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Definition 1.2.6 An element (Q,Ex(Q)) ∈ Λ(γλ) is an inessential predecessor of an
approximate root (Q′,Ex(Q′)) ∈ Λ(γλ) if Ex(Q′) = Ex(Q) +

∑

α

cαQ
α, where cα ∈ k and the

Qα are monomials in Λ(γλ).

An element (Q,Ex(Q)) ∈ Λ(γλ) is said to be essential at the level γλ if Q is not an
inessential predecessor of an element of Λ(γλ).

Remark 1.2.7 Note that, because the coordinate system is prepared, u1, . . . , un are always
essential.

Let Ψ(γλ) be the subset of Λ(γλ) consisting of all the essential roots at the level γλ. Let
V(γλ) be the subset of Ψ(γλ) consisting of all (Q,Ex(Q)) such that inν(Q) does not belong
to the k-vector space of G = grν(A) generated by the set {inνQγ} where Qγ runs over the
set of all the generalized monomials on roots preceding Q in the above ordering.
We extend the total ordering from Λ(γλ−1) to Λ(γλ) by postulating that Λ(γλ−1) is the
initial segment of Λ(γλ).

For a natural number ℓ, let E(ℓ) = In(ℓ) + NV(γℓ) ⊂ NV(γℓ).

Now consider the ordered set {Qα1 , . . . ,Qαs} of monomials

Qα =
∏

QαQ , (Q,Ex(Q)) ∈ V(γλ) ∪ {(Q,Ex(Q)) ∈ Θ(γλ−1) | ν(Q) = γλ}

of value γλ, such that the natural projection of α to NV(γλ) does not belong to E(λ).

Let i1 = max

{

i ∈ {1, . . . , s}
∣

∣

∣

∣

∣

inν(Q
αi) ∈

s
∑

j=i+1

k inν(Q
αj )

}

and consider the unique

relation inν(Q
αi1 )−

s
∑

j=i1+1

c1j inν(Q
αj ) = 0. Let P1 = Qαi1 −

s
∑

j=i1+1

c1jQ
αj where c1j ∈ k

is the image of c1j under the chosen section k→ A.

Let i2 = max

{

i ∈ {1, . . . , i1 − 1}
∣

∣

∣

∣

∣

inν(Q
αi) ∈

s
∑

j=i+1

k inν(Q
αj )

}

and, as before, con-

sider the unique P2 = Qαi2 −
s
∑

j=i2+1

j 6=i1

c2jQ
αj such that the vector (αj)j=i1+1,...,s, c2j 6= 0, is

minimal in the lexicographical order. We continue in this way and define P3, . . . , Pt.

Let

Θ(γλ) = {(Q,Ex(Q)) ∈ Θ(γλ−1) | ν(Q) ≥ γλ} ∪ {(P1,Ex(P1)), . . . , (Pt,Ex(Pt))} (14)

where
Ex(Pj) = Ex(Q)−

∑

k

cjkQ
αk (15)

if Qαij = Q with (Q,Ex(Q)) ∈ V(γλ) ∪ { (Q,Ex(Q)) ∈ Θ(γλ−1) | ν(Q) = γλ} and

Ex(Pj) = Qαij −
∑

k

cjkQ
αk (16)

otherwise.

Remark 1.2.8 Suppose given two approximate roots Q1 and Q2 such that

In(Q1) = In(Q2) = Qα

and suppose that Q1 appears before Q2 in the process of construction of the approximate roots
decribed above. Because of the uniqueness of the construction of the Pi’s above, we have

ν(Q2) > ν(Q1).
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Now, if ν(Qα) = γℓ, then α ∈ E(ℓ), so the only way the monomial Qα can appear as an
initial form of Q2 is when Pk = Q′ +

∑

cjQ
αj where In(Q′) = Qα and then ν(Q′) < ν(Q2).

Then, either ν(Q′) = ν(Q1) and so Q′ = Q1 because of the uniqueness in the construction
process, or ν(Q′) > ν(Q1), but we conclude by descending induction that Q2 = Q1+

∑

cjQ
αj

and Ex(Q2) = Ex(Q1) +
∑

cjQ
αj .

So finally, the expression of an approximate root has the form

Ex(Q) = Qαij +
∑

k

akQ
αk (17)

the sum being written in the increasing order of the monomials.

Remark 1.2.9 This construction is very similar to finding a basis of the space of relations
by row reduction.

Remark 1.2.10 We just showed that there is a one to one correspondence Q ↔ In(Q)
between the approximate roots Q ∈ Ψ(γℓ) and the set of monomials which are the first term
of the expression Ex(Q) of such an approximate root Q. Let us denote by M(ℓ) the set of
those monomials.

The last part of the theorem holds by construction. �

1.3 Standard form up to ν(J)

Consider the integer λ such that γλ = ν(J). Assume that the system of coordinates u of A
is (ν, J)-prepared.

Definition 1.3.1 A monomial in Ψ(γλ) ∪ Θ(γλ) is called standard with respect to λ if
all the approximate roots appearing in it belong to V(γλ) and it is not divisible by any In(Q)
where Q is an approximate root in (Ψ(γλ) ∪Θ(γλ)) \ {(u1, u1), . . . , (un, un)}.

Definition 1.3.2 Let f ∈ A and let ℓ be a positive integer, ℓ ≤ λ. An expression of the
form

f =
∑

cαQ
α,

where the Qα are monomials in Ψ(γλ)∪Θ(γλ), written in the increasing order, is a standard

form of level γℓ with respect to λ if for all γ′ < γℓ and for all α such that ν(Qα) = γ′ and
cα 6= 0, Qα is a standard monomial with respect to λ.

We now construct, by induction on ℓ, a standard form of f of level γℓ. We will write this
standard form as

f = fℓ +
∑

cαQ
α

where, for all α, Qα is a generalized monomial in Ψ(γλ) ∪ Θ(γλ), ν(Q
α) ≥ γℓ and fℓ is a

sum of standard monomials in V(γλ) of value strictly less than γℓ.
To start the induction, let f0 = 0. The standard form of f of level 0 with respect to λ will

be its expansion f = f0 +
∑

cαu
α as a formal power series in the ui, with the monomials

written in the increasing order according to the monomial order defined above,.

Let ℓ be a natural number, ℓ < λ. Let us define fℓ+1 and the standard form of f of level
γℓ+1 as follows. Assume we already have an expression f = fℓ +

∑

cαQ
α with ν(Qα) ≥ γℓ,

for all α, and the value of any monomial of fℓ is strictly less than γℓ.
Take the homogeneous part of

∑

cαQ
α of value γℓ, with the monomials arranged in the

increasing order, and consider the first monomial Qα which is not standard. Since Qα is not
standard, one of the following two conditions holds:

12



1. There exists an approximate root Q ∈ (Ψ(γλ) ∪Θ(γλ)) \ {(u1, u1), . . . , (un, un)} such
that In(Q) divides Qα. Write Q = In(Q)+

∑

cβQ
β and replace In(Q) by Q−∑ cβQ

β

in Qα.

2. There exists Q ∈ Ψ(γλ) \ V(γλ) which divides Qα. Since Q∈/V(γλ), there exists

Q′ ∈ Ψ(γλ) ∪Θ(γλ)

of the form Q′ = Q+
∑

δ

dδQ
δ where Qδ are monomials in V(γλ) of value greater than

or equal to γℓ. Replace Q by Q′ −∑
δ

dδQ
δ.

In both cases, those changes introduce new monomials, but either they are of value strictly
greater than γℓ or they are of value exactly γℓ but greater than Qα in the monomial ordering.
We repeat this procedure as many times as we can. After a finite number of steps, no more
changes are available at level γℓ+1. Then, let fℓ+1 = fℓ +

∑

dβQ
β with ν(Qβ) = γℓ, so that

f = fℓ+1 +
∑

cαQ
α where ν(Qα) > γℓ.

The expression thus constructed satisfies the definition of standard form of level γℓ+1

because all the non-standard monomials Qα of value less than or equal to γℓ have been
eliminated.

Proposition 1.3.3 Let

f = fℓ +
∑

cαQ
α

be a standard form of f of level γℓ and γ < γℓ an element of Φ. Then
∑

ν(Qβ)=γ

cβQ
β∈/Pγ+.

Proof : We give a proof by contradiction. Suppose there exists a relation of the form

∑

ν(Qβ)=γ

cβQ
β ∈ Pγ+. (18)

Let Qα be the smallest monomial on the left hand side of (18). By construction of ap-
proximate roots, there exists a finite collection Q1, . . . , Qs ∈ Λ(γ+)∪ θ(γ+) and generalized

monomials Qω1 , . . . ,Qωs such that
s
∑

i=1

QiQ
ωi =

∑

ν(Qβ)=γ

cβQ
β .

There exists i ∈ {1, . . . , s} such that one of the two conditions holds : either

Qα = Qωi · In(Qi)

or
Qi = Q′

i +
∑

ǫ

bǫQ
ǫ, Q′

i ∈ Λ(γ+) \Ψ(γ+).

In either case, the monomial Qα is not standard, which gives the desired contradiction. �

For each ℓ, the part fℓ of a standard form of f of level γℓ is uniquely determined. This
is a straightforward consequence of the Proposition.

As a consequence of Proposition 1.3.3, note that if γℓ > ν(f) then ν(f) equals the smallest
value of a monomial appearing in the standard form of f of level γℓ.

Theorem 1.3.4 (1) Take γ ∈ Φ, γ < γλ. Then
Pγ
Pγ+

is generated as a k-vector space

by {inνQβ} where Qβ runs over the set of all the standard monomials with respect to λ,
satisfying ν(Qβ) = γ.

(2) The part of the graded k-algebra grν(A) of degree strictly less than γλ is generated by
the initial forms of the approximate roots of V(γλ).
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Proof : Take an element γ ∈ Φ, γ < γλ. Let h ∈ Pγ/Pγ+ be a homogeneous element
of degree γ of grν(A) and let f ∈ Pγ be such that inν(f) = h. Let

∑

cβQ
β denote the

homogeneous part of least value of a standard form of f of level γλ. Then the initial form of
f is

∑

inν(cβQ
β). �

The Alvis–Johnston–Madden example. Let α be the point of Sper(R[x, y, z]) given by
the curvette x(t) = t6, y(t) = t10 + ut11, z(t) = t14 + t15 where u is some fixed element of R
with u > 2. Let J be a να-ideal of value greater than or equal to 37.
The calculation of the first few approximate roots gives

Q1 = x, (19)

Q2 = y, (20)

Q3 = z, (21)

Q4 = y2 − xz = (2u− 1)t21 + u2t22, ν(Q4) = 21 (22)

Q5 = yz − x4 = (u+ 1)t25 + ut26, ν(Q5) = 25 (23)

Q6 = z2 − x3y = (2− u)t29 + t30, ν(Q6) = 29 (24)

Q
(31)
7 = yQ4 − α(u)xQ5, α(u) = (2u− 1)/(u+ 1), ν

(

Q
(31)
7

)

= 32 (25)

Q
(32)
7 = yQ4 − α(u)xQ5 − β(u)x3z, ν

(

Q
(32)
7

)

= 33 (26)

Q
(33)
7 = yQ4 − α(u)xQ5 − β(u)x3z − γ(u)x2Q4 (27)

Q
(34)
7 = yQ4 − α(u)xQ5 − β(u)x3z − γ(u)x2Q4 − δ(u)x4y (28)

Q
(35)
7 = yQ4 − α(u)xQ5 − β(u)x3z − γ(u)x2Q4 − δ(u)x4y − ǫ(u)xQ6 (29)

Q
(35)
8 = zQ4 + ζ(u)xQ6 (30)

Q
(35)
9 = yQ5 + η(u)xQ6, (31)

where β(u), γ(u), δ(u), ǫ(u), ζ(u), η(u) are functions of u which can be calculated explicitly.

The elements listed above belong to Λ(37); we chose to index them as Q
(j)
i . In this

notation, the approximate root Q
(j)
i is an inessential predecessor of Q

(j+1)
i whenever Q

(j+1)
i

is defined.

We also note the relation xQ6 − yQ5 + zQ4 = 0, which is the simplest example of a syzygy,
an important phenomenon, responsible for much of the difficulty of the Pierce–Birkhoff
conjecture.

In the same vein, we can describe the standard form of different levels of an element of
A, say for instance,

f = x3 + y3 + z3 (32)

(which is a standard form of level 0). For γ ≤ 30, the standard form of f of level γ is given
by (32). Then, as y2 ∈ E(21), we replace y3 by y(Q4 + xz) to obtain

f = x3 + yQ4 + xyz + z3. (33)

Since yz ∈ E(25), we replace xyz in (33) by xQ5 + x5, to obtain the standard form of level
31:

f = x3 + x5 + yQ4 + xQ5 + z3 (34)

(the monomials being written in the order of increasing values 18, 30, 31, 31, 42). Next, we
replace yQ4 by α(u)xQ5 in (34), so the standard form of levels 32, 33, 34 and 35 is given by

f = x3 + x5 + (1 + α(u))xQ5 + β(u)x3z + γ(u)x2Q4 + δ(u)x4y +Q
(34)
7 + z3,

and so on ...
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Let ℓ be an integer such that γℓ ≤ γλ. Let X = XV(γℓ) be a set of independent variables,

indexed by V(γℓ), and consider the graded k-algebra k
[

XV(γℓ)

]

, where we define

deg Xj = ν(Qj).

Let P denote the homogeneous monomial ideal of k
[

XV(γℓ)

]

generated by all the monomials
in XV(γℓ) of degree greater than or equal to γℓ. We have a natural map

φℓ :
k[XV(γℓ)]

P
→ gr

ν
A

Pγℓ

Xj 7→ inνQj .

Now, for ℓ = 0, let I0 = (0). For ℓ > 0, let Iℓ denote the ideal of
k[XV(γℓ)]

P
generated by

all the homogeneous polynomials of the form

Xα0 + λ1X
α1 + λ2X

α2 + · · ·+ λb0X
αb0 (35)

where Qα0 + λ1Q
α1 + λ2Q

α2 + · · · + λb0Q
αb0 is the homogeneous part of least degree of

Ex(Q) for an approximate root Q ∈ V(γℓ) ∪Θ(γℓ).

Corollary 1.3.5 We have ker φℓ = Iℓ.

Proof : The inclusion Iℓ ⊂ ker φℓ is immediate. To prove the opposite inclusion, we argue
by contradiction. Take a homogeneous element

h = aλ1X
λ1 + aλ2X

λ2 + · · ·+ aλs
Xλs ∈ ker(φℓ) \ Iℓ (36)

of degree b, b < γℓ, such that λ1 is lexicographically smallest among all the elements h ∈
ker(φℓ) \ Iℓ of degree b.

The inclusion (36) implies that

aλ1 inνQ
λ1 + aλ2 inνQ

λ2 + · · ·+ aλs
inνQ

λs = 0. (37)

in Pb/Pb+.
By definition of Iℓ, there exists an element g ∈ Iℓ of the form Xǫ +

∑

p cpX
ǫp and a

monomial Xδ with ǫp > ǫ for all p and λ1 = ǫ + δ. Then, as g ∈ Iℓ ⊂ ker(φℓ), we have
h− aλ1X

δg ∈ ker(φℓ) and the greatest monomial of h− aλ1X
δg is strictly bigger than Xλ1 .

This contradicts the choice of h. �

Corollary 1.3.6 Take an element γ ∈ Φ, γ < γλ. The valuation ideal Pγ is generated by all
the generalized monomials of value greater than or equal to γ in {Q | (Q,Ex(Q)) ∈ Ψ(γλ)}.
The ideal Pγλ is generated by all the generalized monomials of value greater than or equal to
γλ in {Q | (Q,Ex(Q)) ∈ Ψ(γλ) ∪Θ(γλ)}.

Proof: Let f ∈ Pγ (resp. f ∈ Pγλ). By the very definition of the standard form of level ℓ
such that γℓ = γ, f can be written as an A-linear combination of generalized monomials of
value greater than or equal to γ in {Q | (Q,Ex(Q)) ∈ Ψ(γλ)} (resp. ∈ Ψ(γλ)∪Θ(γλ)). Thus
Pγ (resp. Pγλ) is generated by the generalized monomials of value at least γ, as desired. �

1.4 Approximate roots in a complete local ring

We now generalize the notion of approximate root to a complete regular local ring A of

dimension n, with maximal ideal m, and residue field k =
A

m
. Let u = (u1, . . . , un) be a

regular system of parameters and
ν : A \ {0} → Γ

a valuation, centered in m. Denote by νm the m-adic valuation.
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We keep the same notation as in §2.
The purpose of this section is to construct, for a general ν, a system of approximate roots

of ν, that is, a well-ordered collection of elements Q = {Qi}i∈Λ of A such that for every
ν-ideal I in A, we have

I =







∏

j

Q
γj
j

∣

∣

∣

∣

∣

∣

∑

j

γjν(Qj) ≥ ν(I)







A (38)

(in particular, the images inνQi of the Qi in grνA generate grνA as a k-algebra). Each Qi+1

will be described by an explicit formula (given later in this section) in terms of the Qj , j < i.

In this general setting, we have to proceed by transfinite induction on the well-ordered
semigroup Φ. Since we are not assuming that rk Γ = 1 or that Φ is archimedian, we have to
work with ordinals other than the natural numbers.

Remark on the use of transfinite induction. Since the ring A is noetherian, the group Γ of
values of ν has finite rank. Therefore all the ordinals ℓ we will encounter in this paper will
be of type ℓ ≤ ωn (cf. [43] and [8]). Thus we will be using a very special form of transfinite
induction, which amounts to usual induction, applied finitely many times. We will, however,
stick to the language of tranfinite induction to simplify the exposition.

Recall the definition of generalized monomial (Definition 1.2.2). We well-order the set of
generalized monomials by the lexicographical order on the set of triples (ν (Qα) , νm (Qα) , α).

The semigroup Φ is well ordered. By abuse of notation, we will sometimes write Φ for
the ordinal given by the order type of Φ. Let λ < Φ be an ordinal and γλ the element of Φ
corresponding to λ.

We start by choosing a coordinate system adapted to the situation. Fix an isomorphism

A ∼= k[[u1, . . . , un]]. (39)

Definition 1.4.1 Take j ∈ {2, . . . , n}. We say that uj is ν-prepared if there does not exist
f ∈ A such that inνuj = inνf and f ∈ k[[u1, . . . , uj−1]]. The coordinate system u =
{u1, . . . , un} is ν-prepared if uj is ν-prepared for all j ∈ {2, . . . , n}.

Proposition 1.4.2 There exists a ν-prepared coordinate system.

Proof: We construct a ν-prepared coordinate system recursively in j. Assume that u1, . . . ,
uj−1 are ν-prepared, but uj is not.

We will construct the prepared coordinate ũj recursively by transfinite induction on Φ.
More precisely, we will construct a well ordered set {uji} of successive approximation to ũj
in the m-adic topology. We will show that this set satisfies the hypothesis of Zorn’s lemma
and let ũj be its maximal element.

The details go as follows. Let uj0 = uj. Suppose that uji is constructed and that it is
not prepared. Let fji be the element f of k[[u1, . . . , uj−1]] appearing in the definition of “not
prepared”. Put uj,i+1 = uji − fji. Then ν(uji) = ν(fji) < ν(uj,i+1). Next, suppose given a
sequence uji, uj,i+1, . . . of elements of k[[u1, . . . , uj ]] such that (u1, . . . , uj−1, ujq) is a regular
system of parameters of k[[u1, . . . , uj ]] for each q and

ν(uji) < ν(uj,i+1) < ν(uj,i+2) < · · · .

Let βq = ν(ujq). Let β̄ = min {β ∈ Φ | β > βq, ∀q ∈ N}. By Chevalley’s lemma, ap-

plied to the nested sequence of ideals
Pβq
∩ k[[u1, . . . , uj−1]]

Pβ̄ ∩ k[[u1, . . . , uj−1]]
in the complete local ring
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k[[u1, . . . , uj−1]]

Pβ̄ ∩ k[[u1, . . . , uj−1]]
, we see that lim

q→∞
(fjq mod Pβ̄) = 0 in the (u1, . . . , uj−1)-adic topol-

ogy.
Hence, modifying each fjq by an element of Pβ̄ if necessary, we may assume that

lim
q→∞

fjq = 0.

We define uj,i+ω to be the formal power series uji − fji − fj,i+1 − · · · . By construction,

ν(uj,i+ω) ≥ β̄.
To complete our construction , we need to consider countable well ordered sets {ujt} of
order type greater than ω. This presents no problem: by countability, we can always choose a
cofinal subsequence in each such set. Then the above construction of uj,i+ω applies verbatim.
�

We construct, inductively in λ, two well-ordered sets Λ(γλ) and Θ(γλ). At each step we
define two additional well-ordered sets V(γλ) ⊂ Ψ(γλ) ⊂ Λ(γλ). A typical element of each
those sets will have the form (Q,Ex(Q)) where Q ∈ A and Ex(Q) is an increasing sum of
monomials in V(γλ) (according to the order we defined on monomials). The sum in Ex(Q)
may be finite or infinite, but it is always convergent in the m-adic topology. Given an
element (Q,Ex(Q)) ∈ Λ(γΦ) ∪ Θ(γΦ), Q is called an approximate root and Ex(Q) is called
the expression of Q.

For an ordinal ℓ < Φ and for (Q,Ex(Q)) ∈ Λ(γℓ) ∪ Θ(γℓ), let In Q denote the smallest
monomial of Ex(Q). Let In(ℓ) =

{

α ∈ NV(γℓ)
∣

∣ ∃(Q,Ex(Q)) ∈ Λ(γℓ) such that Qα = In Q
}

.

Theorem 1.4.3 For λ < Φ, there exist well ordered sets V(γλ) ⊂ Ψ(γλ) ⊂ Λ(γλ) and Θ(γλ)
having the following properties. Let

Ψ(< γλ) = Ψ(γλ−1) if λ is not a limit ordinal and (40)

Ψ(< γλ) = Ψ(γλ) otherwise (41)

and similarly for V(< γλ). Then each set V(γλ),Ψ(γλ), Λ(γλ), Θ(γλ) consists of elements of
the form (Q,Ex(Q)), with Q ∈ A and Ex(Q) is an increasing (with respect to the monomial
order defined above) sum of monomials in V(< γλ), of value < ν(Q), such that

ν(Q) < γλ whenever (Q,Ex(Q)) ∈ Λ(γλ) (42)

ν(Q) ≥ γλ whenever (Q,Ex(Q)) ∈ Θ(γλ) (43)

and the sets

{(Q,Ex(Q)) ∈ Θ(γλ) ∪ Λ(γλ) | ν(Q) = γ}, γ ∈ Φ (44)

and
{ (Q,Ex(Q)) ∈ Ψ(γλ) ∪Θ(γλ) | Q∈/ms} , s ∈ N (45)

are finite. An element (Q,Ex(Q)) ∈ Ψ(γλ) ∪ Θ(γλ) is completely determined by In Q;
moreover νm(In Q) = νm(Q).

In what follows, Λ(< γλ) will stand for
⋃

ℓ<λ

Λ(γℓ).

Proof : We proceed by transfinite induction.
First define Ψ(1) = Λ(1) = ∅ and Θ(1) = {(u1, u1), . . . , (un, un)} where we assume

ν(u1) ≤ ν(u2) ≤ · · · ≤ ν(un).
Let λ < Φ be an ordinal. Assume that for each ℓ < λ we have constructed sets Ψ(γℓ) ⊂

Λ(γℓ) and Θ(γℓ) having the properties required in the theorem.
Let

Λ(γλ) = Λ(< γλ) if λ is a limit ordinal (46)

Λ(γλ) = Λ(γλ−1) ∪ {(Q,Ex(Q)) ∈ Θ(γλ−1) | ν(Q) < γλ} otherwise. (47)
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Definition 1.4.4 An element (Q,Ex(Q)) ∈ Λ(γλ) is an inessential predecessor of a
root (Q′,Ex(Q′)) ∈ Λ(γλ) if Ex(Q′) = Ex(Q) +

∑

α cαQ
α, where each cα is a unit in A and

Qα a monomial in V(γλ).
An element (Q,Ex(Q)) ∈ Λ(γλ) is said to be essential at the level γλ if Q is not an

inessential predecessor of an element of Λ(γλ).

Remark 1.4.5 Note that, because the system of coordinates is prepared, u1, . . . , un are al-
ways essential.

Let Ψ(γλ) be the subset of Λ(γλ) consisting of all the essential roots at the level γλ. Let
V(γλ) be the subset of Ψ(γλ) consisting of all (Q,Ex(Q)) such that inν(Q) does not belong
to the k-vector space of grν(A) generated by the set {inνQγ} where Qγ runs over the set of
all the generalized monomials on roots preceding Q in the above ordering.
We extend the total ordering from Λ(< γλ) to Λ(γλ) by postulating that Λ(< γλ) is the
initial segment of Λ(γλ).

If ℓ is not a limit ordinal, let E(ℓ) = In(ℓ) + NΛ(γℓ) ⊂ NΛ(γℓ). Now, if ℓ′ < ℓ′′, we have
Λ(γ′ℓ) ⊂ Λ(λ′′ℓ ), which induces an inclusion NΛ(γℓ′ ) ⊂ NΛ(γℓ′′ ). If ℓ is a limit ordinal, define
E(ℓ) =

⋃

ℓ′<ℓ

E(ℓ′).

Notation. Denote by Θ(< γλ) the set
⋃

ℓ<λ

Θ(γℓ) \ Λ(< γλ).

Remark 1.4.6 We have

Ψ(γλ) ∪Θ(< γλ) = Ψ(< γλ) ∪Θ(< γλ). (48)

Indeed, consider an element (Q,Ex(Q)) ∈ Ψ(γλ) ∪Θ(< γλ). If λ is a limit ordinal, then

(Q,Ex(Q)) ∈ Ψ(< γλ) ∪Θ(< γλ) (49)

by (41). If λ is not a limit ordinal and (Q,Ex(Q)) ∈ Ψ(γλ) \Ψ(γλ−1) then

(Q,Ex(Q)) ∈ Θ(γλ−1)

by (47). Thus (49) holds in all the cases and (48) is proved.

Lemma 1.4.7 The set Q(h) =
{

(Q,Ex(Q)) ∈ Ψ(γλ) ∪Θ(< γλ) | Q∈/mh
}

is finite for every
h ∈ N.

Proof: Consider an element (Q,Ex(Q)) ∈ Q(h). If (Q,Ex(Q)) ∈ Θ(< γλ), then there exists
ℓ < γλ such that (Q,Ex(Q)) ∈ Θ(< γℓ). If (Q,Ex(Q)) ∈ Ψ(< γλ) ⊂ Λ(γλ) =

⋃

ℓ<λ Λ(γℓ),
then there exists ℓ < γλ such that (Q,Ex(Q)) ∈ Λ(γℓ). Since Q is essential at level γλ, it is
also essential at level γℓ, so (Q,Ex(Q)) ∈ Ψ(γℓ). Thus by the induction hypothesis on λ, for
any Q ∈ Q(h), we have νm(Q) = νm(In Q).

Write Ex(Q) = Qα0 + · · · where, by construction, Qα0 is either a ur or a product of at
least 2 terms, Qα0 =

∏

Qβs
s .

In the first case, the number of such Qα0 is finite, because the number of uk is finite.
In the second case, νm(Qs) < νm(Q

α0) ≤ νm(Q) < h. So νm(Qs) < h− 1 and, by induction
on h, the number of such Qs is finite. If

m = min {νm(Qs) | Qs divides Qα0 } ,

then |α0|m ≤ νm(Q
α0) ≤ h − 1, so there is a finite number of such α0 possible which

means that the number of such Qα0 is finite. By the induction hypothesis, Q is completely
determined by In Q whenever (Q,Ex(Q)) ∈ Ψ(γλ) ∪Θ(< γλ). Therefore Q(h) is finite. �
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Corollary 1.4.8 The set of monomials {Qα | Qα∈/ms } in Ψ(γλ) ∪ Θ(< γλ) is finite for
every s ∈ N.

Corollary 1.4.9 (1) Any infinite sequence of generalized monomials in Ψ(γλ) ∪ Θ(< γλ),
all of whose members are distinct, converges to 0 in the m-adic topology.

(2) Any infinite series, all of whose terms are distinct generalized monomials in Ψ(γλ)∪
Θ(< γλ) converges in the m-adic topology.

Lemma 1.4.10 The set

Qα =
∏

QαQ such that (Q,Ex(Q)) ∈ Ψ(γλ) ∪ {(Q, ,Ex(Q)) ∈ Θ(< γλ) | ν(Q) = γλ}

and ν(Qα) = γλ is finite.

Proof: By the Artin-Rees lemma, there exists p0 such that, for p ≥ p0,

m
p ∩ Pγλ = m

p−p0(mp0 ∩ Pγλ).

Take p > p0, then
m
p ∩ Pγλ ⊂ mPγλ ⊂ Pγλ+. (50)

This equation shows that the set of the lemma is disjoint from mp. So by the above corollary,
the set of the lemma is finite. �

Consider now the ordered set {Qα1 , . . . ,Qαs} of monomials

Qα =
∏

QαQ , (Q,Ex(Q)) ∈ Ψ(γλ) ∪ {(Q,Ex(Q)) ∈ Θ(< γλ) | ν(Q) = γλ}

of value γλ such that the natural projection of α to NV(γλ) does not belong to E(λ). The
fact that this set is finite follows from the above Lemma.

Let i1 = max

{

i ∈ {1, . . . , s}
∣

∣

∣

∣

∣

inν (Q
αi) ∈

s
∑

j=i+1

k inν (Q
αj )

}

and consider the unique

relation inν (Q
αi1 )−

s
∑

j=i1+1

c1j inν (Q
αj ) = 0. Let P1 = Qαi1 −

s
∑

j=i1+1

c1jQ
αj where we view

k as a subring of A via the identification (39).

Let i2 = max

{

i ∈ {1, . . . , i1 − 1}
∣

∣

∣

∣

∣

inν (Q
αi) ∈

s
∑

j=i+1

k inν (Q
αj )

}

and, as before, con-

sider the unique P2 = Qαi2 −
s
∑

j=i2+1

j 6=i1

c2jQ
αj such that the vector (αj)j=i1+1,...,s, c2j 6= 0, is

minimal in the lexicographical order and define so on uniquely P3, . . . , Pt.

Now, if λ has a predecessor, we let

Θ(γλ) = {(Q,Ex(Q)) ∈ Θ(< γλ) | ν(Q) > γλ} ∪ {(P1,Ex(P1)), . . . , (Pt,Ex(Pt))} (51)

where
Ex(Pj) = Qαij −

∑

k

cjkQ
αk (52)

if Qαij is not a preceding root Q and

Ex(Pj) = Ex(Q)−
∑

k

cjkQ
αk (53)

in the other case.

Remark 1.4.11 Note that Remark 1.2.8 remains valid in this context, with the obvious
modification that the expressions of approximate roots are now allowed to be infinite, but
convergent in the m-adic topology.
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Suppose now λ is a limit ordinal. Let (Q0, Ex(Q0)) ∈ Λ(γℓ0) for some ℓ0 < λ and
Qα = In(Q0). Let L(Q0) be the following infinite well ordered set of approximate roots,
indexed by ordinals ℓ, ℓ0 ≤ ℓλ

L(Q0) = { (Q(ℓ), Ex(Q(ℓ))) ∈ Ψ(γℓ) }ℓ0≤ℓ<λ
such that InQ(ℓ) = Qα.

By Remarks 1.2.8 and 1.4.11, for ℓ0 ≤ ℓ < ℓ′λ, we have

Ex(Q(ℓ′)) = Ex(Q(ℓ)) +
∑

j∈W

cjQ
αj (54)

where ν(Qαj ) ≥ ν(Q(ℓ)).
Let p be a positive integer. By induction assumption, all the approximate roots Q

appearing in any of the monomials Qαj belong to V(γλ) and, by lemma 1.4.7, the number
of such roots outside mp is finite. Thus, all but finitely many Qαj belong to mp. This proves
that L(Q0) has a limit in A with respect to the m-adic topology : (lim

→
Q, lim

→
Ex(Q)).

Let
Θ(γλ) = {(Q,Ex(Q)) ∈ Θ(< γλ) | ν(Q) ≥ γλ} ∪ L̂ (55)

where L̂ consists of all couples of the form (lim
→
Q, lim

→
Ex(Q)).

So finally, the expression of an approximate root has the form

Ex(Q) = Qα +
∑

k

akQ
αk (56)

the sum, written in the increasing order of the monomials, being finite or infinite.

We now prove the finiteness of sets (44) and (45). First, note that the set

{(Q,Ex(Q)) ∈ Θ(< γλ) ∪ Λ(γλ) | ν(Q) = γ}, γ ∈ Φ (57)

is finite by the induction hypothesis and the set

{(Q,Ex(Q)) ∈ Ψ(γλ) ∪Θ(< γλ) | Q∈/mp} , p ∈ N (58)

is finite by the induction hypothesis and lemma (1.4.10). If λ is not a limit ordinal, the
finiteness of (44) and (45) follows from the fact that the set Θ(γλ) \ Θ(< γλ) is finite by
construction. If λ is a limit ordinal, to prove finiteness of (44) and (45), it remains to prove
that the set

{(Q,Ex(Q)) ∈ L̂ | ν(Q) = γ} (59)

is finite. This is proved in exactly the same way as lemma (1.4.10). This completes the proof
of the finiteness of (44) and (45).

The property that the monomials appearing in Ex(Q) are arranged in increasing order
with respect to the ν-adic value holds for all the newly constructed approximate roots. Next
we show that νm(InQ) = νm(Q) for all those new approximate roots. Indeed, if λ is not a
limit ordinal and Ex(Q) is given by formula (52), all the monomials appearing in Ex(Q) have
the same ν-adic value and their νm-adic values are increasing because of the order we imposed
on monomials which proves that νm(InQ) = νm(Q). If (Q′,Ex(Q′)) is an approximate root
whose expression is given by formula (53), with Pj playing the role of Q′, let Qα0 = In Q.
We have Q′ = Q+

∑

cαQ
α, where ν(Qα) = ν(Q). Then νm(Q) ≤ νm(Qα) for all α, because

of the order on monomials. So that finally, νm(Q
α0) ≤ νm(Q) ≤ νm(Qα), which proves that

νm(InQ
′) = νm(Q

′). The property that νm(InQ) = νm(Q) is clearly preserved by passing to
the limit, so it also holds in the case when λ is a limit ordinal.

Remark 1.4.12 We just showed that there is a one to one correspondence between the
approximate roots Q ∈ Ψ(γℓ) and the set of monomials which are the first term of the
expression Ex(Q) of such an approximate root Q. Let us denote by M(ℓ) the set of those
monomials.

The rest of Theorem 1.4.3 holds by construction.
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1.5 Standard form in the case of complete regular local rings

Let Ψ(γΦ) =
⋃

ℓ<Φ

⋂

ℓ≤ℓ′<ΦΨ(γℓ) and let V(γΦ) be the set of approximate roots, essential
at the level γΦ.

In this section, we fix an ordinal λ ≤ Φ.

Definition 1.5.1 A monomial in Ψ(γλ)∪Θ(γλ) is called standard with respect to λ if all the
approximate roots appearing in it belong to V(γλ) and it is not divisible by any InQ where
Q is an approximate root in (Ψ(γλ) ∪Θ(γλ)) \ {(u1, u1), . . . , (un, un)}.

Take an ordinal ℓ ≤ λ.
Definition 1.5.2 Let f ∈ A. An expansion of f of the form f =

∑

cαQ
α where the Qα

are monomials in Ψ(γλ) ∪Θ(γλ), written in increasing order, is a standard form of level γℓ
if ∀γ′ < γℓ and for all α such that ν(Qα) = γ′, Qα is a standard monomial.

We now construct by induction on ℓ a standard form of f of level γℓ. We will write this
standard form as

f = fℓ +
∑

cαQ
α

where, for all α, Qα is a generalized monomial in Ψ(γλ) ∪ Θ(γλ), ν(Q
α) ≥ γℓ and fℓ is a

sum of standard monomials in V(γλ) of value strictly less than γℓ.

To start the induction, let f0 = 0. The standard form of f of level 0 will be its expansion,
f = f0+

∑

cαu
α, written in increasing order according to the monomial order defined above,

as a formal power series in the ui.

Let ℓ < λ be an ordinal. Let us define fℓ+1 and the standard form of f of level γℓ+1

as follows. Assume, inductively, that a standard form of level γℓ is already defined: f =
fℓ+

∑

cαQ
α with ν(Qα) ≥ γℓ, for all α, and the value of any monomial of fℓ is strictly less

than γℓ.
Take the homogeneous part of

∑

cαQ
α of value γℓ, the monomials being written in

increasing order. Assume that not all the Qα are standard with respect to λ, and take the
smallest such Qα. Since Qα is not standard, one of the two following conditions holds:

1. There exists an approximate root Q ∈ (Ψ(γλ) ∪Θ(γλ)) \ {(u1, u1), . . . , (un, un)} such
that In(Q) divides Qα. Write Q = In(Q)+

∑

cβQ
β and replace In(Q) by Q−∑ cβQ

β

in Qα.

2. An approximate root Q ∈ Ψ(γλ) \ V(γλ) divides Qα. Since Q∈/V(γλ), there exists

Q′ ∈ Ψ(γλ) ∪Θ(γλ)

of the form Q′ = Q+
∑

β dβQ
β, where the Qβ are monomials in V(γλ) of value greater

than or equal to γℓ. Replace Q by Q′ −∑β dβQ
β.

In both cases, those changes introduce new monomials, with increasing νm value, but either
they are of value strictly greater than γℓ or they are of value exactly γℓ but greater than Qα

in the monomial ordering. We repeat this procedure as many times as we can. After a finite
number of steps, no more changes are available at level γℓ+1. Then, let fℓ+1 = fℓ +

∑

dρQ
ρ

with ν(Qρ) = γℓ, so that f = fℓ+1 +
∑

cαQ
α where ν(Qα) > γℓ.

Suppose now that µ is a limit ordinal. For each ℓ < µ, write f = fℓ + δℓ where fℓ is a sum
of standard monomials, with respect to λ, of value strictly less than γℓ and δℓ is a sum of
monomials in Ψ(γλ)∪Θ(γλ), of value greater than or equal to γℓ. We assume inductively that,
for each ℓ < µ and for each generalized monomial Qτ in Ψ(γλ)∪Θ(γλ), there exist cτ , bτ ∈ k
and an ordinal ℓ0 < ℓ such that, for all ℓ′, ℓ0 < ℓ′ < ℓ, the monomial Qτ appears in fℓ′ with
coefficient cτ and in δℓ′ with coefficient bτ . Moreover, assume that fℓ = lim

→

ℓ′<ℓ

fℓ′ =
∑

τ cτQ
τ

and δℓ = lim
→

ℓ′<ℓ

δℓ′ =
∑

τ bτQ
τ .
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Lemma 1.5.3 Consider a generalized monomial Qτ in Ψ(γλ)∪Θ(γλ). There exist cτ , bτ ∈ k
and an ordinal ℓ0 < µ such that, for all ℓ, ℓ0 < ℓ < µ, the monomial Qτ appears in fℓ with
coefficient cτ and in δℓ with coefficient bτ .

Corollary 1.5.4 The limits lim
→

ℓ<µ

fℓ and lim
→

ℓ<µ

δℓ exist in the m-adic topology.

Proof of Corollary 1.5.4 : This is an immediate consequence of the Lemma and Corollary
1.4.9. �

Proof of Lemma 1.5.3: The existence of cτ in the lemma follows immediately from the
construction and the induction hypothesis.

If ν(Qτ ) < γµ, put bτ = 0. For ℓ < µ, let bτ (ℓ) denote the coefficient of Qτ in δℓ. Take
an ordinal ℓ < µ. Suppose

bτ (ℓ) 6= bτ (ℓ+ 1). (60)

This means that in the above construction of fℓ+1 + δℓ+1 from fℓ+ δℓ, Q
τ appears in one of

the expressions
Qα

InQ
Q,

Qα

InQ

∑

β

dβQ
β (case 1 of the construction) or

Qα

Q
Q′,

Qα

Q

∑

β

dβQ
β

(case 2 of the construction). Then

νm(Q
α) ≤ νm(Qτ ). (61)

Suppose that there were infinitely many ℓ for which (60) holds. This would mean that there
are infinetely many monomials Qα (all distinct because ν(Qα) = γℓ), satisfying (61). This
contradicts Lemma 1.4.7; hence there are finitely many such ℓ. Together with the induction
hypothesis, this proves that bτ (ℓ) stabilizes for ℓ sufficiently large. This completes the proof
of the lemma. �

For each Qτ as above, let cτ , bτ be as in Lemma 1.5.3. Let fµ = lim
→

ℓ<µ

fℓ =
∑

τ cτQ
τ and

δµ = lim
→

ℓ<µ

δℓ =
∑

τ bτQ
τ . We define the standard form of f of level γµ as f = fµ + δµ.

This completes the construction of standard form of level γℓ for ℓ ≤ γλ.

Proposition 1.5.5 Let

f = fℓ +
∑

cαQ
α

be a standard form of f of level γℓ and γ < γℓ an element of Φ. Then
∑

ν(Qβ)=γ

cβQ
β∈/Pγ+.

The proof is entirely the same as the proof of the analogous Proposition 1.3.3.

For each ℓ, the part fℓ of a standard form of f of level γℓ is uniquely determined. This
is a straightforward consequence of the proposition.

By Proposition 1.5.5, if γℓ > ν(f) then ν(f) equals the smallest value of a monomial
appearing the standard form of f of level γℓ.

Theorem 1.5.6 (1) Take γ ∈ Φ, γ < γλ. Then
Pγ
Pγ+

is generated as a k-vector space by

{inνQβ} where Qβ runs over the set of all standard monomials with respect to λ, satisfying
ν(Qβ) = γ.

(2) The part of the graded k-algebra grν(A) of degree strictly less than γλ is generated by
the initial forms of the approximate roots of V(γλ).

The same proof as that of Theorem 1.3.4 works here.

Now, for each ordinal ℓ, let X = XV(γℓ) be a set of independent variables, indexed by

V(γℓ) and consider the graded k-algebra k
[

XV(γℓ)

]

, where we define deg Xj = ν(Qj). Let
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P denote the homogeneous monomial ideal of k
[

XV(γℓ)

]

generated by all the monomials in
XV(γℓ) of degree greater than or equal to γℓ+1. We have the natural map

φℓ :
k[XV(γℓ)]

P
→ gr

ν
A

Pγℓ+1

Xj 7→ inνQj
.

Now, for ℓ = 0, let I0 = (0). For ℓ > 0, let Iℓ denote the ideal of
k[XV(γℓ)]

P
generated by

I<ℓ and all the homogeneous polynomials of the form

Xα0 + λ1X
α1 + λ2X

α2 + · · ·+ λb0X
αb0 (62)

where Qα0 + λ1Q
α1 + λ2Q

α2 + · · · + λb0Q
αb0 is the homogeneous part of least degree of

Ex(Q), Q ∈ V(γℓ) ∪Θ(γℓ).

Once again the proofs of Corollary 1.3.5 and Corollary 1.3.6 give the analogous corollaries :

Corollary 1.5.7 We have Ker φℓ = Iℓ.

Corollary 1.5.8 Take an element γ ∈ Φ, γ < γλ. The valuation ideal Pγ is generated
by all the generalized monomials of value ≥ γ in {Q | (Q,Ex(Q)) ∈ Ψ(γλ)}. The ideal
Pγλ is generated by all the generalized monomials of value ≥ γλ in {Q | (Q,Ex(Q)) ∈
Ψ(γλ) ∪Θ(γλ)}.

Part 2. Separating ideal and connectedness

2.1 A description of the separating ideal.

Let A be a noetherian ring and α and β points in Sper A. The purpose of this section is
twofolds. First we prove a general result on the behaviour of < α, β > under localization.
Secondly, we restrict attention to the case when A is regular and is either complete or
< α, β > is primary to a maximal ideal of A. In this case, we describe generators of the
separating ideal < α, β > as generalized monomials in those approximate roots Qj which are
common to να and νβ.

We will need the following basic properties of the separating ideal, proved in [26]:

Proposition 2.1.1 Let the notation be as above. We have:
(1) < α, β > is both a να-ideal and a νβ-ideal.
(2) α and β induce the same ordering on B

<α,β>
(in particular, the set of να-ideals con-

taining < α, β > coincides with the set of νβ-ideals containing < α, β >).
(3) < α, β > is the smallest ideal (in the sense of inclusion), satisfying (1) and (2).
(4) If α and β have no common specialization then < α, β >= B.

Notation. If p ∈ Sper A, pα ⊂ p, the notation αAp will stand for the point of Sper Ap with

support pαAp and the total order on
Ap

pαAp

given by ≤α.

Proposition 2.1.2 Let A be a ring. Consider points α, β ∈ SperA whose respective supports
are pα, pβ and let ǫ be a common specialization of α and β with support p.

(1) We have < α, β > Ap =< αAp, βAp >.
(2) Let p be a prime ideal of A, containing < α, β >. Then

< α, β >⊂< α, β > Ap ∩ A. (63)

with equality if < α, β > is p-primary.
(3) If p = pǫ with ǫ the unique common specialization of α and β (in particular, whenever

p =
√

< α, β >

and p is maximal), we have equality in (63).
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Remark 2.1.3 In (2) of the Proposition, the special case of interest for applications is
p = pǫ, with ǫ ∈ Sper A a common specialization of α and β.

Proof: Let f be a generator of < α, β > such that f changes sign between α and β. Say,
f(α) ≥ 0 and f(β) ≤ 0. As the orders on A/pα and Ap/pαAp are the same (the quotient
field is the same) — and similarly for pβ — f changes sign between αAp and βAp. Thus
f ∈< αAp, βAp >.

Conversely, a generator of < αAp, βAp > is of the form g/s, s∈/p, such that
g

s
(αAp) ≥ 0

and
g

s
(βAp) ≤ 0, for instance. But, as p is a specialisation of α and β and s∈/p, s has the

same sign on α and β (and is non-zero at both points), so g keeps different signs on α and β

which means that g ∈< α, β >, and, consequently,
g

s
∈< α, β > Ap. This proves (1) of the

Proposition.
(2) of the Proposition is a standard general statement about localization of ideals at a

prime ideal.
(3) of the Proposition follows immediately from the fact that p is the center of the

valuation να and < α, β > is a να-ideal. �

Let (A,m, k) be a regular local ring and α and β two points of Sper(A) having a common
specialization ǫ whose center is the maximal ideal m of A. Then να and νβ are both centered
at m.

Let Φα = να(A \ {0}) and Φβ = νβ(A \ {0}). Let γαi
be the i-th element of Φα and

similarly for β. Let Pγαs
denote the να-ideal of value γαs

and similarly for Pγβs
. Let r be

the ordinal such that γαr = να(< α, β >). Then γβr = νβ(< α, β >) by Proposition 2.1.1.
We have Pγαs

= Pγβs
for s = 1, . . . , r by Proposition 2.1.1.

Let us consider the approximate roots of the valuation να and the corresponding sequences
of vectors mi = (mi1,mi2, . . . ,mitiα), mij ∈ Pγαi

/Pγα,i+1 which are the initial forms of
the monomials Qαij of value γαi (see section 1.2 and 1.4). We do the same with νβ and
write n1,n2, . . . the corresponding sequences of initial forms. Let Qj(α) denote the j-th
approximate root for να (in the case when A is complete j is an ordinal rather than a natural
number); we will denote the monomials in these approximate roots by Q(α)γ ; similarly for
Qj(β) and Q(β)γ .

Now, let sαh denote the number of monomials in the Qj(α)’s of value exactly γαh; simi-
larly for sβh.

For a given ℓ, consider the following three conditions (1)ℓ, (2)ℓ, (3)ℓ:
(1)ℓ sαi = sβi, 1 ≤ i ≤ ℓ
(2)ℓ Q(α)αij = Q(β)αij for 1 ≤ i ≤ ℓ and 1 ≤ j ≤ sαi (the set of all generalized

monomials of value γαi coincides with the set of generalized monomials of value γβi)

(3)ℓ For any i ≤ ℓ and λ̄1, . . . , λ̄sαi
∈ k, the sign on α of the linear combination

sαi
∑

j=1

λ̄jmij

is the same as the sign on β of
sαi
∑

j=1

λ̄jnij (here we adopt the convention that the sign can

be strictly positive, strictly negative or zero) where mij , nij are the initial forms of the
monomials Q(α)αij ,Q(β)αij in the graded rings grνα(A), grνβ (A). Note that if conditions

(1)ℓ–(3)ℓ hold then the set of k-linear relations among the mij , i ≤ ℓ, is the same as the set
of k-linear relations among the nij .

Proposition 2.1.4 The ordinal r is the smallest ordinal such that at least one of the con-
ditions (1)r–(3)r does not hold.

Proof: Let Mα be the set of all the generalized monomials in Q, of value γαr with respect
to να. Let Mβ be the same kind of set with respect to νβ . By definitions, we have Mα 6= ∅
and Mβ 6= ∅. We have the following 2 possibilities:
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First, suppose Mα 6= Mβ. Say, Mα 6⊂ Mβ. Take generalized monomials Qγ ∈ Mα \Mβ ,
and Qδ ∈Mβ. Then να(Q

γ) ≤ να(Qδ), but νβ(Q
γ) > νβ(Q

δ).
Then there exists a linear combination, with coefficients in (A \ m), of Qγ and Qδ, of

value γαr with respect to να, which changes sign between α and β. This shows that

να(< α, β >) ≤ γαr

in this case.
The second case is Mα = Mβ and there exist λ̄1, . . . , λ̄sαr

such that the sign on α of
sαr
∑

j=1

λ̄jmrj differs from the sign on β of
sαr
∑

j=1

λ̄jnrj (by assumption, we are in the case sαr =

sβr). By a small perturbation of the λ̄j (for instance, by adding or subtracting a “small”

element of k to λ̄1), we can ensure both that
sαr
∑

j=1

λ̄jmrj 6= 0 in grναA and
sαr
∑

j=1

λ̄jnrj 6= 0 in

grνβA. But this gives an f =
sαr
∑

j=1

λjQ
αrj ∈ A which changes signs between α and β. We

have να(f) = γαr (and νβ(f) = γβr), so να(< α, β >) ≤ γαr also in this case.
Now take an f ∈ A with να(f) < γαr. Then f ∈ Pγαs

,

γαs < γαr, (64)

so inνα(f) ∈ Pγαs
/Pγαs+ . By theorem 1.5.6, inνα(f) is a k-linear combination of ms1, . . . ,

mstsα . By (64) and the definition of r, this linear combination has the same sign for α and for
β (in other words, Pγαs

/Pγαs+ = Pγβs
/Pγβs+

with same order induced by α and by β. This
means that inνα(f) has the same sign on α and β, so να(< α, β >) ≥ γαr. This completes
the proof. �

Corollary 2.1.5 Let α, β ∈ Sper(A), both centered in the maximal ideal. Let r be as above.
Denote by γ = γαr the να-value of < α, β >. Let Q1, . . . , Qq(r) be the common approximate
roots of the valuations να and νβ. Then < α, β > is generated by the generalized monomials
in Q1, . . . , Qq(i) of να-value ≥ γ (and the same with νβ instead of να).

Proof: As < α, β > is a να-ideal (and a νβ-ideal), this is a consequence of Corollary 1.5.8.

Definition 2.1.6 The approximate roots Q1, . . . , Qq(r) (which are common to να and νβ)
will be called relevant for the pair (α, β).

Definition 2.1.7 For a graded algebra G, we define

G∗ =

{

f

g

∣

∣

∣

∣

f, g ∈ G, g 6= 0 and homogeneous

}

/ ∼.

where
f

g
∼ f ′

g′
whenever fg′ = f ′g.

The Alvis–Johnston–Madden example. Let us consider α and β in Sper(R[x, y, z])
given by curvettes

x(t) = t6, (65)

y(t) = t10 + ut11, (66)

z(t) = t14 + t15 (67)

where u takes 2 distinct values uα > 2 and uβ > 2. Applying the above procedure, we show
that να(< α, β >) = 31.
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Indeed, we have Q1 = x,Q2 = y,Q3 = z for α and β. The first level approximate roots are

Q4 = y2 − xz = (2u− 1)t21 + u2t22, (68)

Q5 = yz − x4 = (u+ 1)t25 + ut26, (69)

Q6 = z2 − x3y = (2 − u)t29 + t30 (70)

for both α and β. Let T denote the preimage of invt under the natural map

(grναR[x, y, z])
∗ →֒ (grvR[[t]])

∗,

so that
(grναR[x, y, z])

∗ ∼= (R[T ])∗.

Then inνα(yQ4) = (2uα − 1)T 31 and inνα(xQ5) = (uα + 1)T 31, and similarly for β. Since
uα 6= uβ, the matrix

(

(2uα − 1) (uα + 1)
(2uβ − 1) (uβ − 1)

)

is non-singular, so there exists an R-linear combination of inνα(yQ4) and inνα(xQ5) which
is strictly positive on α and strictly negative on β. According to Proposition 2.1.4,

να(< α, β >) ≤ 31.

One can check that 31 is the lowest value for which either there is a linear combination of
generalized monomials with this property or the set of monomials of that value for α does
not equal the corresponding set for β, so that in fact να(< α, β >) = 31.

The next approximate root

Q7 = yQ4 +
2u− 1

u+ 1
Q5 (71)

is irrelevant because the common value of the generalized monomials appearing on the right
hand side of (71) is 31.

2.2 Some sets which are conjecturally connected

Let (A,m, k) be a regular local ring. Take α, β ∈ SperA, both centered at m, and elements
f1, . . . , fr ∈ A\ < α, β >. The Connectedness Conjecture 0.1.11 asserts that there exists a
connected set C, containing α, β, such that C is disjoint from the zero set of f1 · · · fr.

Assume that either A is complete or
√
< α, β > = m.

In this section, we describe a set C, which contains α, β, disjoint from the set f1 · · · fr = 0,
and which we conjecture to be connected. Under the above assumptions, this reduces the
Connectedness Conjecture for α and β to proving the connectedness of C.

Let QΛ = {Qλ, λ ∈ Λ} be the approximate roots common to α and β. Let Qγ1 ,Qγ2 , . . .
be the list of monomials in QΛ, arranged in the increasing order of the να values. There exists
an ordinal s such that < α, β > is generated by the set {Qγj ; j ≤ s, Qγj ∈< α, β >}. Let
σ be the unique ordinal such that Qγa∈/ < α, β > for a < σ and Qγσ ,Qγσ+1 , . . . ∈< α, β >.

Next, we study the standard form of fi of level να(< α, β >). In the case when A is
complete, this standard form may contain infinitely many generalized monomials Qγ . Since
A is noetherian, we can choose a finite subset Qǫji , 1 ≤ j ≤ ni, of these monomials such
that all of the others lie in the ideal (Qǫji , 1 ≤ j ≤ ni)A. Let fi, for i ∈ {1, . . . , r},

fi =

mi
∑

j=1

bjiQ
θji +

ni
∑

j=1

cjiQ
ǫji (72)

be the standard expansion of fi of level να(< α, β >) where να(Q
θji) = να(fi) < να(Q

ǫj′i)
for all j ∈ {1, . . . ,mi} and j′ ∈ {1, . . . , ni}.
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Remark 2.2.1 1. If k = kα (in particular, if k is real closed), then mi = 1.
2. By Proposition 1.5.5,

∑mi

j=1 bjiinναQ
θji 6= 0.

Conjecture 2.2.2 1. Let

C =







δ ∈ SperA

∣

∣

∣

∣

∣

∣

νδ(Q
θji) < νδ(Q

ǫj′i) for all j ∈ {1, . . . ,mi}, j′ ∈ {1, . . . , ni}
sgnδ(Qq) = sgnα(Qq) for all Qq appearing in Qθji

sgnδ(
∑mi

j=1 bjiQ
θji) = sgnα(

∑mi

j=1 bjiQ
θji)







.

(73)
Then C is connected.

2. Let C′ defined by the inequalities
∣

∣

∣

∣

∣

∣

mi
∑

j=1

bjiQ
θji

∣

∣

∣

∣

∣

∣

>δ ni|Qǫj′i | ∀i ∈ {1, . . . , r}, ∀j′ ∈ {1, . . . , ni} (74)

and the two sign conditions appearing in (73). Then C′ is connected.

Remark 2.2.3 1. We have α, β ∈ C.
2. C ∩ {f1 · · · fr = 0} = ∅. Indeed, inequalities (73) imply that, for every δ ∈ C, fi has

the same sign as
∑mi

j=1 bjiQ
θji ; in particular, none of the fi vanish on C.

3. Either of of those conjectures implies the Connectedness Conjecture.

Part 3. A proof of the conjecture for arbitrary regular

2-dimensional rings.

We start with a general plan of the proof and an outline of different sections of Part 3.
In §3.1 we recall Zariski’s theory of complete ideals. We explain how the construction of
approximate roots in arbitrary dimension restricts to the special case of dimension 2 (and
that the standard construction in dimension 2 is, indeed, recovered from the general one
as a special case) and prove some general lemmas about approximate roots in regular two
dimensional local rings and their behaviour under sequences of point blowings up. In §3.2
we define the notion of real geometric surfaces which are glued from affine charts of the form
Sper Aj , where Aj is a regular two-dimensional ring, in order to be able to talk about point
blowings up of Sper A. We also define the notion of a segment on the exceptional divisor
of a blowing up and prove that such a segment is connected; another notion useful later in
the proof is that of a maximal segment. One slightly delicate point here is that since the
residue field k of A is not assumed real closed we need to fix an order on k and always restrict
attention to points of the real spectra of various Aj which induce the given order on k. The
bulk of the proof per se is contained in §§3.3–3.5. As explained above, our problem is one of
proving connectedness (resp. definable connectedness) of the set C.

In §3.3 we use Zariski’s theory and other results from §3.1 to construct a sequence of point
blowings up which transform C into a quadrant, that is, a set Ũ of all points δ of a suitable
affine chart Sper Aj centered at the origin satisfying either x′(δ) > 0, y′(δ) > 0, or just

x′(δ) > 0. In §3.4 we use results from [3] to prove connectedness of Ũ by reducing it to that
of a quadrant in the usual Euclidean space, assuming that A is excellent. In §3.5 we prove
the definable connectedness of Ũ (without any excellence assumptions) after introducing a
new object called the graph associated to Ũ and a finite sequence of point blowings up of
Sper A.

3.1 Approximate roots in dimension 2 and Zariski’s theory.

In the special case of regular 2-dimensional local rings, the theory of approximate roots is
well known: see, for instance [45], Appendix 5 or [36]. We briefly recall the construction here
since it is much simpler than in the general case.
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We start with two purely combinatorial lemmas about semigroups. Take an integer g ≥ 2.

Lemma 3.1.1 Let β1, β2 . . . , βg be positive elements in some ordered group. Let αj , j ∈
{2, . . . , g} be positive integers. Assume

βi ≥ αi−1βi−1, i ∈ {3, . . . g}. (75)

Let γ1, . . . , γg be integers such that 0 ≤ γj < αj for 2 ≤ j ≤ g and
∑g

j=1 γjβj ≥ αgβg. Then
γ1 > 0.

Proof : We prove by descending induction that
∑i
j=1 γjβj ≥ αiβi for i ≥ 2. The case i = g

is given by hypothesis. Assume then that
∑i+1
j=1 γjβj ≥ αi+1βi+1. Subtracting γi+1βi+1 and

using the fact that γi+1 < αi+1, we obtain
∑i
j=1 γjβj ≥ (αi+1 − γi+1)βi+1 ≥ αiβi. This

completes the induction. So for i = 2, we obtain γ1β1 + γ2β2 ≥ α2β2; subtracting γ2β2 and
using the fact that γ2 < α2, we get γ1β1 ≥ (α2 − γ2)β2 > 0, hence γ1 > 0. �

Notation. Let β1, β2 . . . , βg be positive elements in some ordered group. We will denote
by (β1, . . . , βi−1) the group generated by β1, . . . , βi−1 and by sg(β1, . . . , βi−1) the semigroup
generated by β1, . . . , βi−1, that is, the semigroup formed by all the N-linear combinations
of β1, . . . , βi−1. For i ∈ {2, . . . , g}, α′

i will denote the smallest positive integer such that
α′
iβi ∈ (β1, . . . , βi−1). If there is no such integer, we put α′

i =∞. Write

α′
iβi =

i−1
∑

j=1

αjiβj where αji ∈ Z. (76)

Lemma 3.1.2 Let β1, β2 . . . , βg be positive rational numbers. Assume that for i ∈ {3, . . . , g}
we have

{a ∈ (β1, . . . , βi−1) | a ≥ α′
i−1βi−1} = {a ∈ sg(β1, . . . , βi−1) | a ≥ α′

i−1βi−1}; (77)

in particular, αji ≥ 0 for all j ∈ {1, . . . , i− 1} in (76). Then

{a ∈ (β1, . . . , βg) | a ≥ α′
gβg} = {a ∈ sg(β1, . . . , βg) | a ≥ α′

gβg}. (78)

Proof. We use induction on g. Multiplying all the βi by the same rational number does not
change the problem, so we may assume that β1, β2, . . . , βg are positive integers, such that
gcd(β1, β2, . . . , βg) = 1.

For g = 2, we have α′
2 = β1. If a ∈ (β1) and a ≥ β1β2, then a > 0, hence a ∈ sg(β1); thus

{a ∈ (β1) | a ≥ β1β2} ⊂ {a ∈ sg(β1) | a ≥ β1β2},
the converse inclusion being obvious.

Suppose that g ≥ 3 and assume the Lemma for g − 1. Write

α′
gβg =

g−1
∑

j=1

αjgβj . (79)

To prove (78), let β = γ1β1 + γ2β2 + · · · + γgβg be an element of {a ∈ (β1, . . . βg) | a ≥
α′
gβg}. Using the relation (79) we can write, for each n ∈ Z,

β =

g−1
∑

j=1

(γj − nαjg)βj + (γg + nα′
g)βg =

g−1
∑

j=1

γ′jβj + (γg + nα′
g)βg.

After replacing γg by γg + nα′
g for a suitable n, we may assume that 0 ≤ γg < α′

g. Since
β ≥ α′

gβg, this implies that
g−1
∑

j=1

γjβj ≥ βg > α′
g−1βg−1. (80)

By the induction assumption, we may take γj ≥ 0 in (80). This completes the proof of the
Lemma. �
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Corollary 3.1.3 Let β1, . . . , βg be positive rational numbers satisfying

βi ≥ α′
i−1βi−1, i ∈ {3, . . . g}. (81)

Then equalities (77) and (78) hold.

Proof : For i = 3, (77) is immediate. Now the corollary follows from Lemma 3.1.2 by
induction on i. �

Let ν be a valuation centered at A and let (x, y) be a ν-prepared system of coordinates,
such that ν(x) = ν(m). In what follows, we will omit the description of V(γ),Λ(γ),Θ(γ),
since in the simplified situation of n = 2, the sets Ψ(γ) suffice to carry out the entire
construction.

Put Q1 = x, Ex(Q1) = x, Q2 = y, Ex(Q2) = y and βi = ν(Qi), i ∈ {1, 2}. If
β1, β2 are rationally independent, then α′

2 = ∞ and the construction stops, there are no
more approximate roots. In this case, all the ν-ideals are generated by monomials in (x, y).
Assume then α′

2 <∞. This means that there is a relation α′
2β2 = α12β1 for a positive integer

α12.
Let α′

2 and α12 be as above. Let Ψ(β1) = ∅. For γ ∈ Φ, β1 < γ < β2, Ψ(γ) = {x} and

Ψ(β2+) = {x, y}. Let k1 = k, k2 = k





inν

(

Q
α′

2
2

)

inν (Q
α12
1 )



.

We prove that (77) is satisfied for i = 3. Let β = γ1β1 + γ2β2 be an element of

{a ∈ (β1, β2) | a ≥ α′
2β2}.

As α′
2β2 = α12β1, we have, for each n ∈ Z, β = (γ1−nα12)β1+(γ2+nα

′
2)β2. After replacing

γ2 by γ2 + nα′
2 for a suitable n, we may assume that 0 ≤ γ2 < α′

2. Since β ≥ α′
2β2, this

implies that γ1 ≥ 0.

Then we have ν
(

Q
α′

2
2

)

= ν (Qα12
1 ), hence the image of

inν(Q
α′

2
2 )

inν(Q
α12
1 )

in kν is not zero. If

inν(Q
α′

2
2 )

inν(Q
α12
1 )

is algebraic over k, this means that it satisfies an algebraic equation of the form

Xd + a1X
d−1 + · · ·+ ad = 0, ai ∈ k. (82)

Let ai be a representative of ai in A. Let α2 = dα′
2 and

Q
(1)
3 = Qα2

2 +

d
∑

ℓ=1

aℓQ
α′

2(d−ℓ)
2 Qα12ℓ

1 . (83)

The expression Ex
(

Q
(1)
3

)

is just the right hand side of this formula.

Let β
(1)
3 = ν

(

Q
(1)
3

)

, then β
(1)
3 > ν(Qα2

2 ) = α2β2 ≥ α′
2β2 and the elements

(

β1, β2, β
(1)
3

)

satisfy the conclusion of Lemma 3.1.2.
By construction, α2β2 is the smallest element of Φ such that the monomials

{Qγ11 Qγ22 | ν(Qγ11 Qγ22 ) = γ1β1 + γ2β2 = α2β2 }

are k-linearly dependent. The unique k-linear dependence relation is given by Q
(1)
3 . Hence,

according to the general construction of §2, we have Θ(β) = {Q(1)
3 } for α2β2 ≥ β ≥ β(1)

3 and

Ψ(β
(1)
3 +) = {Q1, Q2, Q

(1)
3 }.

Assume that i ≥ 3 and that elements Q1, . . . , Qi−1, Q
(j)
i are already defined. Let

βq = ν(Qq), (84)

β
(j)
i = ν

(

Q
(j)
i

)

. (85)
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Assume that the initial form inνQq is algebraic over k[inνQ1, . . . , inνQq−1] for q ∈ {2, . . . , i−
1}. Let αq denote the degree of its minimal polynomial. Note that, in particular, all of
β2, . . . , βi−1 are rational multiples of β1. Assume that βq > αq−1βq−1, q ∈ {3, . . . , i− 1} and
β
(j)
i > αi−1βi−1. Assume that, in the notation of §1.2, we have

Ψ
(

β
(j)
i +

)

=
{

Q1, . . . , Qi−1, Q
(j)
i

}

.

A monomial

i−1
∏

ℓ=1

Qǫℓℓ is standard if

0 ≤ ǫℓ < αℓ for ℓ ∈ {2, . . . , i− 1}. (86)

This allows us to extend the notion of standard to monomials with ǫ1 < 0: such a monomial
is called standard if (86) is satisfied. Similarly, we may talk about standard monomials in
inνQ1, . . . , inνQi−1.

Assume, in addition, that we have defined elements z2, . . . , zi−1 ∈ kν , algebraic over k,
where zℓ is a k-linear combination of standard monomials in inνQ1, . . . , inνQℓ of degree 0. Let
kℓ = k(z2, . . . , zℓ). We obtain a tower of finite field extensions k = k1 ⊂ k2 · · · ⊂ ki−1 ⊂ kν .

If inνQ
(j)
i is transcendental over k[inνQ1, . . . , inνQi−1], put Qi = Q

(j)
i and the construc-

tion stops.

Assume inνQ
(j)
i is algebraic over k[inνQ1, . . . , inνQi−1]. Then β

(j)
i ∈

i−1
∑

q=1
Qβq. Let α

,(j)
i be

the smallest positive integer such that α
,(j)
i β

(j)
i ∈ (β1, . . . , βi−1).

Then ν

(

(

Q
(j)
i

)α
,(j)
i

)

= ν

(

i−1
∏

r=1
Q
α

(j)
ri
r

)

, hence the image of
inν

(

Q
(j)
i

)α
,(j)
i

inν
∏i−1
r=1Q

α
(j)
ri
r

in kν is not zero.

By Lemma 3.1.2, we may take αri ≥ 0 for 1 ≤ r ≤ i− 1.

The assumption on inνQ
(j)
i implies that

inν

(

Q
(j)
i

)α
,(j)
i

inν
∏i−1
r=1Q

α
(j)
ri
r

satisfies an algebraic equation of the

form
Xd + a1X

d−1 + · · ·+ ad = 0, aℓ ∈ ki−1. (87)

For ℓ ∈ {1, . . . , d}, write

aℓ

(

i−1
∏

r=1

inνQ
α

(j)
ri
r

)ℓ

=
∑

γ=(γ1,...,γi−1)

bℓγ

i−1
∏

r=1

inνQ
γr
r

as a k-linear combination of standard monomials. By Corollary 3.1.3, we have γ1 ≥ 0
whenever bℓγ 6= 0.

Let bℓγ be a representative of bℓγ in A. Let α
(j)
i = dα

,(j)
i and

Q =
(

Q
(j)
i

)α
(j)
i

+

d
∑

ℓ=1





∑

γ=(γ1,...,γi−1)

bℓγ

i−1
∏

r=1

Qγrr



Q
α

,(j)(d−ℓ)
i

i . (88)

Then

ν(Q) > ν

(

(

Q
(j)
i

)α
(j)
i

)

= α
(j)
i β

(j)
i ≥ α,(j)i β

(j)
i > αi−1βi−1 ≥ α,i−1βi−1. (89)

If inνQ
(j)
i ∈/k[inνQ1, . . . , inνQi−1] (which is equivalent to saying that α

(j)
i > 1), put Qi = Q

(j)
i ,

Ex(Qi) = Ex(Q
(j)
i ), βi = β

(j)
i , αi = α

(j)
i , α,i = α

,(j)
i , Q

(1)
i+1 = Q, β

(1)
i+1 = ν

(

Q
(1)
i+1

)

.
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Formulae (88) and (89) become

Q
(1)
i+1 = Qαi

i +
d
∑

ℓ=1





∑

γ=(γ1,...,γi−1)

bℓγ

i−1
∏

r=1

Qγrr



Q
α

,
i(d−ℓ)
i . (90)

and
β
(1)
i+1 = ν

(

Q
(1)
i+1

)

> ν(Qαi

i ) = αiβi ≥ α,iβi. (91)

The expression Ex
(

Q
(1)
i+1

)

is just the right hand side of (90).

For β
(j)
i < γ ≤ β

(1)
i+1, we have Ψ(γ) = Ψ

(

β
(j)
i +

)

and Ψ
(

β
(1)
i+1+

)

=
{

Q1, . . . , Qi, Q
(1)
i+1

}

.

Moreover, the elements
(

β1, . . . , β
(1)
i+1

)

satisfy the conclusion of Lemma 3.1.2.

If inνQ
(j)
i ∈ k[inνQ1, . . . , inνQi−1] (which is equivalent to saying that α

(j)
i = 1), put Q

(j+1)
i =

Q and β
(j+1)
i = ν

(

Q
(j+1)
i

)

.

Formulae (88) and (89) become

Q
(j+1)
i = Q

(j)
i +

∑

γ=(γ1,...,γi−1)

b1γ

i−1
∏

r=1

Qγrr (92)

and
β
(j+1)
i = ν

(

Q
(j+1)
i

)

> β
(j)
i > α,i−1βi−1. (93)

The expression Ex
(

Q
(j+1)
i

)

is just the right hand side of (92).

For β
(j)
i < γ ≤ β(j+1)

i we have

Ψ(γ) = Ψ
(

βji+
)

and (94)

Ψ
(

β
(j+1)
i +

)

=
{

Q1, . . . , Qi−1, Q
(j+1)
i

}

. (95)

Moreover, the elements
(

β1, . . . , βi−1, β
(j+1)
i

)

satisfy the conclusion of Lemma 3.1.2.

Remark 3.1.4 Either the process stops after a finite number of steps or we obtain an infinite
sequence

Q = Q1, Q2, . . . , Qi, . . . (96)

or a sequence

Q = Q1, Q2, . . . , Qi−1, Q
(j)
i , j ∈ N. (97)

In the case when Q is given by (96), it is a system of approximate roots, whether or not A
is complete. In the case (97) assume, in addition, that the ring A is m-adically complete. In
that case,

Q∞ = lim
j→∞

Q
(j)
i

is a well defined element of A and Q ∪ {Q∞} is a system of approximate roots.

We recall some basic facts from Zariski’s theory of complete ideals in regular two-dimen-
sional local rings.

Let (A,m) be a regular 2-dimensional local ring, x, y a regular system of parameters and
let ν be a valuation centered at A.
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Definition 3.1.5 An ideal I in a normal ring B is said to be integrally closed or complete
if it contains all the elements x of B satisfying a monic equation of the form

xn + an−1x
n−1 + · · ·+ a0 = 0

where an−i ∈ In−i.
An ideal I in A is said to be simple if it cannot be factored in a non trivial way as a

product of two other ideals.
A local blowing up of A with respect to ν along m is the map A → A[ y

x
]m1 , where m1 is

the center of ν in A[ y
x
].

Remark 3.1.6 Any ν-ideal is a complete ideal.

Now let I be a simple m-primary ν-ideal. Then
(1) The set

m = I0 ⊃ I1 ⊃ · · · ⊃ Iℓ = I

is entirely determined by I (it does not depend on ν).
(2) Let A→ A1 be the a local blowing up of m and, for i ≥ 1, let I ′i be the transform of Ii
(that is, I ′i = x−µIiA1 with µ = ordmIi). Then

m1 = I ′1 ⊃ I ′2 ⊃ · · · ⊃ I ′ℓ−1 = I ′

is the set of simple ν-ideals of A1 containing I ′.
(3) Iterating this procedure ℓ-times, we obtain a sequence of local blowing ups

(A,m)→ (A1,m1)→ · · · → (Aℓ,mℓ) (98)

such that the transform I(ℓ) of I is mℓ. For any f ∈ A \ I, the strict transform of f in Aℓ is
a unit of Aℓ.

We recall the following general result from the theory of approximate roots in regular
2-dimensional local rings ([36]).

Let A be a 2-dimensional regular local ring, ν a valuation on A. Now let Qk, k =
1, . . . , g+1 be the approximate roots of ν such that Q1, . . . , Qg∈/I and Qg+1 ∈ I. Each Ii is
generated by the generalized monomials

∏

Q
γj
j , γj ∈ N, such that

∑

γjβj ≥ ν(Ii).

Proposition 3.1.7 There exist natural numbers ℓ1 < ℓ2 < · · · < ℓg ≤ ℓ and a regular system
of parameters xℓi , yℓi for each i ∈ {1, . . . , g} having the following properties :

(1) xℓi is a monomial of the form

i−1
∏

j=1

Q
γj
j , γj ∈ N,

(2) yℓi is the strict transform of Qi in Aℓi ,
(3) Q1, . . . , Qi−1 are monomials in xℓi , yℓi times a unit of (Aℓi)(xℓi

,yℓi )
.

For α, β ∈ SperA, let Q1, . . . , Qs be the approximate roots common to α and β.

Corollary 3.1.8 If i ≤ s, both να and νβ are centered at (xℓi , yℓi).

Convention : below, we adopt the convention that α1 = 1.

Lemma 3.1.9 For i ≥ 3, νm(Qi) =
∏i−1
j=1 αj .

Proof : Let i = 3, then we can write Q3 = yα2 +
∑

crsx
rys where crs is a unit in A, with

να(x
rys) ≥ α2να(y). As να(y) ≥ να(x), this implies νm(Q3) = α2.

Recall (cf. (88)) that

Qi+1 = Qαi

i +

d
∑

ℓ=1





∑

γ=(γ1,...,γi−1)

bℓγ

i−1
∏

r=1

Qγrr



Q
α′

i(d−ℓ)
i .
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Now to prove the lemma, it suffices to prove that

αiνm(Qi) ≤ νm
((

i−1
∏

r=1

Qγrr

)

Q
α′

i(d−ℓ)
i

)

(99)

for all ℓ and γ such that bℓγ 6= 0.
First remark that, according to the inequalities (91) and (93), we deduce by an easy induction
on i− ℓ that

βi
∏i−1
q=ℓ αq

≥ βℓ. (100)

We have αiβi =
∑i−1

j=1 γjβj + α′
i(d− ℓ)βi, so

α′
iℓβi =

i−1
∑

j=1

γjβj ≤
i−1
∑

j=1

γj
βi

∏i−1
q=j αq

by (100).
Dividing both sides by βi∏i−1

q=1 αq
, we get

α′
iℓ
i−1
∏

q=1

αq ≤
i−1
∑

j=1

γj

j−1
∏

q=1

αq. (101)

By the induction assumption, the left hand side equals νm(Q
α′

iℓ

i ) and the right hand side

equals νm(
∏i−1
j=1Q

γj
j ). Therefore inequality (99) follows from inequality (101).�

In what follows, we study standard monomials

i
∏

j=1

Q
γj
j , with i < s, that is monomials

such that 0 ≤ γj < αj for j ∈ {1, . . . , i}.

Corollary 3.1.10 Consider two standard monomials
∏i
j=1Q

γj
j and

∏i
j=1Q

γ′

j

j such that
(γi, γi−1, . . . , γ1) <lex (γ′i, γ

′
i−1, . . . , γ

′
1) and having the same να-value. We have

νm





i
∏

j=1

Q
γj
j



 > νm





i
∏

j=1

Q
γ′

j

j



 .

Let
i
∏

j=1

Q
γj
j and

i
∏

j=1

Q
γ′

j

j be two monomials. We say that they are equivalent if γj = γ′j

for j ≥ 3 and γ1 + γ2 = γ′1 + γ′2. Let n = νm(Q3); note that α2 = n. Moreover [k2 : k] | n
and [k2 : k] = n if and only if β1 | β2.

Corollary 3.1.11 Consider two standard monomials
i
∏

j=1

Q
γj
j and

i
∏

j=1

Q
γ′

j

j , with 3 ≤ i < s,

such that (γi, γi−1, . . . , γ3) <lex (γ′i, γ
′
i−1, . . . , γ

′
3). We have

νm





i
∏

j=3

Q
γj
j



 ≤ νm





i
∏

j=3

Q
γ′

j

j



− n.

Proof : Let j ≥ 3 be the greatest integer such that γj < γ′j . We have

νm





i
∏

j=3

Q
γ′

j

j



− νm





i
∏

j=3

Q
γj
j



 =

j
∑

ℓ=3

γ′ℓ

ℓ−1
∏

q=1

αq −
j
∑

ℓ=3

γℓ

ℓ−1
∏

q=1

αq

= (γ′j − γj)
j−1
∏

q=1

αq +

j−1
∑

ℓ=3

(γ′ℓ − γℓ)
ℓ−1
∏

q=1

αq.
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Claim: For cℓ < αℓ, we have
j−1
∑

ℓ=3

cℓ

ℓ−1
∏

q=1

αq <

j−1
∏

q=1

αq. (102)

Proof of Claim: By induction on j. For j = 4, the inequality is immediate. Assume the
Claim is true for j − 1. The left hand side of (102) can be rewritten as

j−1
∑

ℓ=3

cℓ

ℓ−1
∏

q=1

αq =

j−2
∑

ℓ=3

cℓ

ℓ−1
∏

q=1

αq + cj−1

j−2
∏

q=1

αq <

j−2
∏

q=1

αq + cj−1

j−2
∏

q=1

αq ≤
j−1
∏

q=1

αq.

The Claim is proved.
The monomials being standard, γℓ, γ

′
ℓ < αℓ, so γ

′
ℓ − γℓ > −αℓ and applying the Claim,

we deduce that
j−1
∑

ℓ=3

(γ′ℓ − γℓ)
ℓ−1
∏

q=1

αq > −
j−1
∏

q=1

αq.

Since γ′j − γj ≥ 1, we get

(γ′j − γj)
j−1
∏

q=1

αq +

j−1
∑

ℓ=3

(γ′ℓ − γℓ)
ℓ−1
∏

q=1

αq > 0.

Each term being an integer divisible by α2, the above expression is greater or equal to α2 = n.
�

3.2 Real geometric surfaces and their blowings up

Let A be a ring and U an open subset of Sper(A). Let SU denote the multiplicative set

SU = {g ∈ A | g(α) 6= 0 for all α ∈ U}.

Let AU = ASU
. We have a natural ring homomorphism

ρU : AU →
∏

α∈U

A(α).

Define the ring OU to be the ring of all maps

f : U →
∐

α∈U

A(α)

satisfying the following conditions :
(1) ∀α ∈ U , f(α) ∈ A(α);
(2) there exists an open covering

U =
⋃

i∈Λ

Ui (103)

and, for each i, an element fi ∈ AUi
such that ∀β ∈ Ui, we have ρUi

(fi)β = f(β).
The functor which sends U to OU makes Sper(A) into a locally ringed space which we

will call an affine real geometric space. This notion is inspired by the notion of real closed
spaces defined by Niels Schwartz ([35]).

From now till the end of this section we will assume that all our rings are integral domains.
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Remark 3.2.1 Note that ι : AU →֒ OU and, if U is connected, this inclusion becomes an
equality. Indeed, consider an element f ∈ OU and the open covering (103) and the local
representatives fi ∈ AUi

of f as above. Let K denote the common field of fractions of A and
all of the AU . Finding an element g ∈ AU such that ι(g) = f amounts to proving that for
each i, j ∈ Λ we have

fi = fj , (104)

viewed as elements of K. By connectedness of U , it is sufficient to prove (104) under the
assumption that Ui ∩ Uj 6= ∅. Take a non-empty basic open subset V ⊂ Ui ∩ Uj, defined
by finitely many inequalities V = {α ∈ Sper A | g1(α) > 0, . . . , gs(α) > 0}. Since V 6= ∅,
Propositions 4.3.8 and 4.4.1 (Formal Positivestellensatz) of [7] imply that V contains a point
α such that pα = (0). Then A(α) = K, so the equality ρUi

(fi)α = f(α) = ρUj
(fj)α ∈ A(α)

implies that fi = fj in A(α) = K, as desired.

Definition 3.2.2 A real geometric space is a locally ringed space (X,OX) which admits an

open covering X =

s
⋃

i=1

Sper(Ai) such that each (Ui, OX |Ui) is isomorphic (as locally ringed

space) to an affine real geometric space.

Definition 3.2.3 A real geometric surface is a real geometric space X where all Ai can be
chosen to be regular 2-dimensional noetherian rings.

Let k be a field and z an independent variable. Let A be a regular two-dimensional
ring, x, y elements of A, p a maximal ideal of A of height 2, containing x. Suppose given
an isomorphism ι : A

(x)→̃k[z]θ such that ι(y) = z and θ is a non-zero polynomial in z. Let

g = zd + ā1z
d−1 + · · · + ād denote the monic generator of the ideal ι

(

p

(x)

)

. Let ai be an

element of ι−1(āi). Then
(

x, yd + a1y
d−1 + · · ·+ ad

)

is a set of generators of p; it induces a
regular system of parameters of Ap.

Definition 3.2.4 The pair
(

x, yd + a1y
d−1 + · · ·+ ad

)

will be called a privileged system

of parameters of Ap with respect to the ordered pair (x, y).

Definition 3.2.5 A marked real geometric surface is a real geometric surface X together
with the following additional data:

(1) A finite covering X =

s
⋃

i=1

Sper(Ai) where each Ai is a regular 2-dimensional noethe-

rian ring.
(2) For each i, a pair of elements xi, yi ∈ Ai and a field ki, which admits a total ordering.
(3) A subset ∆i ⊂ Sper Ai, called the privileged subset of Sper Ai. Let z, w be indepen-

dent variables. We require one of the following to hold:
(a) There exists an irreducible polynomial h ∈ ki[w] and a homomorpism

ι : Ai →
ki[z, w]θzθw

(zh)
,

where θz ∈ ki[z, w]\(z, h), θw ∈ ki[w]\(h), which maps xi to z mod (zh), yi to w mod (zh)
such that ∆i is the set of points of Sper Ai defined by the vanishing of all the elements of

Ker ι (in particular, ∆i
∼= Sper

ki[z, w]θzθw
(zh)

);

(b) ∆i = {xi = 0}; there is an isomorphism ι :
Ai
(xi)

→ ki[w]θw , where θw is a non-

zero polynomial in ki[w], which sends yi mod (xi) to w; in particular, ∆i
∼= Sper ki[w]θw ;

(c) ∆i = {xi = yi = 0}; we have
Ai

(xi, yi)
∼= ki; in particular, ∆i

∼= Sper ki.

(4) For each i and each α ∈ {xi = 0} ⊂ ∆i with ht pα = 2, a regular system of parameters
of (Ai)pα

, privileged with respect to (xi, h) in case (a) and with respect to (xi, yi) in case (b).
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(5) In case (a), for each i and each α ∈ {h = 0} ⊂ ∆i with ht pα = 2, a regular system
of parameters of (Ai)pα

, privileged with respect to (h, xi).

Remark 3.2.6 Let A be a regular 2-dimensional ring, m a maximal ideal of A and (x, y) a
regular system of parameters of Am. Then Sper A is a marked real geometric surface.

We now define the notion of blowing up of a real marked geometric surface. Let X =
⋃

i Sper Ai be a marked real geometric surface and take a point δ ∈ X . Assume that δ
belongs to the privileged set and ht(pδ) = 2 in every affine chart Sper Ai containing δ. We
want to define the blowing up of X along δ. First consider the case X = Sper A. Let
x, y ∈ A and k be the pair of elements and the field appearing in the definition of marked
real geometric surface.

Let (u, v) be the privileged system of regular parameters of Apδ
given by the definition. It

follows from definition that (u, v) = (x, y) in Case (c), u = x in Case (a) provided δ ∈ {x = 0}
as well as in Case (b), and u = h in Case (a) if δ ∈ {h = 0} \ {x = 0}.

A blowing up of Sper A along pδ (or blowing up along δ) is the marked real geometric
surface X ′ defined as follows. As a topological space, we put X ′ = Sper A′

1 ∪Sper A′
2, where

A′
1 = A

[

v
u

]

, A′
2 = A

[

u
v

]

and

Sper A′
1 ∩ Sper A′

2 = Sper A′
1 \
{v

u
= 0
}

= Sper A′
2 \
{u

v
= 0
}

.

We have a natural surjective morphism π : X ′ → Sper A.
To define a structure of marked real geometric surface on X ′, we let the two elements

required in Definition 3.2.5 (2) be x′1 = u, y′1 =
v
u
∈ A′

1 for Sper A′
1 and x′2 = v, y′2 = u

v
∈ A′

2

for Sper A′
2. Below, for q ∈ {1, 2}, we denote the privileged set of A′

q by ∆′
q and the field

required in the Definition 3.2.5 (2) for Sper A′
q by k′q. We now define ∆′

q and k′q in the
different cases.

• If Case (c) holds for Sper A: let k′q = k, for q ∈ {1, 2}. For Sper A′
1 the privileged

set is ∆′
1 = {x′1 = 0}. The existence of a privileged regular system of parameters required

by the Definition 3.2.5 comes from the isomorphism
A′

1

(x′1)
∼= k[y′1]. For Sper A

′
2 the situation

is entirely analogous.

• If Case (b) holds for Sper A : let k′1 = κ(pδ) and ∆′
1 = {x′1 = 0}. The existence

of a privileged regular system of parameters required by the Definition 3.2.5 comes from
A′

1

(x′1)
→̃k′1[y′1].

Let k′2 = k and ∆′
2 = {x′2 = 0}∪ {y′2 = 0}. By the definition of privileged regular system

of parameters of Apδ
, there is an irreducible polynomial vw ∈ k[w], relatively prime to θw

such that ι( pδ

(x) ) = (vw). The existence of a privileged regular system of parameters at any

point of ∆′
2, required by the Definition 3.2.5, comes from

A′
2

(x′2y
′
2)
→̃k[w, y′2]θw

(vwy′2)
.

• If Case (a) holds, there are three cases to consider :
(i) δ ∈ {x = 0} \ {h = 0}, ∆′

q, k
′
q q = 1, 2 are given by the same formulas as in Case

(b). Let A′
3 = Av. The structure of marked real geometric surface on Sper A′

3 is induced

from that of Sper A. We have k′3 = k and ∆′
3 = {x = 0}∪{h = 0} and Av

(xh)
→̃k[z, w]vwθwθz

(zh)
.

(ii) δ ∈ {h = 0} \ {x = 0}, let k′1 = κ(pδ) and k′2 = k[w]
(h) , ∆′

1 = {x′1 = 0},
∆′

2 = {x′2 = 0} ∪ {y′2 = 0}. By the definition of privileged regular system of parameters of

Apδ
, there is a polynomial vz ∈ k[z, w], such that ι(

pδ

(xh)
) =

(h, vz)k[z, w]θzθw
(xh)

. The existence

of a privileged regular system of parameters comes from the isomorphisms
A′

1

(x′1)
→̃k′1[y′1] and

A′
2

(x′2y
′
2)
→̃k′2[z, y

′
2]θz

(vzy′2)
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Let A′
3 = Av. The structure of marked real geometric surface on Sper A′

3 is induced from

that of Sper A. We have k′3 = k and ∆′
3 = {x = 0} ∪ {h = 0} and Av

(xh)
→̃k[z, w]vzθwθz

(zh)
.

(iii) δ = {h = 0} ∩ {x = 0}, recall that u = x, v = h. Let k′1 = κ(pδ) and k′2 = k.
Let ∆′

q = {x′q = 0} ∪ {y′q = 0}, q = 1, 2. The existence of a privileged regular system of

parameters comes from the isomorphisms
A′

1

(x′1y
′
1)
→̃k′1[z, y

′
1]θz

(zy′1)
and

A′
2

(x′2y
′
2)
→̃k[w, y′2]θw

(hy′2)
(recall

that in this case h = x′2).

We then define the real marked geometric surface X ′ to be X ′ =
p
⋃

i=1

SperA′
i where p = 2

in cases (b), (c) and (a) (iii) and p = 2 in cases (a) (i) and (ii).

Remark 3.2.7 Note that SperA′
3 ⊂ SperA′i, i = 1, 2; but, in the applications, we need to

have the set ∆′
3 defined by fixed elements x′3, y

′
3.

Let X =
s
⋃

i=1

SperAi be a marked real geometric surface and δ ∈ X with ht(pδ) = 2.

If δ∈/SperAi, let X ′
i = Sper Ai with the identity map X ′

i → SperAi. If δ ∈ SperAi, let
X ′
i → SperAi be the blowing up of SperAi along mi. Let (u, v) be the regular system of

parameters of (Ai)pδ
. We have X ′

i =
⋃p
j=1 SperA

′
ji where p = 2 or 3 as above.

The marked real geometric surfacesX ′
1, . . . , X

′
s and the maps X ′

i → Sper Ai glue together

in a natural way to give a marked real geometric surface X ′ =
s
⋃

i=1

X ′
i and the map X ′ → X ,

which we call the blowing up of X along δ or the point blowing up of X along δ. Note
that the blowing up of Sper A at δ depends only on the ideal pδ and not on the ordering ≤δ,
so we may speak also about blowing up along pδ.

Definition 3.2.8 Let α, δ be 2 distinct points of the real marked surface Sper A with

ht(pδ) = 2.

Let π : X ′ → Sper A be a blowing up along δ. Let (u, v) be the given privileged system of
parameters at δ. Since α 6= δ, {u, v} 6⊂ pα. If u∈/pα, the strict transform α′ of α is
defined as follows. Let pα′ be the strict transform of pα in A′

1 and ≤α′ be the order of κ(pα′)
induced by ≤α via the natural isomorphism κ(pα) ∼= κ(pα′). If v∈/pα, α′ ∈ Sper A′

2 is defined
similarly.

On the way to prove the connectedness of C of (73), we will now prove a preliminary
result on connectedness of a certain type of subsets (intervals) of the exceptional divisor on
a suitable blowing up of Sper A.

Remark 3.2.9 Fix an order on k. Let D be the set of points δ ∈ Sper(k[z]) which induces
the given order on k. Given 2 points δ1 6= δ2 ∈ D such that ht(pδi) = 1, we view δ1, δ2 as
elements of k. We may speak about the interval (δ1, δ2) = {δ ∈ D | δ1 < z(δ) < δ2}. If
pδ = (0), we compare δi and z(δ) via the natural embeddings k[z](δ) →֒ k(z) and k ⊂ k(z).

Now, let m be an ideal of A with ht m = 2 and A
m

= k. Given a blowing up along m as
above, consider the open set Sper(A[ y

x
]). The set of points δ ∈ Sper(A[ y

x
]) such that x(δ) = 0

and which induce the given order on k is homeomorphic to D.
Finally, let X be a real algebraic surface such that D ⊂ Sper k[z] ⊂ X. Let +∞ denote

the point of D with support (0) such that z(+∞) > c for all c ∈ k. Let ∞ be the closed point
of X such that ∞ ∈ {+∞}. Assume there is an open set Sper Ai ⊂ X such that p∞ in Ai
has height 2. We extend the above notion of interval to include the case when δ2 = ∞ with
the obvious meaning assigned to [δ1,∞] =

⋃

δ>δ1

[δ1, δ] ∪ {∞}, (δ1,∞), .... Similarly, we may

take a closed point −∞ ∈ {−∞}. As points of X, we have ∞ = −∞. However, our ordering
on D provides us with a well defined notion of intervals of the form (−∞, δ1), [−∞, δ1) and
so on.
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Lemma 3.2.10 Let D be as in the remark before and δ1 < δ2 ∈ D such that ht(pδi) = 1.
The semi-open interval [δ1, δ2) and the open interval (δ1, δ2) are connected.

Proof : We will prove it for the open case, the semi-open being similar. Let k →֒ k be the
inclusion of k into its real closure determined by the given order. This map corresponds
to a morphism Sper(k[z]) → Sper(k[z]) which induces a homeomorphism between D and
Sper(k[z]) sending (δ1, δ2) to an interval (δ1, δ2) where δ1, δ2 ∈ k. It is well-known and easy
to prove that such an interval is connected - in the spectral topology (see for instance [7]).
�

Remark 3.2.11 Let θ ∈ k[z] be a non-zero polynomial. We have natural homeomorphisms
Sper k[z]θ→̃Sper k[z]\{α1, . . . , αt} and λ : D∩Sper k[z]θ→̃D\{α1, . . . , αt} where {α1, . . . , αt}
is the set of points αi ∈ Sper k[z] such that θ ∈ pαi

. Let δ1, δ2 ∈ D be as above. Assume that
αi∈/(δ1, δ2) for all i ∈ {1, . . . , t}. Then λ((δ1, δ2)) is connected in D \ {α1, . . . , αt}.

Definition 3.2.12 Let m be a maximal ideal of A of height 2. Let X ′ → Sper A be the
blowing up along m. Let E = {ǫ ∈ Sper A | pǫ = m}. The sets π−1(ǫ), ǫ ∈ E are called the
components of π−1(m).

Let (A,m, k) be a regular 2-dimensional local ring and (x, y) a regular system of parameter.
Now consider a sequence

Xt
πt−1→ · · · π1→ X1

π0→ Sper A (105)

of point blowings up where the first blowing up π0 : X1 → Sper A is the blowing up along
m.

Fix a point ǫ ∈ Sper A such that pǫ = m - this is equivalent to fixing a total ordering on
k. For q ∈ {0, . . . , t− 1}, let ηq ∈ Xq be the closed point, compatible with the given order,
such that πq is a blowing up along ηq.

For i ∈ {1, . . . , t}, let Xi =
si
⋃

j=1

Sper Aji be the open affine covering in the definition of

marked real geometric surface.
Let ρi = π0 ◦ . . . ◦ πi−1 : Xi → Sper A.

Remark 3.2.13 The real geometric space ρ−1
i (m) has the form ρ−1

i (m) =
⋃

ℓ

Sper Biℓ with

Biℓ ∼= kiℓ[ziℓ] where kiℓ is a finite algebraic extension of k and ziℓ is an independant variable.

Definition 3.2.14 A subset E ⊂ ρ−1
i (ǫ) is a component of ρ−1

i (ǫ) if E is either a compo-
nent of π−1

i−1(ηi−1) or a strict transform of a component of ρ−1
i−1(ǫ) when i > 1.

Definition 3.2.15 Let ρi : Xi → Sper(A). Fix a component E ⊂ ρ−1
i (ǫ). Fix an index

j ∈ {1, . . . , si}. A j-distinguished point of E is a point δ ∈ E such that either δ∈/Sper Aji
or ρ−1

i ({xy = 0}) ⊃ {x′y′ = 0} and x′(δ) = y′(δ) = 0 where (x′, y′) ∈ Aji are the privileged
regular system of parameters at δ (in particular, the privileged set of Sper Aji is given by
{x′ = 0} ∪ {y′ = 0}).

A j-maximal interval I is a subset I ⊂ E such that there exist j-distinguished points
δ1, δ2 ∈ E, δ1 6= δ2, such that

(1) I = [δ1, δ2] and I is connected;
(2) There are no j-distinguished points in I \ {δ1, δ2}.

A maximal interval is an interval which is j-maximal for some j.

Remark 3.2.16 Note that a j-maximal interval may contain a ̃-distinguished point, where
j 6= ̃. This occurs if [δ1, δ2] is a maximal interval, δ ∈ (δ1, δ2) and ∃j̃ ∈ {1, . . . , si}, j̃ 6= j,
such that (δ1, δ2) ∩ SperAji 6= ∅ and δ ∈/ SperAji.
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Proposition 3.2.17 Fix a component E ⊂ ρ−1
i (ǫ) and a maximal interval [δ1, δ2] ⊂ E.

Take q ∈ {1 , 2}. There exist j ∈ {1, . . . , si} such that [δ1, δ2] is j-maximal and letting
xi, yi ∈ Aji be the elements given by Definition 3.2.5 we have:

(1)i [δ1, δ2] \ {δq} ⊂ Sper Aji,
(2)i for all δ ∈ [δ1, δ2] \ {δq} with ht(pδ) = 2, xi is a part of the given privileged regular

system of parameters of (Aji)pδ
,

(3)i [δ1, δ2] ∩ Sper Aji =
{

η ∈ Sper Aji
∣

∣ xi(η) = 0 and δ1 ≤ yi(η) ≤ δ2
}

where

δ1, δ2 ∈ kji ∪ {−∞,∞},

with the notation of Remark 3.2.9 and the proof of Lemma 3.2.10.

Proof: We must prove (1)i. First, let i = 1. We have X1 = Sper A
[y

x

]

∪ Sper A

[

x

y

]

.

Denote A
[y

x

]

by A11 and A

[

x

y

]

by A21. Let x1 = x, y1 =
y

x
. Fixing the component E is

equivalent to fixing a total order on k; this data is already given. We have

E ∩ Sper A[y1] ⊂ Sper k[y1].

Let the notation be as in Remark 3.2.9 with y1 playing the role of z.
There are exactly two maximal intervals [0,∞] and [−∞, 0]. Say, for example, I = [0,∞],

q = 2, then j = 1 satisfies the conclusion of the Proposition. And similarly for the other
three cases.

Now take i ≥ 2 and suppose the result true for i− 1. Let δp,i−1 = πi−1(δp), p = 1, 2. Let
ηi−1 be the center of the blowing up πi−1. First, assume that

E ⊂ π−1
i−1(ηi−1). (106)

Take j̃ ∈ {1, . . . , si−1} such that ηi−1 belongs to the privileged set of Sper Aj̃,i−1. Let
(u, v) be the given distinguished regular system of parameters at ηi−1. If j is such that
(δ1, δ2) ⊂ Sper Aji then Aji is one of Aj̃,i−1[

u
v
] or Aj̃,i−1[

u
v
]; pick one of these two possible

choices j such that [δ1, δ2] is j-maximal. In this case (1)i is equivalent to saying that

[δ1, δ2] 6= [−∞,∞]. (107)

Now, if we had [δ1, δ2] = [−∞,∞], the point xi = yi = 0 would be a distinguished point in
(δ1, δ2) (by definition of distinguished point). This is a contradiction and (1)i is proved in
the case when (106). (2)i and (3)i of the Proposition follow immediately from the definition
of marked real geometric surface.

From now on, assume that
E 6⊂ π−1

i−1(ηi−1). (108)

Note that since [δ1, δ2] is a maximal interval of E, [δ1,i−1, δ2,i−1] is a maximal interval of
πi−1(E). So, by the induction hypothesis, the Proposition holds for [δ1,i−1, δ2,i−1] ⊂ πi−1(E).
Take j̃ ∈ {1, . . . , si−1} which satisfies the conclusion of the Proposition with i replaced by
i− 1 (in particular, [δ1,i−1, δ2,i−1] is j̃-maximal).

If ηi−1∈/ Sper Aj̃,i−1, take j ∈ {1, . . . , si} such that Aji = Aj̃,i−1. This j satisfies the
conclusion of the Proposition.

Next assume that ηi−1 ∈ Sper Aj̃,i−1. Take the elements u, v ∈ Aj̃,i−1 which induce
the privileged regular system of parameters at ηi−1, given by the definition of marked real
geometric surface.

If ηi−1∈/πi−1([δ1, δ2]), take j such that Aji = Aj̃,i−1.
From now on, assume that ηi−1 ∈ πi−1 ([δ1, δ2]) ∩ Sper Aj̃,i−1. Then

ηi−1 ∈ {δ1,i−1, δ2,i−1},
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otherwise π−1
i−1(ηi−1)∩[δ1, δ2] would be a j-distinguished point in (δ1, δ2), which is impossible.

Let j ∈ {1, . . . , si} be such that Aji = Aj̃,i−1

[

xi−1

yi−1

]

. In all the cases the index j chosen in

this way satisfies the conclusion of the Proposition. �

3.3 A proof of the Pierce-Birkhoff conjecture for regular 2-dimen-

sional rings.

Let A be a regular 2-dimensional ring. In this section, we prove that A is a Pierce-Birkhoff
ring ([26]). Our proof is based on Madden’s unpublished preprint ([27]), but there are some
differences. Here, we have tried to present a proof which should be a pattern for a general
proof of the conjecture in any dimension.

Theorem 3.3.1 Let A be a 2-dimensional regular ring, then A is a Pierce-Birkhoff ring.

Actually, we prove that A satisfies the Definable Connectedness Conjecture and also, in
the special case where A is excellent, the Connectedness Conjecture.

We start with some results which do not assume that A is excellent and which are needed
in the proof of both of the above versions of the Connectedness Conjecture. Let α, β ∈ SperA.
By Remark 0.1.10, we may assume that neither of α, β is a specialization of the other.

There are two possibilities : either ht(< α, β >) = 1 or ht(< α, β >) = 2.

3.3.1 The case of height 1.

Let δ be the most general common specialization of α and β and let p =
√
< α, β > be the

support of δ. Then Ap is a discrete valuation ring; call t ∈ A a regular parameter. Since
ht(p) = 1 and neither of α, β is a specialization of the other, we have pα = pβ = (0). There
are only two orders on A which induce the given order on A/p : one with t > 0 and one with
t < 0. Since α 6= β, < α, β >= p : of course, any generator g of p writes g = tγ a

b
, a, b∈/p. As

t ∈< α, β >, if γ ≥ 2, να(g) = νβ(g) > να(t) so g ∈< α, β > and if γ = 1, g changes sign
between α and β, so again g ∈< α, β >.

Now let f1, . . . , fr∈/ < α, β >= p, so fi(δ) 6= 0 for i ∈ {1, . . . , r}. As δ ∈ {α} and δ ∈ {β},
we conclude that α and β belong to the same connected component of Sper A\{f1 · · · fr = 0}.

3.3.2 The case of height 2.

Now assume ht(< α, β >) = 2, that is m =
√
< α, β > is maximal. By Proposition 2.1.2,

replacing A by Am does not change the problem, so we may assume that A is local with
maximal ideal m.

Let g ∈ N be such that Q1, . . . , Qg∈/ < α, β >, Qg+1 ∈< α, β > be the approximate roots
common to να and νβ as in section 3.1.

Let (x, y) be a regular system of parameters of A such that να(x) = να(m) and νβ(x) =
νβ(m).

Recall from ([45], Appendix 5) that the weak transform I ′ ⊂ A′ of an ideal I ⊂ A is
defined by I ′ = x−aIA′ where a = νm(I).

Proposition 3.3.2 Let π : A → A′ be a local blowing up with respect to να. We assume
that π is also a local blowing up with respect to νβ. Let α′ and β′ be the strict transforms of
α and β. Then the separating ideal < α′, β′ > is equal to the weak transform of < α, β >.

Proof : Since by hypothesis, α′, β′ are both centered at a maximal ideal m′, we have
< α, β >$ m. In particular, x∈/ < α, β >, hence x does not change sign between α and β.
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Then f ∈ A changes sign between α and β if and only if x−af changes sign between α′ and
β′.

Since < α, β > is generated by elements changing sign between α and β, its weak trans-
form is generated by elements which change sign between α′ and β′; hence the weak transform
of < α, β > is contained in < α′, β′ >.

To prove the opposite inclusion, let I ′ =< α′, β′ > and let I be the inverse transform of
I ′, that is the unique complete ideal of A whose weak transform is I ′ ([45], Appendix 5, p.
388). It remains to prove that I ⊆< α, β >.

In order to do this, it suffices to find an element z ∈ I which changes sign between α and
β and such that να(z) = να(I).

Let J+ be the greatest να-ideal of A
′ whose να-value is strictly greater than να(I). Note

that
IA′

J+ ∩ IA′
is a kνα -vector space. Let b1, . . . , bℓ, bj =

∏i
r=1Q

γjr
r , where i is the maximal

index of the approximate roots Qs involved, be a set of elements of I which induces a basis

of
IA′

J+ ∩ IA′
, each monomial being standard. Moreover, since x divides y in A′, we may

assume γj2 = 0 for all j. We may also assume that b1 is the monomial for which the vector
of exponents is maximal in the lexicographical order.

Let z̃ ∈ I ′ be such that να(z̃) = να(I
′) and z̃ changes sign between α′ and β′. Let

z† = xaz̃. Then z† ∈ IA′ and να(z
†) = να(IA

′) = να(I). Write z† =
∑ℓ
j=1 zjbj. We may

assume z1 = 1.
By the corollary (3.1.11), we have, for j ≥ 2,

νm

(

i
∏

r=3

Qγjrr

)

≤ νm
(

i
∏

r=3

Qγ1rr

)

− n ≤ a− n.

Write z† = b1+
∑ℓ
j=2(zjx

n)(x−nbj). Then, denoting by zj the image of zj in the residue

field kνα , write zj =

n−1
∑

t=0

ct

(y

x

)t

where ct ∈ k. So letting at be an element of A such that

at = ct and vj ∈ A be the element vj =
∑n−1

t=0 aty
txn−t, we have

να(vj − zjxn) > nνα(x). (109)

To complete the proof, we need the following lemma :

Lemma 3.3.3 For j ≥ 2, x−nbj ∈ A.

Proof of lemma : By Corollary 3.1.10, νm(bj) > νm(b1) and by Corollary 3.1.11,

νm

(

i
∏

r=3

Qγjrr

)

≤ νm
(

i
∏

r=3

Qγ1rr

)

− n.

Now γj1 = νm(bj)− νm
(

i
∏

r=3
Q
γjr
r

)

> νm(b1)− νm
(

i
∏

r=3
Qγ1rr

)

+ n ≥ n. �

So z = b1 +
∑ℓ

j=2 vj(x
−nbj) ∈ IA′ ∩ A = I (because I is a contracted ideal). Since z†

changes sign between α′ and β′ and in view of (109), z changes sign beween α and β. This
ends the proof of the proposition. �

Remark 3.3.4 If B = R[x, y]. Let

B → R[x1, y1]→ · · · → R[xℓ, yℓ]

be a sequence of blowings up induced by (98), where take I =< α, β >. Let Ci be the
preimage of C (see (73)) in Sper R[xℓ, yℓ]. By proposition (3.1.7), there exist monomials
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ω1, . . . , ωs, ǫ1, . . . , ǫs, θ1, . . . , θt, λ1, . . . , λt in xℓ, yℓ such that

Cℓ =







δ ∈ Sper R[xℓ, yℓ]

∣

∣

∣

∣

∣

∣

νδ(ωk) < νδ(ǫk), k ∈ {1, . . . , s}
νδ(θj) = νδ(λj), j ∈ {1, . . . , t}

sgnδ(xℓ) = sgnα(xℓ), sgnδ(yℓ) = sgnα(yℓ)







.

By connectedness theorem ([21]), Cℓ is connected, hence so is C. This completes the proof
of the Connectedness Conjecture for R[x, y] and so provides a new proof of the classical
Pierce-Birkhoff Conjecture in dimension 2.

Let A be a regular 2-dimensional local ring with regular parameters (x, y). Consider the
set C′ defined by the inequalities

∣

∣

∣

∣

∣

∣

mi
∑

j=1

bjiQ
θji

∣

∣

∣

∣

∣

∣

>δ ni|Qǫj′i | ∀i ∈ {1, . . . , r}, ∀j′ ∈ {1, . . . , ni} (110)

and the two sign conditions appearing in (73).

Consider the sequence (98) of local blowings up with I =< α, β >. Let C′
ℓ be the

preimage of C′ in Sper Aℓ. Rather than prove connectedness of C′
ℓ, we will prove that α(ℓ)

and β(ℓ) lie in the same connected component of C′
ℓ; this will imply that α and β lie in

the same connected component of C′. Let ǫ denote the common specialization of α(ℓ) and
β(ℓ). By definition of (98), we have pǫ = mℓ. Let U be the subset of C′

ℓ consisting of all
the generizations of ǫ lying in C′

ℓ. It is sufficient to prove that α(ℓ) and β(ℓ) lie in the same
connected component of U .

There are two cases to consider.
Case 1. Only one component of the exceptional divisor (that is the inverse image

ρ−1
ℓ−1(m)) passes through ηℓ.

Case 2. Two components of the exceptional divisor pass through ηℓ.

Let (xℓ, yℓ) be a regular system of parameters of (Aℓ)mℓ
such that the local equation of the

exceptional divisor at ηℓ is xℓ = 0 in case 1 and xℓyℓ = 0 in case 2.

By Zariski’s theory of complete ideals, for any f ∈ A\ < α, β >, the strict transform of
f in Aℓ is a unit. In other words, f has the form f = xnℓ v in case 1 (resp. f = xnℓ y

m
ℓ v in

case 2) where v denotes a unit in (Aℓ)mℓ
.

Hence the inequalities (110), appearing in the definition of C′, become inequalities of the
form xnℓ > 0 (resp. xnℓ y

m
ℓ > 0).

Lemma 3.3.5 Let E be an irreducible component of the exceptional divisor passing through
ηℓ, defined by xℓ = 0. There exists f ∈ A\ < α, β > such that f = xnℓ v, v is a unit of (Aℓ)mℓ

and n is odd.

Proof : Let j ∈ {1, . . . , ℓ− 1} be such that E is the strict transform in Xℓ of π
−1
j− (ηj−1). Let

νj be the divisorial valuation corresponding to E; this valuation is defined as follows : for
each f ∈ Aℓ, write f = xnℓ g such that xℓ ∤ g in (Aℓ)mℓ

, then νj(f) = n.
Let m = p0 ⊃ · · · ⊃ pj the complete list of simple νj-ideals given by Zariski’s theory of

complete ideals. Note that, since j < ℓ, pj ⊃< α, β >.
It follows from Zariski’s factorization theorem for complete ideals that νj(A \ {0}) is

generated by νj(p0), . . . , νj(pj). Since the value group of νj is Z, the semigroup νj(A \ {0})
contains all the sufficiently large integers. Hence one of νj(p0), . . . , νj(pj) is odd. �

The lemma shows that xℓ does not change sign between α(ℓ) and β(ℓ) in Case 1 (resp.
neither xℓ nor yℓ change sign between α(ℓ) and β(ℓ) in Case 2).

Let
Ũ =

{

δ ∈ Sper Aℓ

∣

∣

∣ sgn(xℓ(δ)) = sgn(xℓ(α)), ǫ ∈ {δ}
}
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in Case 1 and

Ũ =
{

δ ∈ Sper Aℓ

∣

∣

∣ sgn(xℓ(δ)) = sgn(xℓ(α)), sgn(yℓ(δ)) = sgn(yℓ(α)), ǫ ∈ {δ}
}

in Case 2. The above reasoning shows that α(ℓ), β(ℓ) ∈ Ũ ⊂ U .

To prove the Definable Connectedness Conjecture (resp. the Connectedness Conjecture
for excellent A), it remains to prove the definable connectedness of Ũ (resp. connectedness
of Ũ whenever A is excellent).

We are now ready to prove the above two versions of the Connectedness Conjecture.

3.4 Proof of the Connectedness Conjecture in the case of an excel-

lent regular 2-dimensional ring.

Theorem 3.4.1 Let A be an excellent regular local 2-dimensional ring. Let C ⊂ Sper A
be the subset satisfying the conditions of (73). Then α and β belong to the same connected
component of C.

Proof: Let ǫ, ℓ and Ũ as above. By the above considerations, it is sufficient to prove that Ũ
is connected. Thus it remains to prove the following lemma.

Lemma 3.4.2 Let A be an excellent regular n-dimensional local ring, x1, . . . , xn regular
parameters of A. Fix a subset T ⊂ {1, . . . , n} and let D = {δ ∈ Sper A | xi(δ) > 0, i ∈
T and ǫ ∈ {δ}}. Then D is connected.

Proof: The point ǫ determines an order on k. Let R denote the real closure of k relative to
this order. Consider the natural homomorphisms

A→ Â = k[[X1, . . . , Xn]]
σ→ R[[X1, . . . , Xn]] (111)

where σ is induced by ǫ.
Let ǫ̂ denote the point of Sper Â such that pǫ̂ = (X1, . . . , Xn) and ≤ǫ̂ is the total ordering

of k given by ǫ.
Following ([3], proposition 8.6), D is connected if and only if

D̂ = {δ ∈ Sper k[[X1, . . . , Xn]] | Xi(δ) > 0, i ∈ T, ǫ̂ ∈ {δ}}

is connected (this is where we are using the fact that A is excellent). Moreover, D̂ is the
image of

D̃ = {δ ∈ Sper R[[X1, . . . , Xn]] | Xi(δ) > 0, i ∈ T }
under the natural map induced by σ

Sper R[[X1, . . . , Xn]]→ Sper k[[X1, . . . , Xn]].

So it suffices to prove that D̃ is connected.
By ([3], proposition 8.6), D̃ is connected if and only if the set

D† = {δ ∈ Sper R[X1, . . . , Xn](X1,...,Xn) | Xi(δ) > 0, i ∈ T, δ is centered at (X1, . . . , Xn)}

is connected.
We have the following natural homomorphisms

R[X1, . . . , Xn]

ψ

��

φ
// R[X1, . . . , Xn]X1···Xn

R[X1, . . . , Xn](X1,...,Xn)
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and the corresponding maps of real spectra

Sper R[X1, . . . , Xn]X1,...,Xn

φ∗

// Sper R[X1, . . . , Xn]

ψ∗

��

Sper R[X1, . . . , Xn](X1,...,Xn)

.

Define

D0 = {δ ∈ Sper R[X1, . . . , Xn] | Xi(δ) > 0, i ∈ T, δ is centered at (X1, . . . , Xn)}

and

Dloc = {δ ∈ SperR[X1, . . . , Xn]X1···Xn
|Xi(δ) > 0, i ∈ T, φ∗(δ) is centered at (X1, . . . , Xn)}.

Now the maps φ∗ and ψ∗ induce homeomorphisms

φ∗|D0 : D0
∼= Dloc and (112)

ψ∗|D0 : D0
∼= D†. (113)

So it suffices to prove that Dloc is connected. But

Dloc =
⋂

N∈N

DN

where

DN = {δ ∈ Sper R[X1, . . . , Xn]X1···Xn
| 1

N
≥ Xi(δ) ≥ 0, i ∈ T }.

By Proposition 7.5.1. of [7], each DN is a non empty closed connected subset of
Sper R[X1, . . . , Xn]X1···Xn

, hence Dloc is connected by ([21], lemma 7.1). �

The lemma proves that any “quadrant” is connected, Ũ is a quadrant, hence it is con-
nected. This completes the proof of the Connectedness Conjecture for any excellent 2-
dimensional ring A.

Remark 3.4.3 The above proof is a special case of the following general principle. Let A be
an excellent regular local ring with regular parameters x = (x1, . . . , xn) whose residue field k
is equipped with a total ordering.Let R be the real closure of k. We have natural morphisms

Sper A Sper R[[X1, . . . , Xn]]

π

��

φ
oo

Sper R[X1, . . . , Xn](X1,...,Xn)

Let D ⊂ Sper A be a constructible set such that all the elements of A appearing in the
definition of D belong to A ∩R[X1, . . . , Xn](X1,...,Xn). Let D̂ = φ−1(D), let U be the subset
of all points of Sper R[X1, . . . , Xn](X1,...,Xn) centered at the origin. Let Dpol be the subset of
U defined by the same formulas as D. By ([3], proposition 8.6), to show that D is connected,
it is enough to prove that Dpol is connected.

In many cases, this principle applies also to nested intersection D =
⋂

N∈N

DN of con-

structible sets defined by elements of A ∩R[X1, . . . , Xn](X1,...,Xn).
This allows to generalize all the results of ([21]) from the case of polynomial rings to that

of arbitrary excellent regular local rings.
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3.5 Proof of the Definable Connectedness Conjecture for regular

2-dimensional local rings.

Next we prove the Definable Connectedness Conjecture, hence the Pierce-Birkhoff Conjec-
ture, without the excellence hypothesis on A.

Theorem 3.5.1 Let (A,m, k) be a regular local 2-dimensional ring, (x, y) a regular system
of parameters. The sets

U = {δ ∈ Sper A | x(δ) > 0, ǫ ∈ {δ}} (114)

V = {δ ∈ Sper A | x(δ) > 0, y(δ) > 0, ǫ ∈ {δ}} (115)

are definably connected.

U V

yy

x x

Figure 1: The sets U and V

Proof : By contradiction. Let Ω be either U , either V . Write Ω = F
∐

G, F =
⋃

Fi,
G =

⋃

Gi where {Fi}, {Gi} are finite collections of basic open sets. Each Fi and Gi is
defined by finitely many inequalities of the form g > 0, g ∈ A. Let g3, . . . , gr ∈ A be the list
of elements of A, appearing in the definition of all of Fi and Gi and let g1 = x, g2 = y. The
proof of the proposition will be given after a few auxiliary definitions and results.

Definition 3.5.2 Let SperA ← X1 ← · · · ← Xt be a sequence of point blowings up. Let

Xt =
s
⋃

j=1

SperAjt be the open covering of Xt, given by the definition of real geometric surface.

We say that a collection {h1, . . . , hr} of elements of A are simultaneously locally monomial
in Xt if for all j ∈ {1, . . . , s} and any maximal ideal m′ ⊂ Ajt, there exists a regular system
of parameters (x′, y′) of A′ := (Ajt)m′ such that all of h1, . . . , hr are monomials in (x′, y′)
multiplied by units of (Ajt)m′ .

Let g1, . . . , gr ∈ A be as above. By standard results on resolution of singularities, there
exists a sequence SperA ← X1 ← · · · ← Xt of point blowings up such that g1, . . . , gr are
simultaneously locally monomial in Xt. Denote by ρt : Xt → SperA the composition of all
the morphisms in that sequence (with the notations following (105)).

Let Ω(t) = ρ−1
t (Ω), F (t) = ρ−1

t (F ), G(t) = ρ−1
t (G).

Take a point δ ∈ ρ−1
t (ǫ), let A′,m′, x′, y′, Ajt be as in the definition of simultaneously

locally monomial.

Definition 3.5.3 We say that δ is a special point of ρ−1
t (ǫ) if ht(pδ) = 2 and

{x′y′ = 0} = ρ−1
t (ǫ)

⋃

{g1 · · · gr = 0}

locally near δ.

Given a special point δ ∈ ρ−1
t (ǫ) and (u′, v′) a regular system of parameters at δ, let

C(δ, u′, v′) = {γ ∈ Xt | u′(γ) > 0, v′(γ) > 0, δ ∈ {γ}}.
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Lemma 3.5.4 Take a point ξ ∈ ρ−1
t (ǫ), not lying on the strict transform of {x = 0}. Take

j ∈ {1, . . . , si} such that ρ−1
t (ǫ) is contained in the privileged set of Sper Ajt near ξ. Let

xjt, yjt ∈ Ajt be the elements given in Definition 3.2.5. Assume that the privileged set is
given by {xjt = 0} and is homeomorphic to Sper k′[z]θz , where θz is a non zero polynomial,
with k′ finite over k and that ht(pξ)=2. Let (x′, y′) be as in the definition of simultaneously
locally monomial where we take m′ = pξ (we may assume x′ = xjt). We view k′ as an
ordered field via the inclusion k′ ⊂ Ajt(ξ). Let

E = {δ ∈ Sper Ajt | xjt(δ) = 0 and k′ ⊂ Ajt(δ) is an inclusion of ordered fields }.

Take points δ1, δ2 ∈ E such that the intervals (δ1, ξ) and (δ2, ξ) are connected and contain
no special points.

For i ∈ {1, 2}, let (x′, v′i) be a regular system of parameters at δi such that {v′i > 0} ∩
(δ1, δ2) 6= ∅.

Then the set

D(δ1, δ2) = C(δ1, x
′, v′1) ∪C(δ2, x′, v′2) ∪ {δ ∈ U (t) | x′(δ) > 0, {δ}

⋂

(δ1, δ2) 6= ∅}

is contained either in F (t) or in G(t).

Proof : First, assume ξ is not special. Then there are no special points in (δ1, δ2). Let

F† = F (t) ∩ [δ1, δ2] and G† = G(t) ∩ [δ1, δ2]. F†, G† are relatively closed in [δ1, δ2] and [δ1, δ2]
is connected (lemma (3.2.10)), so F† ∩G† 6= ∅.

Take a point η ∈ F† ∩ G†. Replacing η by its specialization, we may assume that
ht(pη) = 2. For each i ∈ {1, . . . , r}, locally near η, write gi = x′ag′i if η∈/{δ1, δ2} and
gi = x′ay′bg′i if η = δℓ, ℓ ∈ {1, 2} with y′ = v′i, where, in both cases, g′i is invertible locally
near η.

Take an open set W , containing η, such that for all δ ∈W and all i ∈ {1, . . . , r}, we have

sgn(g′i(δ)) = sgn(g′i(η)). (116)

Since η ∈ F (t) ∩G(t), there exist δ ∈ F (t) ∩W , γ ∈ G(t) ∩W and an i ∈ {1, . . . , r} such
that gi changes sign between δ and γ.

Since x′ (resp. x′, y′) does not change sign between γ and δ this contradicts (116). This
completes the proof in the case ξ is not special.

Assume ξ is special and let (x′, y′) be a regular system of parameters as in the definition.
Let δ ∈ D(δ1, δ2) be the unique point such that x′(δ) > 0, y′(δ) = 0. We have {δ} =
D(δ1, δ2) ∩ {y′ = 0}. Then

D(δ1, δ2) = {δ}
∐

D(δ1, ξ)
∐

D(ξ, δ2).

Let δ− ∈ D(δ1, ξ) be the unique point such that x′(δ−) > 0, y′(δ−) < 0 and |y′(δ−)|N <
|x′(δ−)|, ∀N ∈ N. Then δ ∈ {δ−}, in particular,

δ ∈ D(δ1, ξ). (117)

Similarly
δ ∈ D(ξ, δ2). (118)

By the previous case, each of D(δ1, ξ), D(ξ, δ2) is contained either in F (t) or G(t).
Without loss of generality, assume that D(δ1, ξ) ⊂ F (t). By (117) and the relative

closedeness of F (t), we have δ ∈ F (t). By (118) and the relative closedeness of G(t), we have
D(ξ, δ2) ⊂ F (t), so D(δ1, δ2) ⊂ F (t) as desired. �

Corollary 3.5.5 Let [δ1, δ2] be a maximal interval, then D(δ1, δ2) is entirely contained either
in F (t) or in G(t).
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Proof : This follows from the preceding lemma by induction on the number of special points
inside [δ1, δ2].

In order to address the global connectedness, we need a notion of signed dual graph
associated to a sequence of point blowings up of a point ǫ ∈ SperA and a subsetW of SperA.

For each maximal interval I (see Definition 3.2.15), take Sper Ajt ⊂ Xt such that I \Sper Ajt
is either empty or consists of one distinguished point (such an Ajt exists by Proposition
3.2.17). When necessary, we will denote this j by j(I). Let xjt, yjt ∈ Ajt be the elements
given in the Definition 3.2.5. By Proposition 3.2.17, we have I ∩ Sper Ajt ⊂ {xjt = 0}.

Let W (t) = ρ−1
t (W ).

Definition 3.5.6 An admissible pair is a pair (I, s) where I is a maximal interval,

s ∈ {+,−}, (119)

W (t) ∩ Sper Ajt 6= ∅ and (120)

W (t) ∩ Sper Ajt ⊂ {δ ∈ Sper Ajt | sgn(xjt(δ)) = s, {δ} ∩ I 6= ∅}. (121)

Consider two admissible pairs (I, s), (Ĩ , s̃). We say that these two pairs are equivalent if
the following conditions hold :

(a) I ∩ Sper Ajt ∩ Sper Ãt = Ĩ ∩ Sper Ajt ∩ Sper Ãt,
(b) the sets

{δ ∈ Sper Ajt ∩ Sper Ãt | sgn(xjt(δ)) = s}
and

{δ ∈ Sper Ajt ∩ Sper Ãt | sgn(xj̃t(δ)) = s̃}
coincide in a neighbourhood of I ∩ Sper Ajt ∩ Sper Ãt.

Definition 3.5.7 1. A vertex of the signed dual graph Γt associated to Xt and W is an
equivalence class of a pair (I, s), which we will still denote, by abuse of notation, (I, s).

2. By definition, two distinct vertices (I, s) and (Ĩ , s̃) of Γt are connected by an edge of
Γt if the following conditions hold :

(a) I and Ĩ share a common endpoint ξ and (xjt, xj̃t) form a regular system of parameters
at ξ;

(b) write I = [ξ, δI ], Ĩ = [ξ, δĨ ], then

W (t) ∩ {δ ∈ Xt | sgn(xjt(δ)) = s, sgn(xj̃t(δ)) = s̃, {δ} ∋ ξ} 6= ∅.

xjt

xj̃t

ξ

Figure 2: This figure represents an edge of Γt connecting two vertices (I, s) and (Ĩ , s̃). Here
I = [0,∞], Ĩ = [0,∞], s = s̃ = +.

Example : Γ1 consists of one vertex and no edges (see Fig. (3)).

Proposition 3.5.8 If W = U or W = V , the graph Γi is a bamboo, that is, a connected,
simply connected graph every one of whose vertices belongs to at most two edges.
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Sper A[x
y
] Sper A[ y

x
]

Figure 3: This figure shows the set U (1) in the affine charts

Proof: By induction on i. For i = 1, the graph consisting of one vertex is connected and
satisfies the conclusion of the Proposition. The induction step follows from the next Lemma,
which describes the transformation law from Γi to Γi+1 in the case when W = U or W = V .

Lemma 3.5.9 Consider the point blowing up πi : Xi+1 → Xi. Let ξ be the center of the
blowing up.

(1) Let a = (I, s), b = (Ĩ , s̃) be two vertices of Γi connected by an edge (a, b) and suppose ξ
is the point common to I and Ĩ. Then Γi+1 is obtained from Γi by performing the following
operation for each pair of vertices (a, b) as above: remove the edge (a, b) and add a new vertex
c and two new edges (a, c) and (b, c).

(2) Suppose we are not in case (1). Let a = (I, s) where I = [δ1, δ2]. Suppose ξ ∈ I. Then
Γi+1 is obtained from Γi by performing the following operation for each vertex a as above.
• Case 2.1: ξ∈/{δ1, δ2}.

(a) If a belongs to two edges (a, b), (a, c) of Γi, remove a and the two edges (a, b),
(a, c). Introduce three new vertices d, e, f and four new edges (b, d), (d, e), (e, f), (f, c).

(b) If a belongs to only one edge (a, b), remove a and the edge (a, b). Introduce three
new vertices d, e, f and three new edges (b, d), (d, e), (e, f).

(c) If a belongs to no edges (in other words, if i = 1) then Γ2 = •—•—• is a chain
of three vertices and two edges.
• Case 2.2: ξ ∈ {δ1, δ2}.

(a) i = 1 and W = U , then Γ2 = •—•—• is a chain of three vertices and two edges
(b) i > 1 or W = V , then each vertex a = (I, s) such that ξ ∈ I is an endpoint of Γi.

For each such vertex a, we add a new vertex b and a new edge (a, b).

Proof: (1) Let δ′1 = π−1
i (δ1), δ

′
2 = π−1

i (δ2), {x′ji = 0} the strict transform of {xji = 0},
{

x′
j̃i
= 0
}

the strict transform of
{

xj̃i = 0
}

, ξa =
{

x′ji = 0
}

∩ π−1
i (ξ), ξb =

{

x′
j̃i

}

∩ π−1
i (ξ).

Let J = [ξa, ξb]. Let xJ be a defining equation of the exceptional divisor. Let σ be the sign
of xJ on the set {sgn(xji) = s, sgn(xj̃i) = s̃} near ξ.

Let ai+1, bi+1, ci+1 be the vertices of Γi+1 defined by ai+1 = ([ξa, δ
′
1], s), bi+1 = ([ξb, δ

′
2], s̃),

ci+1 = (J, σ).
The edges joining those vertices are straightforward.

(2) Case 2.1: (a) Let (xji, y
′) be a regular system of parameters at ξ. Assume that

y′(δ1) < 0, (122)

y′(δ2) > 0. (123)
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Let δ′i = π−1(δi), i ∈ {1, 2}. Let ξ′ = π−1(ξ)∩{x′ji = 0} and d = ([δ′1, ξ
′],−s), f = ([δ′2, ξ

′], s),

e = ([−∞,+∞], s) where [−∞,+∞] = {xji = 0} in Sper Aji

[

y′

xji

]

. Again, the edges are

clearly defined. This proves 2.1(a). The cases 2.1(b) and (c) are similar but easier.
Case 2.2: (a) Let a = (I, s). Then xji = y. Put y′ = x

y
; (xji, y

′) is a regular system

of parameters at ξ. Let A11 = A[xji, y
′]. The point ξ ∈ Sper A11 is the unique point such

that supp(ξ)= (xji, y
′) and which induces the given order on k. Let A12 = A11[x

′
ji, y

′] where

x′ji =
xji

y′
.

Let I ′ ⊂ {x′ji = 0} be the 1-maximal interval given by −∞ ≤ y′ ≤ +∞ and Ĩ ′ ⊂ {y′ = 0}
the 1-maximal interval given by 0 ≤ x′ji ≤ +∞.

Now the vertices of Γ2 are
(

Ĩ ′,+
)

, (I ′,+) ,
(

Ĩ ′,−
)

with the edges clearly defined.

I2

I ′

I ′

I ′

I ′

Ĩ ′

y′

I1x′

ji

Figure 4: This figure shows the set U (2) in the cases 2.2.a and 2.1.c respectively

(b) Let a = (I, s) be a vertex such that ξ ∈ I; the vertex a is an endpoint of Γi. Suppose
that ξ ∈ Aji. Let (xji, y

′) be a regular system of parameters at ξ. Let Aj,i+1 = Aji[x
′
ji, y

′]

where x′ji =
xji

y′
. Without loss of generality, assume that xji > 0, y′ > 0 on W (i).

Let I ′ ⊂ {x′ji = 0} be the strict transform of I in Sper Aj,i+1. Then I ′ is an (i + 1)-

maximal interval. Let Ĩ ′ ⊂ {y′ = 0} be the (i+1)-maximal interval given by 0 ≤ x′ji ≤ +∞.

Now the new vertex b added to Γi+1 is (Ĩ ′,+). It is connected by an edge to a which is
represented in Sper Aj,i+ by (I ′,+). This completes the proof of Lemma 3.5.9 and with it
Proposition 3.5.8. �

Let us finish the proof of Proposition 3.5.1. To each vertex (I = [δ1, δ2], s) of Γi we
associate the setD(δ1, δ2) ⊂ U (i) which by Corollary 3.5.5 is entirely contained in F (i) orG(i).
This defines a partition ΓF =

{

(I, s)
∣

∣ D(δ1, δ2) ⊂ F (i)
}

, ΓG =
{

(I, s)
∣

∣ D(δ1, δ2) ⊂ G(i)
}

of the set of vertices of Γi. Assume that ΓF 6= ∅ and ΓG 6= ∅. Since Γi is connected, there
exist a = ([δ1a, δ2a], sa) ∈ ΓF , b = ([δ1b, δ2b], sb) ∈ ΓG such that (a, b) is an edge of Γi.
Then D(δ1a, δ2a) ⊂ F (t), D(δ1b, δ2b) ⊂ G(t) and D(δ1a, δ2a) ∩ D(δ1b, δ2b) 6= ∅. This is a
contradiction. This concludes the proof of Proposition 3.5.1. �
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