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APPROXIMATE ROOTS OF A VALUATION AND THE PIERCE-BIRKHOFF CONJECTURE

In this paper, we construct an object, called a system of approximate roots of a valuation, centered in a regular local ring, which describes the fine structure of the valuation (namely, its valuation ideals and the graded algebra). We apply this construction to valuations associated to a point of the real spectrum of a regular local ring A. We give two versions of the construction: the first, much simpler, in a special case (roughly speaking, that of rank 1 valuations), the second -in the case of complete regular local rings and valuations of arbitrary rank.

We then describe certain subsets C ⊂ Sper A by explicit formulae in terms of approximate roots; we conjecture that these sets satisfy the Connectedness (respectively, Definable Connectedness) conjecture. Establishing this for a certain regular ring A would imply that A is a Pierce-Birkhoff ring (this means that the Pierce-Birkhoff conjecture holds in A).

Finally, we use these constructions and results to prove the Definable Connectedness conjecture (and hence a fortiori the Pierce-Birkhoff conjecture) in the special case when dim A = 2.

Introduction

All the rings in this paper will be commutative with 1. Let R be a real closed field. Let B = R[x 1 , . . . , x n ]. If A is a ring and p a prime ideal of A, κ(p) will denote the residue field 1 of p.

The Pierce-Birkhoff conjecture asserts that any piecewise-polynomial function f : R n → R can be expressed as a maximum of minima of a finite family of polynomials in n variables. We start by giving the precise statement of the conjecture as it was first stated by M. Henriksen and J. Isbell in the early nineteen sixties.

Definition 0.1.1 A function f : R n → R is said to be piecewise polynomial if R n can be covered by a finite collection of closed semi-algebraic sets P i such that for each i there exists a polynomial

f i ∈ B satisfying f | Pi = f i | Pi .
Clearly, any piecewise polynomial function is continuous. Piecewise polynomial functions form a ring, containing B, which is denoted by P W (B).

On the other hand, one can consider the (lattice-ordered) ring of all the functions obtained from B by iterating the operations of sup and inf. Since applying the operations of sup and inf to polynomials produces functions which are piecewise polynomial, this ring is contained in P W (B) (the latter ring is closed under sup and inf). It is natural to ask whether the two rings coincide. The precise statement of the conjecture is: Conjecture 0.1.2 (Pierce-Birkhoff ) If f : R n → R is in P W (B), then there exists a finite family of polynomials g ij ∈ B such that f = sup i inf j {g ij } (in other words, for all

x ∈ R n , f (x) = sup i inf j {g ij (x)}).
This paper represents the second step of our program for proving the Pierce-Birkhoff conjecture in its full generality. The starting point of this program is the abstract formulation of the conjecture in terms of the real spectrum of B and separating ideals proposed by J. Madden in 1989 [START_REF] Madden | Pierce-Birkhoff rings[END_REF], which we now recall, together with the relevant definitions. For a general introduction to real spectrum, we refer the reader to [START_REF] Bochnak | Géométrie algébrique réelle[END_REF], Chapter 7, [START_REF] Andradas | Constructible Sets in Real Geometry[END_REF], Chapter II or [START_REF] Prestel | Positive Polynomials[END_REF], 4.1, page 81 and thereafter; see also "Bibliographical and historical comments" on p. 109 at the end of that chapter.

Let A be a ring. A point α in the real spectrum of A is, by definition, the data of a prime ideal p of A, and a total ordering ≤ of the quotient ring A/p, or, equivalently, of the field of fractions of A/p. Another way of defining the point α is as a homomorphism from A to a real closed field, where two homomorphisms are identified if they have the same kernel p and induce the same total ordering on A/p.

The ideal p is called the support of α and denoted by p α , the quotient ring A/p α by A[α], its field of fractions by A(α) and the real closure of A(α) by k(α). The total ordering of A(α) is denoted by ≤ α . Sometimes we write α = (p α , ≤ α ). Definition 0.1.3 The real spectrum of A, denoted by Sper A, is the collection of all pairs α = (p α , ≤ α ), where p α is a prime ideal of A and ≤ α is a total ordering of A/p α .

We use the following notation: for an element f ∈ A, f (α) stands for the natural image of f in A[α] and the inequality f (α) > 0 really means f (α) > α 0. The real spectrum Sper A is endowed with two natural topologies. The first one, called the spectral (or Harrison) topology, has basic open sets of the form

U (f 1 , . . . , f k ) = {α | f 1 (α) > 0, . . . , f k (α) > 0 } with f 1 , ..., f k ∈ A.
The second is the constructible topology whose basic open sets are of the form

V (f 1 , . . . , f k , g) = {α | f 1 (α) > 0, . . . , f k (α) > 0, g(α) = 0 } ,
where f 1 , ..., f n , g ∈ A. Boolean combinations of sets of the form V (f 1 , . . . , f n , g) are called constructible sets of Sper A.

For more information about the real spectrum, see [START_REF] Bochnak | Géométrie algébrique réelle[END_REF]; there is also a brief introduction to the real spectrum and its relevance to the Pierce-Birkhoff conjecture in the Introduction to [START_REF] Lucas | On connectedness of sets in the real spectra of polynomial rings[END_REF].

Definition 0.1.4 Let f : Sper A → α∈Sper A A(α)
be a map such that, for each α ∈ Sper A, f (α) ∈ A(α). We say that f is piecewise polynomial (denoted by f ∈ P W (A)) if there exists a covering of Sper A by a finite family (S i ) i∈I of constructible sets, closed in the spectral topology, and a family (f i ) i∈I , f i ∈ A such that, for each α ∈ S i , f (α) = f i (α).

We call f i a local representative of f at α and denote it by f α (f α is, in general, not uniquely determined by f and α; this notation means that one such local representative has been chosen once and for all).

Note that P W (A) is naturally a lattice ring: it is equipped with the operations of maximum and minimum. Each element of A defines a piecewise polynomial function. In this way we get a natural injection A ⊂ P W (A). Definition 0.1.5 A ring A is a Pierce-Birkhoff ring if, for each f ∈ P W (A), there exist a finite collection of

f ij ∈ A such that f = sup i inf j f ij .
In [START_REF] Madden | Pierce-Birkhoff rings[END_REF] Madden reduced the Pierce-Birkhoff conjecture to a purely local statement about separating ideals and the real spectrum. Namely, he gave the following definition: Definition 0.1.6 Let A be a ring. For α, β ∈ Sper A, the separating ideal of α and β, denoted by < α, β >, is the ideal of A generated by all the elements f ∈ A which change sign between α and β, that is, all the f such that f (α) ≥ 0 and f (β) ≤ 0. Definition 0.1.7 A ring A is locally Pierce-Birkhoff at α, β if the following condition holds. Let f be a piecewise polynomial function, let f α ∈ A be a local representative of f at α and f β ∈ A a local representative of f at β. Then f αf β ∈< α, β >. Theorem 0.1.8 (Madden) A ring A is Pierce-Birkhoff if and only if it is locally Pierce-Birkhoff for all α, β ∈ Sper(A).

Let α, β be points in Sper A.

Conjecture 0.1.9 (local Pierce-Birkhoff conjecture at α, β) Let A be a regular ring and f a piecewise polynomial function. Let f α ∈ A be a local representative of f at α and f β ∈ A a local representative of f at β. Then f αf β ∈< α, β >.

There are known counterexamples in the case A is not regular (eg. A = R[x, y]/(y 2x 3 )) and even with A normal.

Remark 0.1.10 Assume that β is a specialization of α. Then (1) < α, β >= p β .

(2) f αf β ∈ p β . Indeed, we may assume that f α = f β , otherwise there is nothing to prove. Since β ∈ {α}, f α is also a local representative of f at β. Hence f α (β)f β (β) = 0, so f αf β ∈ p β .

Therefore, to prove that a ring A is Pierce-Birkhoff, it is sufficient to verify Definition 0.1.7 for all α, β such that neither of α, β is a specialization of the other.

In [START_REF] Lucas | On connectedness of sets in the real spectra of polynomial rings[END_REF], we introduced Conjecture 0.1.11 (the Connectedness conjecture) Let A be a regular ring. Let α, β ∈ Sper A and let g 1 , . . . , g s be a finite collection of elements of A\ < α, β >. Then there exists a connected set C ⊂ Sper A such that α, β ∈ C and C ∩{g i = 0} = ∅ for i ∈ {1, . . . , s} (in other words, α and β belong to the same connected component of the set Sper A \ {g 1 . . . g s = 0}). Definition 0.1.12 A subset C of Sper(A) is said to be definably connected if it is not a union of two non-empty disjoint constructible subsets, relatively closed for the spectral topology.

Conjecture 0.1.13 (Definable connectedness conjecture) Let A be a regular ring. Let α, β ∈ Sper A and let g 1 , . . . , g s be a finite collection of elements of A, not belonging to < α, β >. Then there exists a definably connected set C ⊂ Sper A such that α, β ∈ C and C ∩ {g i = 0} = ∅ for i ∈ {1, . . . , s} (in other words, α and β belong to the same definably connected component of the set Sper A \ {g 1 . . . g s = 0}).

In the earlier paper [START_REF] Lucas | On connectedness of sets in the real spectra of polynomial rings[END_REF] we stated the Connectedness conjecture (in the special case A = B) and proved that it implies the Pierce-Birkhoff conjecture. Exactly the same proof applies verbatim to show that the Definable Connectedness conjecture implies the Pierce-Birkhoff conjecture for any ring A.

One advantage of the Connectedness conjecture is that it is a statement about A (respectively, about the polynomial ring if A = B) which makes no mention of piecewise polynomial functions.

Our problem is therefore one of constructing connected subsets of Sper A having certain properties.

Terminology: If A is an integral domain, the phrase "valuation of A" will mean "a valuation of the field of fractions of A, non-negative on A". Also, we will sometimes commit the following abuse of notation. Given a ring A, a prime ideal p ⊂ A, a valuation ν of A p and an element x ∈ A, we will write ν(x) instead of ν(x mod p), with the usual convention that ν(0) = ∞, which is taken to be greater than any element of the value group. The ring D is a valuation ring, since for any element f ∈ D (0) , either f ∈ D or f -1 ∈ D. For a point α ∈ Sper A, we define R α := A[α]. In this way, to every point α ∈ Sper A we can canonically associate a valuation ν α of A(α), determined by the valuation ring R α . The

maximal ideal of R α is M α = x ∈ A(α) |x| < 1 |z| , ∀z ∈ A[α] \ {0}
; its residue field k α comes equipped with a total ordering, induced by ≤ α .

Let U (R α ) denote the multiplicative group of units of R α and Γ α the value group of ν α . Recall that

Γ α ∼ = A(α) \ {0} U (R α )
and that the valuation ν α can be identified with the natural homomorphism

A(α) \ {0} → A(α) \ {0} U (R α ) .
By definition, we have a natural ring homomorphism

A → R α ( 1 
)
whose kernel is p α .

Conversely, the point α can be reconstructed from the ring R α by specifying a certain number of sign conditions (finitely many conditions when A is noetherian) ( [START_REF] Baer | Uber nicht-archimedisch geordnete Körper (Beitrage zur Algebra)[END_REF], [START_REF] Krull | Allgemeine Bewertungstheorie[END_REF], [START_REF] Bochnak | Géométrie algébrique réelle[END_REF] 10.1.10, p. 217).

The valuation ν α has the following properties:

(1) ν α (A[α]) ≥ 0 (2) If A is an R-algebra then for any positive elements y, z ∈ A(α), ν α (y) < ν α (z) =⇒ y > N z, ∀N ∈ R.

(

A ν α -ideal of A is the preimage in A of an ideal of R α . See [START_REF]Prestel Lectures on formally real fields[END_REF] or [START_REF] Andradas | Constructible Sets in Real Geometry[END_REF], §II.3 for more information on this subject.

As pointed out in [START_REF] Lucas | On connectedness of sets in the real spectra of polynomial rings[END_REF], the points of Sper A admit the following geometric interpretation (see also [START_REF] Fuchs | Telweise geordnete algebraische Strukturen[END_REF], [START_REF] Kaplansky | Maximal fields with valuations I[END_REF], [START_REF]Prestel Lectures on formally real fields[END_REF], p. 89 and [START_REF] Priess-Crampe | Angeordnete strukturen: gruppen, körper, projektive Ebenen[END_REF] for the construction and properties of generalized power series rings and fields). Definition 0.1.14 Let k be a field and Γ an ordered abelian group. The generalized formal power series field k t Γ is the field formed by elements of the form

γ∈Γ a γ t γ , a γ ∈ k such that the set {γ | a γ = 0 } is well ordered. The field k t Γ is equipped with the natural t-adic valuation v with values in Γ, defined by v(f ) = inf{γ | a γ = 0} for f = γ a γ t γ ∈ k t Γ .
The valuation ring of this valuation is the ring k t Γ formed by all the elements of k t Γ of the form γ∈Γ+ a γ t γ . Specifying a total ordering on k and dim F2 (Γ/2Γ) sign conditions defines a total ordering on k t Γ . In this ordering |t| is smaller than any positive element of k. For example, if t γ > 0 for all γ ∈ Γ then f > 0 if and only if a v(f ) > 0.

For an ordered field k, let k denote the real closure of k. The following result is a variation on a theorem of Kaplansky ([15], [START_REF] Kaplansky | Maximal fields with valuations II[END_REF]) for valued fields equipped with a total ordering. Theorem 0.1.15 ([34], p. 62, Satz 21) Let K be a real valued field, with residue field k and value group Γ. There exists an injection K ֒→ k t Γ of real valued fields.

Let α ∈ Sper A. In view of (1) and the Remark above, specifying a point α ∈ Sper A is equivalent to specifying a total order of k α , a morphism

A[α] → kα t Γα (3) 
and dim F2 (Γ α /2Γ α ) sign conditions.

We may pass to Zariski spectra to obtain morphisms

Spec kα t Γα → Spec A[α] → Spec A,
induced by the ring homomorphism (3) and the natural surjective homomorphism A ։ A[α], respectively.

In particular, if Γ α = Z, we obtain a formal curve in Spec A (an analytic curve if the series are convergent). This motivates the following definition: Definition 0.1.16 Let k be an ordered field. A k-curvette on Sper(A) is a morphism of the form

α : A → k t Γ ,
where Γ is an ordered group. A k-semi-curvette is a k-curvette α together with a choice of the sign data sgn x 1 ,..., sgn x r , where x 1 , ..., x r are elements of A whose t-adic values induce an F 2 -basis of Γ/2Γ.

We have thus explained how to associate to a point α of Sper A a kα -semi-curvette. Conversely, given an ordered field k, a k-semi-curvette α determines a prime ideal p α (the ideal of all the elements of A which vanish identically on α) and a total ordering on A/p α induced by the ordering of the ring k t Γ of formal power series.

Below, we will often describe points in the real spectrum by specifying the corresponding semi-curvettes.

Let ν be a valuation centered in a regular local ring A (see §1.1), let Φ = ν(A \ {0}); Φ is a well-ordered set. For an ordinal λ < Φ, let γ λ be the element of Φ corresponding to λ. Definition 0.1.17 A system of approximate roots of ν is a well-ordered set of elements

Q = {Q i } i∈Λ ⊂ A,
satisfying the following condition: for every ν-ideal I in A, we have

I =    j Q γj j j γ j ν(Q j ) ≥ ν(I)    A; (4) 
furthermore, we require the set Q to be minimal in the sense of inclusion among those satisfying (4).

A system of approximate roots of ν up to γ λ is a well-ordered set of elements of A satisfying (4) for all the ν-ideals I such that ν(I) ≤ γ λ .

The main results of this paper are:

1. Given a regular local ring (A, m, k), a valuation ν centered at A, as above, and an element γ λ ∈ Φ such that the ν-ideal determined by γ λ is m-primary, we construct a system of approximate roots up to γ λ .

2. We construct a system of approximate roots for A and ν under the assumption that A is m -adically complete.

3. In the situation of the Connectedness (or Definable Connectedness) conjecure we describe certain subsets C ⊂ Sper A by explicit formulae in terms of approximate roots; we conjecture that these sets satisfy the Connectedness (respectively, Definable Connectedness) conjecture.

4. In the special case dim A = 2, we use the above results and constructions to prove the Definable Connectedness conjecture (and hence a fortiori the Pierce-Birkhoff conjecture). We also prove the Connectedness conjecture in dimension 2, provided the ring A is excellent.

The paper is organized as follows. Sections 1.1 to 1.5 are purely valuation-theoretic; sections 1.2 and 1.4 are devoted to the construction of a system of approximate roots. The approximate roots Q i are constructed recursively in i. Roughly speaking, Q i+1 is the lifting to A of the minimal polynomial equation satisfied by in ν Q i over k {in ν Q j } j<i in gr ν A. In sections 1.1 to 1.5, we prove that such systems of approximate roots exist in two situations: first, for any m-primary ν-ideal J there exists a system of approximate roots up to ν(J); secondly, there exists a system of approximate roots whenever A is m-adically complete.

Once these valuation-theoretic tools are developed, we continue with the program announced in [START_REF] Lucas | On connectedness of sets in the real spectra of polynomial rings[END_REF] for proving the Pierce-Birkhoff conjecture. We place ourselves in the situation of Conjectures 0.1.11 and 0.1.13. In §2.1 we describe the separating ideal < α, β > by describing monomials in the approximate roots (common to the valuations ν α and ν β ) which generate it. In section 2.2, we give an explicit description of a set C ⊂ SperA\{g 1 . . . g s = 0}, containing α and β, which we conjecture to be connected. The set C is described in terms of a finite family of approximate roots, common to the valuations ν α and ν β .

Finally, we prove the Definable connectedness conjecture and hence the Pierce-Birkhoff conjecture for an arbitrary regular 2-dimensional local ring A; we also prove Conjecture 0.1.11 assuming that A is excellent which provides a second proof of the Pierce-Birkhoff conjecture in the case of excellent rings. The outline of the proof of the two conjectures is as follows. First, we use a sequence of point blowings up and Zariski's theory of complete ideals (recalled and refined in §3.1) to transform the set C into a set U of a very simple form, which informally we call a quadrant. Namely, U is the set of all the points δ of Sper A ′ (where A ′ is a regular two-dimensional local ring obtained after a sequence of blowings up with regular system of parameters x ′ , y ′ ), centered at the origin, which induce a specified total order on k and which satify the sign conditions x ′ (δ) > 0, y ′ (δ) > 0 (resp. x ′ (δ) > 0). This is accomplished in §3.3.2.

In the special case when A ′ is essentially of finite type over a real closed field the connectedness of U is well known and follows easily from the results of [START_REF] Bochnak | Géométrie algébrique réelle[END_REF] (which allow to reduce connectedness of U to that of a quadrant in the usual Euclidean plane). However, for more general regular rings this result seems to us to be new and non-trivial.

In §3.4, we use results from [START_REF] Andradas | Constructible Sets in Real Geometry[END_REF] to reduce the connectedness of U to that of a quadrant in the usual Euclidean space, assuming the ring A is excellent. This completes the proof of the connectedness conjecture for excellent regular 2-dimensional rings. In §3.5 we prove the definable connectedness of U , without any excellence assumptions, by using a new notion of a graph, associated to a sequence of point blowings-up of a real surface.

Our proof is based on Madden's unpublished preprint [27]. As well, we would like to acknowledge a recent paper by S. Wagner [START_REF] Wagner | On the Pierce-Birkhoff Conjecture for Smooth Affine Surfaces over Real Closed Fields[END_REF] which gives a proof of the Definable Connectedness and the Pierce-Birkhoff conjecture in the case of smooth 2-dimensional algebras of finite type over real closed fields.

The overall structure of our proof is similar to that of [27] and [START_REF] Wagner | On the Pierce-Birkhoff Conjecture for Smooth Affine Surfaces over Real Closed Fields[END_REF], with the following differences:

1. Here, we have tried to present a proof which should provide a pattern for a general proof of the conjecture, that is, have a hope of generalizing to higher dimensions. In particular, we went to great lengths to phrase everything in terms of approximate roots rather than work directly with connected sets as in [27] and [START_REF] Wagner | On the Pierce-Birkhoff Conjecture for Smooth Affine Surfaces over Real Closed Fields[END_REF].

2. We make no assumptions on the real closedness of the residue field of A which introduces certain extra complications.

3. Because we work with arbitrary regular two-dimensional rings, we have to overcome a serious difficulty: proving that the "quadrant" U , defined above, is connected. This is well known for algebras of finite type over a real closed field (see, for example, [START_REF] Bochnak | Géométrie algébrique réelle[END_REF]) but as far as we can tell, for general rings this result is new and non-trivial. Its proof occupies most of section 3.5.

We thank the referee for his very careful reading of the manuscript and for many useful suggestions which helped improve the paper.

Part 1. Valuations and approximate roots.

Generalities on valuations.

In this section we review some basic facts of valuation theory.

Let A be a noetherian ring and ν :

A → Γ ∪ {∞} a valuation centered at a prime ideal of A. Let Φ = ν(A \ {0}) ⊂ Γ.
For each γ ∈ Φ, consider the ideals

P γ = {x ∈ A | ν(x) ≥ γ } P γ+ = {x ∈ A | ν(x) > γ } . ( 5 
)
P γ is called the ν-ideal of A of value γ. Remark 1.1.1 It is easy to see that, as A is noetherian, ν(A) is well-ordered.
Notation. If I is an ideal of A and ν a valuation of A, ν(I) will denote min{ν(x) | x ∈ I}.

We now define certain natural graded algebras associated to a valuation. Let A, ν and Φ be as above. For γ ∈ Φ, let P γ and P γ+ be as in [START_REF] Baer | Uber nicht-archimedisch geordnete Körper (Beitrage zur Algebra)[END_REF]. We define

gr ν A = γ∈Φ P γ P γ+ .
The algebra gr ν (A) is an integral domain. For any element f ∈ A with ν(f ) = γ, we may consider the natural image of f in P γ P γ+ ⊂ gr ν (A). This image is a homogeneous element of gr ν (A) of degree γ, which we denote by in ν f . The grading induces an obvious valuation on gr ν (A) with values in Φ; this valuation will be denoted by ord.

We end this section with the notion of a monomial valuation. Let (A, m, k) be a regular local ring, and u = (u 1 , . . . , u n ) a regular system of parameters of A. Let Φ be an ordered semigroup and let β 1 , . . . , β n be strictly positive elements of Φ. Let Φ * denote the ordered semigroup, contained in Φ, consisting of all the N 0 -linear combinations of β 1 , . . . , β n . For γ ∈ Φ * , let I γ denote the ideal of A, generated by all the monomials u α such that n j=1 α j β j ≥ γ (we take

I 0 = A). Let x be a non-zero element of A. Let Φ x = {γ ∈ Φ * | x ∈ I γ }.
Then it is not difficult to prove that the set Φ x contains a maximal element and there exists a unique valuation ν, centered at m, such that

ν(u j ) = β j , 1 ≤ j ≤ n (6) 
and

ν(x) = max{γ ∈ Φ x }, x ∈ A \ {0}. ( 7 
)
This valuation is called the monomial valuation of A, associated to u and the n-tuple (β 1 , . . . , β n ). A valuation ν, with values in a group Γ, centered in m, is said to be monomial with respect to u if there exist β 1 , . . . , β n ∈ Γ + such that [START_REF] Bochnak | Géométrie algébrique réelle[END_REF] holds for all x ∈ A \ {0}.

For further results on valuations, see also [43] or [START_REF] Zariski | Samuel Commutative Algebra[END_REF].

The following result is an immediate consequence of definitions: 

S = { i ∈ {1, . . . , n} | ν(y i ) = β} .
The following two conditions are equivalent:

(1)

ν(y) = β (2) i∈S in ν y i = 0.
1.2 Approximate roots up to ν(J) for an m-primary ideal J

Let A be a regular local ring of dimension n, m its maximal ideal, k = A m , u = (u 1 , . . . , u n ) a regular system of parameters and

ν : A \ {0} → Γ a valuation, centered in m (this means ν(m) > 0). Let 1 = ν(m) = min{γ ∈ Φ | γ > 0} and Φ 1 = {γ ∈ Φ | ∃a ∈ N; γ < a • 1}.
For the sake of simplicity, we will write a instead of a • 1. We shall study the structure of ν-ideals P γ where γ ∈ Φ.

If ν were monomial with respect to u then in ν u 1 , . . . , in ν u n would generate gr ν A as a k-algebra. We are interested in analyzing valuations which are not necessarily monomial. We fix an m-primary valuation ideal J. The purpose of sections 1.2 and 1.3 is to construct a system of approximate roots up to ν(J), that is, a finite sequence of elements Q = {Q i } i∈Λ of A such that for every ν-ideal I in A containing J we have

I =    j Q γj j j γ j ν(Q j ) ≥ ν(I)    A (8) 
(in particular, the images in ν Q i of the Q i in gr ν A generate gr ν A as a k-algebra up to degree ν(J)). In this construction, each Q i+1 will be described by an explicit formula (given later in this section) in terms of Q 1 , ..., Q i .

The earliest precursor of approximate roots appears in a series of papers by Saunders MacLane and O.F.G. Schilling [START_REF] Maclane | A construction for prime ideals as absolute values of an algebraic field[END_REF], [START_REF] Maclane | A construction for absolute values in polynomial rings[END_REF] and [START_REF] Maclane | Zero-dimensional branches of rank one on algebraic varieties[END_REF]. In dimension 2, they were defined globally in k[x, y] by S. Abhyankar and T. T. Moh ([1], [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation II[END_REF]) and locally by M. Lejeune-Jalabert [START_REF] Lejeune-Jalabert | Thése d'Etat[END_REF]. See also the papers [START_REF] Kuo | Generalized Newton-Puiseux theory and Hensel's lemma in C[[x, y][END_REF] and [START_REF] Kuo | A simple algorithm for deciding primes in C[[x, y][END_REF] by T. C. Kuo, [START_REF] Goldin | Resolving singularities of plane analytic branches with one toric morphism[END_REF] by R. Goldin and B. Teissier and [36] by M. Spivakovsky, [START_REF] Herrera Govantes | Valuations in algebraic field extensions[END_REF] by F.J. Herrera Govantes, M.A. Olalla Acosta, M. Spivakovsky, [START_REF] Vaquié | Famille admise associée à une valuation de K[END_REF]- [START_REF] Vaquié | Famille admissible de valuations et défaut d'une extension[END_REF] by Michel Vaquié. We also refer the reader to the paper [START_REF] Teissier | Valuations, deformations and toric geometry[END_REF] by B. Teissier for a different approach to the theory of approximate roots in higher dimensions.

Let k = A m = A m ν ∩ A be the residue field of A. Fix an isomorphism A J ∼ = k[u 1 , . . . , u n ] J 0 ,
where J 0 is an ideal of k[u 1 , . . . , u n ]. In this way, we will view k as a subring of A/J. We fix, once and for all, a section k → A of the natural map A → k which composed with the natural map A → A J maps k isomorphically onto its image in A J . The image of k in A will be denoted by k.

According to Definition 0.1.17, we are looking for a finite set of elements

Q = {Q i } i∈Λ , Q i ∈ A satisfying (8).
Remark 1.2.1 This means, in particular, that the initial forms in ν (Q 1 ), in ν (Q 2 ), . . . generate gr ν (A), up to degree ν(J). In other words, we want to build Q such that, for f ∈ A, we have in

ν (f ) ∈ k[in ν Q] provided ν(f ) ≤ ν(J).
Since J is an m-primary ideal, there are only finitely many elements of Φ less than or equal to ν(J). We proceed by induction on the finite set {γ ∈ Φ | γ ≤ ν(J)}.

Definition 1.2.2 Let E be an ordered set of elements of

A. A generalized monomial Q α in E is a formal expression Q α = Q∈E Q αQ
where α Q ∈ N and α Q = 0 for all Q outside of a finite subset of E.

We view the set N E as being ordrered lexicographically and order the set of generalized monomials by the lexicographical order of the pairs (ν(Q α ), α).

The semigroup Φ is well ordered. For a natural number λ, γ λ will denote the λ-th element of Φ.

We start by choosing a coordinate system adapted to the situation. Definition 1.2.3 Take j ∈ {2, . . . , n}. We say that u j is (ν, J)-prepared if either u j ∈ J or there does not exist f ∈ A such that in ν u j = in ν f and (9)

f mod J ∈ k[u 1 , . . . , u j-1 ] k[u 1 , . . . , u j-1 ] ∩ J 0 . ( 10 
)
The coordinate system u = {u 1 , . . . , u n } is (ν, J)-prepared if u j is (ν, J)-prepared for all j ∈ {2, . . . , n}.

Proposition 1.2.4 There exists a (ν, J)-prepared coordinate system.

Proof: We construct a (ν, J)-prepared coordinate system recursively in j. Assume that u 2 , . . . , u j-1 are already (ν, J)-prepared, but u j is not. Take f ∈ A satisfying ( 9) and [START_REF] Fuchs | Telweise geordnete algebraische Strukturen[END_REF].

Let ũj = u jf ; then ν(ũ j ) > ν(u j ).

Since there are only finitely many elements of Φ less than ν(J), after finitely many repetitions of the above procedure, we may assume that u j is (ν, J)-prepared. This completes the proof by induction on j.

We construct, recursively in λ, two finite ordered sets Λ(γ λ ) and Θ(γ λ ) with

Λ(γ λ ) ⊂ λ ′ <λ Θ(γ λ ′ ),
and a total ordering of the set Λ(γ λ ) ∪ Θ(γ λ-1 ), compatible with the orders on Λ(γ λ ) and Θ(γ λ-1 ). We do not impose a total order on the union λ ′ <λ Θ(γ λ ′ ). At each step we define additional finite ordered sets

V(γ λ ) ⊂ Ψ(γ λ ) ⊂ Λ(γ λ ), (11) 
where the inclusions in [START_REF] Herrera Govantes | Valuations in algebraic field extensions[END_REF] are inclusions of ordered sets. Both collections of sets Λ(γ λ ) and V(γ λ ) will be increasing with λ. A typical element of each of those sets will have the form (Q, Ex(Q)) where Q ∈ A and Ex(Q) is a sum of monomials in Λ(γ λ ) ∪ Θ(γ λ-1 ), written in the increasing order according to the on monomials, defined above. Given an element (Q, Ex(Q)) ∈ Λ(γ λ )∪Θ(γ λ ), Q is called an approximate root and Ex(Q) is called the expression of Q. In what follows, we adopt the convention

Θ(γ λ ) = V(γ λ ) = Ψ(γ λ ) = Λ(γ λ ) = ∅ whenever λ < 0.
For a natural number ℓ, γ ℓ ≤ ν(J), and for (

Q, Ex(Q)) ∈ Λ(γ ℓ ) ∪ Θ(γ ℓ ), let In Q denote the smallest monomial of Ex(Q). Let In(ℓ) = α ∈ N V(γ ℓ ) ∃(Q, Ex(Q)) ∈ Λ(γ ℓ ) such that Q α = In Q .
Theorem 1.2.5 For a natural number λ, γ λ ≤ ν(J), there exist finite ordered sets

V(γ λ ) ⊂ Ψ(γ λ ) ⊂ Λ(γ λ )
and Θ(γ λ ) (and a total ordering of Λ(γ λ ) ∪ Θ(γ λ-1 )) consisting of elements (Q, Ex(Q)), with Q ∈ A and Ex(Q) a sum of monomials in V(γ λ ) ∪ Θ(γ λ-1 ), increasing with respect to the given order on monomials, and having the following properties:

ν(Q) < γ λ whenever (Q, Ex(Q)) ∈ Λ(γ λ ) (12) ν(Q) ≥ γ λ whenever (Q, Ex(Q)) ∈ Θ(γ λ ). ( 13 
)
Moreover, for any

(Q, Ex(Q)) ∈ Λ(γ λ ), any monomial Q α appearing in Ex(Q) is a mono- mial in V(γ λ-1 ) provided Q∈ /{u 1 , . . . , u n }. For any (Q, Ex(Q)) ∈ Θ(γ λ ), any monomial Q α appearing in Ex(Q) is a monomial in (V(γ λ+1 ) ∩ Θ(γ λ-1 )) ∪ V(γ λ ) provided Q∈ /{u 1 , . . . , u n }. An element (Q, Ex(Q)) ∈ Ψ(γ λ ) ∪ Θ(γ λ )
is completely determined by In Q.

Proof: We proceed by induction on λ.

First define Ψ(1) = Λ(1) = ∅ and Θ(1) = {(u 1 , u 1 ), . . . , (u n , u n )} where we assume

ν(u 1 ) ≤ ν(u 2 ) ≤ • • • ≤ ν(u n ).
We define the total ordering on Θ(1) by (u

1 , u 1 ) < (u 2 , u 2 ) < • • • < (u n , u n ).
Let λ > 0 be a natural number such that γ λ ≤ ν(J). Assume that for each ℓ < λ we have constructed sets V(γ ℓ ) ⊂ Ψ(γ ℓ ) ⊂ Λ(γ ℓ ) and Θ(γ ℓ ) having the properties required in the theorem.

Let

Λ(γ λ ) = Λ(γ λ-1 ) ∪ {(Q, Ex(Q)) ∈ Θ(γ λ-1 ) | ν(Q) < γ λ }. ( 14 
) Definition 1.2.6 An element (Q, Ex(Q)) ∈ Λ(γ λ ) is an inessential predecessor of an approximate root (Q ′ , Ex(Q ′ )) ∈ Λ(γ λ ) if Ex(Q ′ ) = Ex(Q) + α c α Q α , where c α ∈ k and the Q α are monomials in V(γ λ ). An element (Q, Ex(Q)) ∈ Λ(γ λ ) is said to be essential at the level γ λ if Q is not an inessential predecessor of an element of Λ(γ λ ).
Let Ψ(γ λ ) be the subset of Λ(γ λ ) consisting of all the essential roots at the level γ λ . Let V(γ λ ) be the subset of Ψ(γ λ ) consisting of all (Q, Ex(Q)) such that in ν (Q) does not belong to the k-vector space of G = gr ν (A) generated by the set {in ν Q γ } where Q γ runs over the set of all the generalized monomials on roots preceding Q in the above ordering. We extend the total ordering from Λ(γ λ-1 ) to Λ(γ λ ) by postulating that Λ(γ λ-1 ) is the initial segment of Λ(γ λ ). Moreover, we extend this order to Λ(γ λ ) ∪ Θ(γ λ-1 ) by postulating that Λ(γ λ ) is the initial segment of Λ(γ λ ) ∪ Θ(γ λ-1 ).

For a natural number ℓ, let E(ℓ) = In(ℓ) + N V(γ ℓ ) ⊂ N V(γ ℓ ) . Now consider the ordered set {Q α1 , . . . , Q αs } of monomials

Q α = Q αQ , (Q, Ex(Q)) ∈ V(γ λ ) ∪ { (Q, Ex(Q)) ∈ Θ(γ λ-1 ) | ν(Q) = γ λ } (15) 
of value γ λ , such that the natural projection of α to N V(γ λ ) does not belong to E(λ).

Let i 1 = max i ∈ {1, . . . , s} in ν (Q αi ) ∈ s j=i+1 k in ν (Q αj ) and consider the unique relation in ν (Q αi 1 ) - s j=i1+1 c 1j in ν (Q αj ) = 0. Let P 1 = Q αi 1 - s j=i1+1 c 1j Q αj where c 1j ∈ k
is the image of c 1j under the chosen section k → A.

Let i 2 = max i ∈ {1, . . . , i 1 -1} in ν (Q αi ) ∈ s j=i+1
k in ν (Q αj ) and, as before, consider the unique

P 2 = Q αi 2 - s j=i 2 +1 j =i1
c 2j Q αj such that the vector (α j ) j=i1+1,...,s , c 2j = 0, is minimal in the lexicographical order. We continue in this way and define P 3 , . . . , P t . Let

Θ(γ λ ) = { (Q, Ex(Q)) ∈ Θ(γ λ-1 ) | ν(Q) ≥ γ λ } ∪ {(P 1 , Ex(P 1 )), . . . , (P t , Ex(P t ))} (16) 
where

Ex(P j ) = Ex(Q) - k c jk Q α k (17) if Q αi j = Q with (Q, Ex(Q)) ∈ { (Q, Ex(Q)) ∈ Θ(γ λ-1 ) | ν(Q) = γ λ } and Ex(P j ) = Q αi j - k c jk Q α k (18) 
otherwise.

We define the order on Θ(γ λ ) by Θ(γ λ-1 ) < {(P 1 , Ex(P 1 )), . . . , (P t , Ex(P t ))} and (P 1 , Ex(P 1 )) < • • • < (P t , Ex(P t )).

Remark 1.2.7 Note that, because the coordinate system is prepared, u 1 , . . . , u n are always essential.

Remark 1.2.8 Suppose given two approximate roots Q 1 and Q 2 such that

In(Q 1 ) = In(Q 2 ) = Q α
and suppose that Q 1 appears before Q 2 in the process of construction of the approximate roots decribed above. Because of the uniqueness of the construction of the P i 's above, we have

ν(Q 2 ) > ν(Q 1 ). Now, if ν(Q α ) = γ ℓ , then α ∈ E(ℓ), so the only way the monomial Q α can appear as an initial form of Q 2 is when P k = Q ′ + c j Q αj where In(Q ′ ) = Q α and then ν(Q ′ ) < ν(Q 2 ). Then, either ν(Q ′ ) = ν(Q 1 ) and so Q ′ = Q 1 because of the uniqueness in the construction process, or ν(Q ′ ) > ν(Q 1 ), but we conclude by descending induction that Q 2 = Q 1 + c j Q αj and Ex(Q 2 ) = Ex(Q 1 ) + c j Q αj .

So finally, the expression of an approximate root has the form

Ex(Q) = Q αi j + k a k Q α k ( 19 
)
the sum being written in the increasing order of the monomials.

Remark 1.2.9 This construction is very similar to finding a basis of the space of relations by row reduction.

Remark 1.2.10 We just showed that there is a one to one correspondence Q ↔ In(Q) between the approximate roots Q ∈ Ψ(γ ℓ ) and the set of monomials which are the first term of the expression Ex(Q) of such an approximate root Q. Let us denote by M(ℓ) the set of those monomials.

The last part of the theorem holds by construction.

Standard form up to ν(J)

Consider the integer λ such that γ λ = ν(J). Assume that the system of coordinates u of A is (ν, J)-prepared.

Definition 1.3.1 A monomial in Ψ(γ λ ) ∪ Θ(γ λ
) is called standard with respect to λ if all the approximate roots appearing in it belong to V(γ λ ) and it is not divisible by any

In(Q) where Q is an approximate root in (Ψ(γ λ ) ∪ Θ(γ λ )) \ {(u 1 , u 1 ), . . . , (u n , u n )}. Definition 1.3.2 Let f ∈ A and let ℓ be a positive integer, ℓ ≤ λ. An expression of the form f = c α Q α ,
where the Q α are monomials in Ψ(γ λ )∪Θ(γ λ ), written in the increasing order, is a standard form of level γ ℓ with respect to λ if for all γ ′ < γ ℓ and for all α such that ν(Q α ) = γ ′ and c α = 0, Q α is a standard monomial with respect to λ.

We now construct, by induction on ℓ, a standard form of f of level γ ℓ . We will write this standard form as

f = f ℓ + c α Q α where, for all α, Q α is a generalized monomial in Ψ(γ λ ) ∪ Θ(γ λ ), ν(Q α ) ≥ γ ℓ and f ℓ is a sum of standard monomials in V(γ λ ) of value strictly less than γ ℓ .
To start the induction, let f 0 = 0. The standard form of f of level 0 with respect to λ will be its expansion f = f 0 + c α u α as a formal power series in the u i , with the monomials written in the increasing order according to the monomial order defined above,.

Let ℓ be a natural number, ℓ < λ. Let us define f ℓ+1 and the standard form of f of level γ ℓ+1 as follows. Assume we already have an expression

f = f ℓ + c α Q α with ν(Q α ) ≥ γ ℓ ,
for all α, and the value of any monomial of f ℓ is strictly less than γ ℓ .

Take the homogeneous part of c α Q α of value γ ℓ , with the monomials arranged in the increasing order, and consider the first monomial Q α which is not standard. Since Q α is not standard, one of the following two conditions holds:

1. There exists an approximate root

Q ∈ (Ψ(γ λ ) ∪ Θ(γ λ )) \ {(u 1 , u 1 ), . . . , (u n , u n )} such that In(Q) divides Q α . Write Q = In(Q)+ c β Q β and replace In(Q) by Q-c β Q β in Q α . 2. There exists Q ∈ Ψ(γ λ ) \ V(γ λ ) which divides Q α . Since Q∈ /V(γ λ ), there exists Q ′ ∈ Ψ(γ λ ) ∪ Θ(γ λ ) of the form Q ′ = Q + δ d δ Q δ where Q δ are monomials in V(γ λ ) of value greater than or equal to γ ℓ . Replace Q by Q ′ - δ d δ Q δ .
In both cases, those changes introduce new monomials, but either they are of value strictly greater than γ ℓ or they are of value exactly γ ℓ but greater than Q α in the monomial ordering.

We repeat this procedure as many times as we can. After a finite number of steps, no more changes are available at level γ ℓ+1 . Then, let

f ℓ+1 = f ℓ + d β Q β with ν(Q β ) = γ ℓ , so that f = f ℓ+1 + c α Q α where ν(Q α ) > γ ℓ .
The expression thus constructed satisfies the definition of standard form of level γ ℓ+1 because all the non-standard monomials Q α of value less than or equal to γ ℓ have been eliminated.

Proposition 1.3.3 Let f = f ℓ + c α Q α be a standard form of f of level γ ℓ and γ < γ ℓ an element of Φ. Then ν(Q β )=γ c β Q β ∈ /P γ+ .
Proof : We give a proof by contradiction. Suppose there exists a relation of the form

ν(Q β )=γ c β Q β ∈ P γ+ . (20) 
Let Q α be the smallest monomial on the left hand side of [START_REF] Lejeune-Jalabert | Thése d'Etat[END_REF]. By construction of approximate roots, there exists a finite collection

Q 1 , . . . , Q s ∈ Λ(γ+) ∪ θ(γ+) and generalized monomials Q ω1 , . . . , Q ωs such that s i=1 Q i Q ωi = ν(Q β )=γ c β Q β .
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There exists i ∈ {1, . . . , s} such that one of the two conditions holds : either

Q α = Q ωi • In(Q i ) or Q i = Q ′ i + ǫ b ǫ Q ǫ , Q ′ i ∈ Λ(γ+) \ Ψ(γ+).
In either case, the monomial Q α is not standard, which gives the desired contradiction.

For each ℓ, the part f ℓ of a standard form of f of level γ ℓ is uniquely determined. This is a straightforward consequence of the Proposition.

As a consequence of Proposition 1.3.3, note that if γ ℓ > ν(f ) then ν(f ) equals the smallest value of a monomial appearing in the standard form of f of level γ ℓ .

Theorem 1.3.4 (1) Take γ ∈ Φ, γ < γ λ . Then P γ P γ+ is generated as a k-vector space by {in ν Q β } where Q β runs over the set of all the standard monomials with respect to λ,

satisfying ν(Q β ) = γ. ( 2 
)
The part of the graded k-algebra gr ν (A) of degree strictly less than γ λ is generated by the initial forms of the approximate roots of V(γ λ ).

Proof : Take an element γ ∈ Φ, γ < γ λ . Let h ∈ P γ /P γ + be a homogeneous element of degree γ of gr ν (A) and let f ∈ P γ be such that in

ν (f ) = h. Let c β Q β denote the homogeneous part of least value of a standard form of f of level γ λ . Then the initial form of f is in ν (c β Q β ).
The Alvis-Johnston-Madden example. Let α be the point of Sper(R[x, y, z]) given by the curvette x(t) = t 6 , y(t) = t 10 + ut 11 , z(t) = t 14 + t 15 where u is some fixed element of R with u > 2. Let J be a ν α -ideal of value greater than or equal to 37. The calculation of the first few approximate roots gives

Q 1 = x, (21) 
Q 2 = y, (22) 
Q 3 = z, (23) 
Q 4 = y 2 -xz = (2u -1)t 21 + u 2 t 22 , ν(Q 4 ) = 21 (24) 
Q 5 = yz -x 4 = (u + 1)t 25 + ut 26 , ν(Q 5 ) = 25 (25) Q 6 = z 2 -x 3 y = (2 -u)t 29 + t 30 , ν(Q 6 ) = 29 (26) 
Q (31) 7 = yQ 4 -α(u)xQ 5 , α(u) = (2u -1)/(u + 1), ν Q (31) 7 
= 32 ( 27)

Q (32) 7 = yQ 4 -α(u)xQ 5 -β(u)x 3 z, ν Q (32) 7 
= 33 ( 28)

Q (33) 7 = yQ 4 -α(u)xQ 5 -β(u)x 3 z -γ(u)x 2 Q 4 (29) Q (34) 7 = yQ 4 -α(u)xQ 5 -β(u)x 3 z -γ(u)x 2 Q 4 -δ(u)x 4 y (30) 
Q (35) 7 = yQ 4 -α(u)xQ 5 -β(u)x 3 z -γ(u)x 2 Q 4 -δ(u)x 4 y -ǫ(u)xQ 6 (31) 
Q (35) 8 = zQ 4 + ζ(u)xQ 6 (32) 
Q (35) 9 = yQ 5 + η(u)xQ 6 , (33) 
where β(u), γ(u), δ(u), ǫ(u), ζ(u), η(u) are functions of u which can be calculated explicitly. The elements listed above belong to Λ(37); we chose to index them as

Q (j) i . In this notation, the approximate root Q (j) i is an inessential predecessor of Q (j+1) i whenever Q (j+1) i is defined.
We also note the relation xQ 6 -yQ 5 + zQ 4 = 0, which is the simplest example of a syzygy, an important phenomenon, responsible for much of the difficulty of the Pierce-Birkhoff conjecture.

In the same vein, we can describe the standard form of different levels of an element of A, say for instance,

f = x 3 + y 3 + z 3 (34) 
(which is a standard form of level 0). For γ ≤ 30, the standard form of f of level γ is given by [START_REF] Priess-Crampe | Angeordnete strukturen: gruppen, körper, projektive Ebenen[END_REF]. Then, as y 2 ∈ E(8) (this is so because 21 is the eighth positive element of the value semigroup Φ), we replace y 3 by y(Q 4 + xz) to obtain

f = x 3 + yQ 4 + xyz + z 3 . ( 35 
)
Since yz ∈ E(11) (note that 25 is the eleventh positive element of the value semigroup Φ), we replace xyz in ( 35) by xQ 5 + x 5 , to obtain the standard form of level 31:

f = x 3 + x 5 + yQ 4 + xQ 5 + z 3 (36) 
(the monomials being written in the order of increasing values [START_REF] Kuo | Generalized Newton-Puiseux theory and Hensel's lemma in C[[x, y][END_REF][START_REF] Marshall | The Pierce-Birkhoff conjecture for curves[END_REF][START_REF] Matsumura | Commutative Algebra[END_REF][START_REF] Matsumura | Commutative Algebra[END_REF][START_REF] Vaquié | Famille admissible de valuations et défaut d'une extension[END_REF]. Next, we replace yQ 4 by α(u)xQ 5 in (36), so the standard form of levels 32, 33, 34 and 35 is given by

f = x 3 + x 5 + (1 + α(u))xQ 5 + β(u)x 3 z + γ(u)x 2 Q 4 + δ(u)x 4 y + Q (34) 7 + z 3 ,
and so on ... Let ℓ be an integer such that γ ℓ ≤ γ λ . Let X = X V(γ ℓ ) be a set of independent variables, indexed by V(γ ℓ ), and consider the graded k-algebra k X V(γ ℓ ) , where we define

deg X j = ν(Q j ).
Let P denote the homogeneous monomial ideal of k X V(γ ℓ ) generated by all the monomials in X V(γ ℓ ) of degree greater than or equal to γ ℓ . We have a natural map

φ ℓ : k[X V(γ ℓ )] P → gr ν A Pγ ℓ X j → in ν Q j .
Now, for ℓ = 0, let I 0 = (0). For ℓ > 0, let I ℓ denote the ideal of k[X V(γ ℓ ) ] P generated by all the homogeneous polynomials of the form

X α0 + λ 1 X α1 + λ 2 X α2 + • • • + λ b0 X α b 0 (37) 
where

Q α0 + λ 1 Q α1 + λ 2 Q α2 + • • • + λ b0 Q α b 0 is the homogeneous part of least degree of Ex(Q) for an approximate root Q ∈ V(γ ℓ ) ∪ Θ(γ ℓ ).
Corollary 1.3.5 We have ker φ ℓ = I ℓ .

Proof : The inclusion I ℓ ⊂ ker φ ℓ is immediate. To prove the opposite inclusion, we argue by contradiction. Take a homogeneous element

h = a λ1 X λ1 + a λ2 X λ2 + • • • + a λs X λs ∈ ker(φ ℓ ) \ I ℓ (38) 
of degree b, b < γ ℓ , such that λ 1 is lexicographically smallest among all the elements h ∈ ker(φ ℓ ) \ I ℓ of degree b.

The inclusion [START_REF] Teissier | Valuations, deformations and toric geometry[END_REF] implies that

a λ1 in ν Q λ1 + a λ2 in ν Q λ2 + • • • + a λs in ν Q λs = 0. ( 39 
)
in P b /P b+ . By definition of I ℓ , there exists an element g ∈ I ℓ of the form X ǫ + p c p X ǫp and a monomial X δ with ǫ p > ǫ for all p and λ 1 = ǫ + δ. Then, as g ∈ I ℓ ⊂ ker(φ ℓ ), we have ha λ1 X δ g ∈ ker(φ ℓ ) and the greatest monomial of ha λ1 X δ g is strictly bigger than X λ1 . This contradicts the choice of h. Corollary 1.3.6 Take an element γ ∈ Φ, γ < γ λ . The valuation ideal P γ is generated by all the generalized monomials of value greater than or equal to γ in {Q | (Q, Ex(Q)) ∈ Ψ(γ λ )}. The ideal P γ λ is generated by all the generalized monomials of value greater than or equal to

γ λ in {Q | (Q, Ex(Q)) ∈ Ψ(γ λ ) ∪ Θ(γ λ )}.
Proof: Let f ∈ P γ (resp. f ∈ P γ λ ). By the very definition of the standard form of level ℓ such that γ ℓ = γ, f can be written as an A-linear combination of generalized monomials of value greater than or equal to

γ in {Q | (Q, Ex(Q)) ∈ Ψ(γ λ )} (resp. ∈ Ψ(γ λ ) ∪ Θ(γ λ ))
. Thus P γ (resp. P γ λ ) is generated by the generalized monomials of value at least γ, as desired. We keep the same notation as in §2.

The purpose of this section is to construct, for a general ν, a system of approximate roots of ν, that is, a well-ordered collection of elements Q = {Q i } i∈Λ of A such that for every ν-ideal I in A, we have

I =    j Q γj j j γ j ν(Q j ) ≥ ν(I)    A (40) 
(in particular, the images in ν Q i of the Q i in gr ν A generate gr ν A as a k-algebra). Each Q i+1 will be described by an explicit formula (given later in this section) in terms of the Q j , j < i.

In this general setting, we have to proceed by transfinite induction on the well-ordered semigroup Φ. Since we are not assuming that rk Γ = 1 or that Φ is Archimedean, we have to work with ordinals other than the natural numbers.

Remark on the use of transfinite induction. Since the ring A is noetherian, the group Γ of values of ν has finite rank. Therefore all the ordinals ℓ we will encounter in this paper will be of type ℓ ≤ ω n (cf. [43] and [START_REF] Cutkosky | Semi-groups of valuations on local rings[END_REF]). Thus we will be using a very special form of transfinite induction, which amounts to usual induction, applied finitely many times. We will, however, stick to the language of transfinite induction to simplify the exposition.

Recall the definition of generalized monomial with respect to a totally ordered set E ⊂ A (Definition 1.2.2). Assume in addition that E is well-ordered. We well-order the set N E by the lexicographical ordering and the set of generalized monomials by the lexicographical ordering on the set of triples (ν

(Q α ) , ν m (Q α ) , α).
The semigroup Φ is well ordered. By abuse of notation, we will sometimes write Φ for the ordinal given by the order type of Φ. Let λ < Φ be an ordinal and γ λ the element of Φ corresponding to λ.

We start by choosing a coordinate system adapted to the situation. Fix an isomorphism

A ∼ = k[[u 1 , . . . , u n ]]. ( 41 
)
Definition 1.4.1 Take j ∈ {2, . . . , n}. We say that u j is ν-prepared if there does not exist

f ∈ A such that in ν u j = in ν f and f ∈ k[[u 1 , . . . , u j-1 ]]. The coordinate system u = {u 1 , . . . , u n } is ν-prepared if u j is ν-prepared for all j ∈ {2, . . . , n}.
Proposition 1.4.2 There exists a ν-prepared coordinate system.

Proof: We construct a ν-prepared coordinate system recursively in j. Assume that u 2 , . . . , u j-1 are ν-prepared, but u j is not. We will construct the prepared coordinate ũj recursively by transfinite induction on Φ. More precisely, we will construct a well ordered set {u ji } of successive approximation to ũj in the m-adic topology. We will show that this set satisfies the hypothesis of Zorn's lemma and let ũj be its maximal element.

The details go as follows. Let u j0 = u j . Suppose that u ji is constructed and that it is not prepared. Let f ji be the element f of k[[u 1 , . . . , u j-1 ]] appearing in the definition of "not prepared". Put u j,i+1 = u jif ji . Then ν(u ji ) = ν(f ji ) < ν(u j,i+1 ). Next, suppose given a sequence u ji , u j,i+1 , . . . of elements of k[[u 1 , . . . , u j ]] such that (u 1 , . . . , u j-1 , u jq ) is a regular system of parameters of k[[u 1 , . . . , u j ]] for each q and

ν(u ji ) < ν(u j,i+1 ) < ν(u j,i+2 ) < • • • .
Let β q = ν(u jq ). Since the ring A is noetherian, the semi-group Φ is well-ordered. Let β = min {β ∈ Φ | β > β q , ∀q ∈ N }. By Chevalley's lemma, applied to the nested sequence of ideals

P βq ∩ k[[u 1 , . . . , u j-1 ]] P β ∩ k[[u 1 , . . . , u j-1 ]] in the complete local ring k[[u 1 , . . . , u j-1 ]] P β ∩ k[[u 1 , . . . , u j-1 ]]
, we see that lim q→∞ (f jq mod P β ) = 0 in the (u 1 , . . . , u j-1 )-adic topology.

Hence, modifying each f jq by an element of P β if necessary, we may assume that lim q→∞ f jq = 0.

We define u j,i+ω to be the formal power series

u ji -f ji -f j,i+1 -• • • . By construction, ν(u j,i+ω ) ≥ β.
To complete our construction , we need to consider countable well ordered sets {u jt } of order type greater than ω. This presents no problem: by countability, we can always choose a cofinal subsequence in each such set. Then the above construction of u j,i+ω applies verbatim.

We construct, inductively in λ, two well-ordered sets Λ(γ λ ) and Θ(γ λ ) and, in the case λ is not a limit ordinal, a well ordering of the set Λ(γ λ ) ∪ Θ(γ λ-1 ), compatible with the orders on Λ(γ λ ) and Θ(γ λ-1 ). At each step we define two additional well-ordered sets V(γ λ ) ⊂ Ψ(γ λ ) ⊂ Λ(γ λ ) where the inclusions are inclusions of ordered sets. Both collections of sets Λ(γ λ ) and V(γ λ ) will be increasing with λ.

A typical element of each of those sets will have the form (Q, Ex(Q)) where

Q ∈ A and Ex(Q) is an increasing sum of monomials in V(γ λ ) ∪ Θ(γ λ-1 ) if λ is not a limit ordinal, resp. monomials in V(γ λ ) if λ is a limit ordinal. The sum in Ex(Q) may be finite or infinite, but it is always convergent in the m-adic topology. Given an element (Q, Ex(Q)) ∈ Λ(γ Φ ) ∪ Θ(γ Φ ), Q is called an approximate root and Ex(Q) is called the expression of Q. For an ordinal ℓ < Φ and for (Q, Ex(Q)) ∈ Λ(γ ℓ ) ∪ Θ(γ ℓ ), let In Q denote the smallest monomial of Ex(Q). Let In(ℓ) = α ∈ N V(γ ℓ ) ∃(Q, Ex(Q)) ∈ Λ(γ ℓ ) such that Q α = In Q . Theorem 1.4.3 For λ < Φ, there exist well ordered sets V(γ λ ) ⊂ Ψ(γ λ ) ⊂ Λ(γ λ ) and Θ(γ λ ),
and a well ordering of Λ(γ λ ) ∪ Θ(γ λ-1 ) when λ is not a limit ordinal, having the following properties. Let

Ψ(< γ λ ) = Ψ(γ λ-1 ) if λ is not a limit ordinal and (42) Ψ(< γ λ ) = Ψ(γ λ ) otherwise ( 43 
)
and similarly for V(< γ λ ). Then each set V(γ λ ), Ψ(γ λ ), Λ(γ λ ), Θ(γ λ ) consists of elements of the form (Q, Ex(Q)), with Q ∈ A and Ex(Q) is an increasing (with respect to the monomial order defined above) sum of monomials in V(< γ λ ) ∪ Θ(γ λ-1 ) when λ is not a limit ordinal, resp. V(γ λ ) when λ is a limit ordinal, of value < ν(Q), provided Q∈ /{u 1 , . . . , u n }, such that

ν(Q) < γ λ whenever (Q, Ex(Q)) ∈ Λ(γ λ ) (44) ν(Q) ≥ γ λ whenever (Q, Ex(Q)) ∈ Θ(γ λ ) (45)
and the sets

{(Q, Ex(Q)) ∈ Θ(γ λ ) ∪ Λ(γ λ ) | ν(Q) = γ}, γ ∈ Φ (46) and { (Q, Ex(Q)) ∈ Ψ(γ λ ) ∪ Θ(γ λ ) | Q∈ /m s } , s ∈ N (47) are finite. An element (Q, Ex(Q)) ∈ Ψ(γ λ ) ∪ Θ(γ λ ) is completely determined by In Q; moreover ν m (In Q) = ν m (Q).
In what follows, Λ(< γ λ ) will stand for ℓ<λ Λ(γ ℓ ).

Proof : We proceed by transfinite induction. First define Ψ(1) = Λ(1) = ∅ and Θ(1) = {(u 1 , u 1 ), . . . , (u n , u n )} where we assume

ν(u 1 ) ≤ ν(u 2 ) ≤ • • • ≤ ν(u n ).
We define the well ordering on Θ(1) by (u

1 , u 1 ) < (u 2 , u 2 ) < • • • < (u n , u n ).
Let λ < Φ be an ordinal. Assume that for each ℓ < λ we have constructed sets Ψ(γ ℓ ) ⊂ Λ(γ ℓ ) and Θ(γ ℓ ) and a well ordering of Λ(γ ℓ ) ∪ Θ(γ ℓ-1 ), having the properties required in the theorem.

Let

Λ(γ λ ) = Λ(< γ λ ) if λ is a limit ordinal (48) Λ(γ λ ) = Λ(γ λ-1 ) ∪ {(Q, Ex(Q)) ∈ Θ(γ λ-1 ) | ν(Q) < γ λ } otherwise. ( 49 
) Definition 1.4.4 An element (Q, Ex(Q)) ∈ Λ(γ λ ) is an inessential predecessor of a root (Q ′ , Ex(Q ′ )) ∈ Λ(γ λ ) if Ex(Q ′ ) = Ex(Q) + α c α Q α , where each c α is a unit in A and Q α a monomial in V(γ λ ). An element (Q, Ex(Q)) ∈ Λ(γ λ
) is said to be essential at the level γ λ if Q is not an inessential predecessor of an element of Λ(γ λ ).

Let Ψ(γ λ ) be the subset of Λ(γ λ ) consisting of all the essential roots at the level γ λ . Let V(γ λ ) be the subset of Ψ(γ λ ) consisting of all (Q, Ex(Q)) such that in ν (Q) does not belong to the k-vector space of gr ν (A) generated by the set {in ν Q γ } where Q γ runs over the set of all the generalized monomials on roots preceding Q in the above ordering. We extend the well ordering from Λ(< γ λ ) to Λ(γ λ ) by postulating that Λ(< γ λ ) is the initial segment of Λ(γ λ ). Moreover, we extend this well ordering from Λ

(γ λ ) to Λ(γ λ ) ∪ Θ(γ λ-1 ). If ℓ is not a limit ordinal, let E(ℓ) = In(ℓ) + N V(γ ℓ ) ⊂ N V(γ ℓ ) . Now, if ℓ ′ < ℓ ′′ , we have V(γ ℓ ′ ) ⊂ V(λ ℓ ′′ ), which induces an inclusion N V(γ ℓ ′ ) ⊂ N V(γ ℓ ′′ ) . If ℓ is a limit ordinal, define E(ℓ) = ℓ ′ <ℓ E(ℓ ′ ). Notation. Denote by Θ(< γ λ ) the set ℓ<λ Θ(γ ℓ ) \ Λ(< γ λ ). Remark 1.4.5 We have Ψ(γ λ ) ∪ Θ(< γ λ ) = Ψ(< γ λ ) ∪ Θ(< γ λ ). ( 50 
)
Indeed, consider an element (Q, Ex(Q)) ∈ Ψ(γ λ ) ∪ Θ(< γ λ ). If λ is a limit ordinal, then (Q, Ex(Q)) ∈ Ψ(< γ λ ) ∪ Θ(< γ λ ) (51) 
by (43). If λ is not a limit ordinal and

(Q, Ex(Q)) ∈ Ψ(γ λ ) \ Ψ(γ λ-1 ) then (Q, Ex(Q)) ∈ Θ(γ λ-1 )
by (49). Thus (51) holds in all the cases and (50) is proved.

Lemma 1.4.6 The set Q(h) = (Q, Ex(Q)) ∈ Ψ(γ λ ) ∪ Θ(< γ λ ) | Q∈ /m h is finite for every h ∈ N. Proof: Consider an element (Q, Ex(Q)) ∈ Q(h). If (Q, Ex(Q)) ∈ Θ(< γ λ ), then there exists ℓ < λ such that (Q, Ex(Q)) ∈ Θ(< γ ℓ ). If (Q, Ex(Q)) ∈ Ψ(< γ λ ) ⊂ Λ(γ λ ) = ℓ<λ Λ(γ ℓ ), then there exists ℓ < λ such that (Q, Ex(Q)) ∈ Λ(γ ℓ ). Since Q is essential at level γ λ , it is also essential at level γ ℓ , so (Q, Ex(Q)) ∈ Ψ(γ ℓ ).
Thus by the induction hypothesis on λ, for any

Q ∈ Q(h), we have ν m (Q) = ν m (In Q). Write Ex(Q) = Q α0 + • • •
where, by construction, Q α0 is either a u r or a product of at least 2 terms, Q α0 = Q βs s . In the first case, the number of such Q α0 is finite, because the number of u k is finite.

In the second case, ν m (Q s ) < ν m (Q α0 ) ≤ ν m (Q) < h. So ν m (Q s ) < h -1 and, by induction on h, the number of such Q s is finite. If m = min {ν m (Q s ) | Q s divides Q α0 } , then |α 0 |m ≤ ν m (Q α0 ) ≤ h -1,
so there is a finite number of such α 0 possible which means that the number of such Q α0 is finite. By the induction hypothesis, Q is completely determined by In Q whenever

(Q, Ex(Q)) ∈ Ψ(γ λ ) ∪ Θ(< γ λ ). Therefore Q(h) is finite. Corollary 1.4.7 The set of monomials {Q α | Q α ∈ /m s } in Ψ(γ λ ) ∪ Θ(< γ λ ) is finite for every s ∈ N.
Corollary 1.4.8 (1) Any infinite sequence of generalized monomials in Ψ(γ λ ) ∪ Θ(< γ λ ), all of whose members are distinct, converges to 0 in the m-adic topology.

(2) Any infinite series, all of whose terms are distinct generalized monomials in Ψ(γ λ ) ∪ Θ(< γ λ ) converges in the m-adic topology.

Lemma 1.4.9 The set

Q α = Q αQ such that (Q, Ex(Q)) ∈ Ψ(γ λ ) ∪ {(Q, , Ex(Q)) ∈ Θ(< γ λ ) | ν(Q) = γ λ } and ν(Q α ) = γ λ is finite.
Proof: By the Artin-Rees lemma, there exists p 0 such that, for p ≥ p 0 ,

m p ∩ P γ λ = m p-p0 (m p0 ∩ P γ λ ).
Take p > p 0 , then

m p ∩ P γ λ ⊂ mP γ λ ⊂ P γ λ + . ( 52 
)
This equation shows that the set of the lemma is disjoint from m p . So by the above corollary, the set of the lemma is finite.

Consider now the ordered set {Q α1 , . . . , Q αs } of monomials

Q α = Q αQ , (Q, Ex(Q)) ∈ V(γ λ ) ∪ {(Q, Ex(Q)) ∈ Θ(< γ λ ) | ν(Q) = γ λ } (53) 
of value γ λ such that the natural projection of α to N V(γ λ ) does not belong to E(λ). The fact that this set is finite follows from the above Lemma and the fact that V(γ λ ) ⊂ Ψ(γ λ ).

Let i 1 = max i ∈ {1, . . . , s} in ν (Q αi ) ∈ s j=i+1
k in ν (Q αj ) and consider the unique

relation in ν (Q αi 1 ) - s j=i1+1 c 1j in ν (Q αj ) = 0. Let P 1 = Q αi 1 - s j=i1+1
c 1j Q αj where we view k as a subring of A via the identification [START_REF] Vaquié | Algèbre graduée associée à une valuation de K[END_REF].

Let i 2 = max i ∈ {1, . . . , i 1 -1} in ν (Q αi ) ∈ s j=i+1
k in ν (Q αj ) and, as before, consider the unique

P 2 = Q αi 2 - s j=i 2 +1 j =i1
c 2j Q αj such that the vector (α j ) j=i1+1,...,s , c 2j = 0, is minimal in the lexicographical order and define so on uniquely P 3 , . . . , P t . Now, if λ has a predecessor, we let

Θ(γ λ ) = { (Q, Ex(Q)) ∈ Θ(< γ λ ) | ν(Q) ≥ γ λ } ∪ {(P 1 , Ex(P 1 )), . . . , (P t , Ex(P t ))} ( 54 
)
where

Ex(P j ) = Q αi j - k c jk Q α k (55) if Q αi j is not a preceding root Q and Ex(P j ) = Ex(Q) - k c jk Q α k (56)
in the other case. We define the order on Θ(γ λ ) by Θ(γ λ-1 ) < {(P 1 , Ex(P 1 )), . . . , (P t , Ex(P t ))} and (P 1 , Ex(P 1 )) < • • • < (P t , Ex(P t )).

Remark 1.4.10 Note that, because the system of coordinates is prepared, u 1 , . . . , u n are always essential.

Remark 1.4.11 Note that Remark 1.2.8 remains valid in this context, with the obvious modification that the expressions of approximate roots are now allowed to be infinite, but convergent in the m-adic topology.

Suppose now λ is a limit ordinal. Let (Q 0 , Ex(Q 0 )) ∈ Λ(γ ℓ0 ) for some ℓ 0 < λ and Q α = In(Q 0 ). Let L(Q 0 ) be the following infinite well ordered set of approximate roots, indexed by ordinals ℓ, ℓ 0 ≤ ℓ < λ

L(Q 0 ) = { (Q (ℓ) , Ex(Q (ℓ) )) ∈ Ψ(γ ℓ ) } ℓ0≤ℓ<λ such that InQ (ℓ) = Q α .
By Remarks 1.2.8 and 1.4.11, for ℓ 0 ≤ ℓ < ℓ ′ < λ, we have

Ex(Q (ℓ ′ ) ) = Ex(Q (ℓ) ) + j∈W c j Q αj ( 57 
)
where

ν(Q αj ) ≥ ν(Q (ℓ) ).
Let p be a positive integer. By induction assumption, all the approximate roots Q appearing in any of the monomials Q αj belong to V(γ λ ) and, by lemma 1.4.6, the number of such roots outside m p is finite. Thus, all but finitely many Q αj belong to m p . This proves that L(Q 0 ) has a limit in A with respect to the m-adic topology : (lim

→ Q, lim → Ex(Q)). Let Θ(γ λ ) = {(Q, Ex(Q)) ∈ Θ(< γ λ ) | ν(Q) ≥ γ λ } ∪ L ( 58 
)
where L consists of all couples of the form (lim

→ Q, lim → Ex(Q)).
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So finally, the expression of an approximate root has the form

Ex(Q) = Q α + k a k Q α k (59)
the sum, written in the increasing order of the monomials, being finite or infinite.

We now prove the finiteness of sets ( 46) and (47). First, note that the set

{(Q, Ex(Q)) ∈ Θ(< γ λ ) ∪ Λ(γ λ ) | ν(Q) = γ}, γ ∈ Φ ( 60 
)
is finite by the induction hypothesis and the set

{ (Q, Ex(Q)) ∈ Ψ(γ λ ) ∪ Θ(< γ λ ) | Q∈ /m p } , p ∈ N ( 61 
)
is finite by the induction hypothesis and lemma (1.4.9). If λ is not a limit ordinal, the finiteness of ( 46) and (47) follows from the fact that the set Θ(γ λ ) \ Θ(< γ λ ) is finite by construction. If λ is a limit ordinal, to prove finiteness of ( 46) and (47), it remains to prove that the set

{(Q, Ex(Q)) ∈ L | ν(Q) = γ} (62)
is finite. This is proved in exactly the same way as lemma (1.4.9). This completes the proof of the finiteness of ( 46) and (47).

The property that the monomials appearing in Ex(Q) are arranged in increasing order with respect to the ν-adic value holds for all the newly constructed approximate roots. Next we show that ν m (InQ) = ν m (Q) for all those new approximate roots. Indeed, if λ is not a limit ordinal and Ex(Q) is given by formula (55), all the monomials appearing in Ex(Q) have the same ν-adic value and their ν m -adic values are increasing because of the order we imposed on monomials which proves that

ν m (InQ) = ν m (Q). If (Q ′ , Ex(Q ′ )
) is an approximate root whose expression is given by formula (56), with P j playing the role of

Q ′ , let Q α0 = In Q. We have Q ′ = Q + c α Q α , where ν(Q α ) = ν(Q). Then ν m (Q) ≤ ν m (Q α )
for all α, because of the order on monomials. So that finally,

ν m (Q α0 ) ≤ ν m (Q) ≤ ν m (Q α ), which proves that ν m (InQ ′ ) = ν m (Q ′ ).
The property that ν m (InQ) = ν m (Q) is clearly preserved by passing to the limit, so it also holds in the case when λ is a limit ordinal.

Remark 1.4.12 We just showed that there is a one to one correspondence between the approximate roots Q ∈ Ψ(γ ℓ ) and the set of monomials which are the first term of the expression Ex(Q) of such an approximate root Q. Let us denote by M(ℓ) the set of those monomials.

We well order L by the lexicographical order of the triples (ν(Q), ν m (Q), In(Q)),Q ∈ L. We extend this ordering to Θ(γ λ ) by postulating that L is the final segment in Θ(γ λ ).

The rest of Theorem 1.4.3 holds by construction.

Standard form in the case of complete regular local rings

Let Ψ(γ Φ ) = ℓ<Φ ℓ≤ℓ ′ <Φ Ψ(γ ℓ ′ ) and let V(γ Φ ) be the set of approximate roots, essential at the level γ Φ .

In this section, we fix an ordinal λ ≤ Φ.

Definition 1.5.1 A monomial in Ψ(γ λ )∪Θ(γ λ ) is called standard with respect to λ if all the approximate roots appearing in it belong to V(γ λ ) and it is not divisible by any InQ where

Q is an approximate root in (Ψ(γ λ ) ∪ Θ(γ λ )) \ {(u 1 , u 1 ), . . . , (u n , u n )}.
Take an ordinal ℓ ≤ λ.

Definition 1.5.2 Let f ∈ A. An expansion of f of the form f = c α Q α where the Q α are monomials in Ψ(γ λ ) ∪ Θ(γ λ ), written in increasing order, is a standard form of level γ ℓ if ∀γ ′ < γ ℓ and for all α such that ν(Q α ) = γ ′ , Q α is a standard monomial.

We now construct by induction on ℓ a standard form of f of level γ ℓ . We will write this standard form as

f = f ℓ + c α Q α
where, for all α, Q α is a generalized monomial in Ψ(γ λ ) ∪ Θ(γ λ ), ν(Q α ) ≥ γ ℓ and f ℓ is a sum of standard monomials in V(γ λ ) of value strictly less than γ ℓ .

To start the induction, let f 0 = 0. The standard form of f of level 0 will be its expansion, f = f 0 + c α u α , written in increasing order according to the monomial order defined above, as a formal power series in the u i .

Let ℓ < λ be an ordinal. Let us define f ℓ+1 and the standard form of f of level γ ℓ+1 as follows. Assume, inductively, that a standard form of level γ ℓ is already defined:

f = f ℓ + c α Q α with ν(Q α ) ≥ γ ℓ ,
for all α, and the value of any monomial of f ℓ is strictly less than γ ℓ .

Take the homogeneous part of c α Q α of value γ ℓ , the monomials being written in increasing order. Assume that not all the Q α are standard with respect to λ, and take the smallest non standard Q α . Since Q α is not standard, one of the two following conditions holds:

1. There exists an approximate root

Q ∈ (Ψ(γ λ ) ∪ Θ(γ λ )) \ {(u 1 , u 1 ), . . . , (u n , u n )} such that In(Q) divides Q α . Write Q = In(Q)+ c β Q β and replace In(Q) by Q-c β Q β in Q α . 2. An approximate root Q ∈ Ψ(γ λ ) \ V(γ λ ) divides Q α . Since Q∈ /V(γ λ ), there exists Q ′ ∈ Ψ(γ λ ) ∪ Θ(γ λ ) of the form Q ′ = Q + β d β Q β , where the Q β are monomials in V(γ λ ) of value greater than or equal to γ ℓ . Replace Q by Q ′ -β d β Q β .
In both cases, those changes introduce new monomials, with increasing ν m value, but either they are of value strictly greater than γ ℓ or they are of value exactly γ ℓ but greater than Q α in the monomial ordering. We repeat this procedure as many times as we can. After a finite number of steps, no more changes are available involving monomials of value exactly γ ℓ . Then, let

f ℓ+1 = f ℓ + d ρ Q ρ with ν(Q ρ ) = γ ℓ , so that f = f ℓ+1 + c α Q α where ν(Q α ) > γ ℓ .
Suppose now that µ is a limit ordinal. For each ℓ < µ, write f = f ℓ + δ ℓ where f ℓ is a sum of standard monomials, with respect to λ, of value strictly less than γ ℓ and δ ℓ is a sum of monomials in Ψ(γ λ )∪Θ(γ λ ), of value greater than or equal to γ ℓ . We assume inductively that, for each ℓ < µ and for each generalized monomial Q τ in Ψ(γ λ ) ∪ Θ(γ λ ), there exist c τ , b τ ∈ k and an ordinal ℓ 0 < ℓ such that, for all ℓ ′ , ℓ 0 < ℓ ′ < ℓ, the monomial Q τ appears in f ℓ ′ with coefficient c τ and in δ ℓ ′ with coefficient b τ . Moreover, assume that 

f ℓ = lim → ℓ ′ <ℓ f ℓ ′ = τ c τ Q τ and δ ℓ = lim → ℓ ′ <ℓ δ ℓ ′ = τ b τ Q τ . Lemma 1.5.3 Consider a generalized monomial Q τ in Ψ(γ λ )∪Θ(γ λ ).
ν(Q τ ) < γ µ , put b τ = 0. Assume ν(Q τ ) ≥ γ µ . For ℓ < µ, let b τ (ℓ) denote the coefficient of Q τ in δ ℓ . Take an ordinal ℓ < µ. Suppose b τ (ℓ) = b τ (ℓ + 1). ( 63 
)
This means that in the above construction of f ℓ+1 + δ ℓ+1 from f ℓ + δ ℓ , Q τ appears in one of the expressions

Q α InQ Q, Q α InQ β d β Q β (case 1 of the construction) or Q α Q Q ′ , Q α Q β d β Q β (case 2 of the construction). Then ν m (Q α ) ≤ ν m (Q τ ). ( 64 
)
Suppose that there were infinitely many ℓ for which (63) holds. This would mean that there are infinitely many monomials Q α (all distinct because ν(Q α ) = γ ℓ ), satisfying (64). This contradicts Lemma 1.4.6; hence there are finitely many such ℓ. Together with the induction hypothesis, this proves that b τ (ℓ) stabilizes for ℓ sufficiently large. This completes the proof of the lemma.

For each Q τ as above, let c τ , b τ be as in Lemma 1.5.3. Let f µ = lim

→ ℓ<µ f ℓ = τ c τ Q τ and δ µ = lim → ℓ<µ δ ℓ = τ b τ Q τ . We define the standard form of f of level γ µ as f = f µ + δ µ .
This completes the construction of standard form of level γ ℓ for ℓ ≤ λ.

Proposition 1.5.5 Let

f = f ℓ + c α Q α
be a standard form of f of level γ ℓ and γ < γ ℓ an element of Φ. Then

ν(Q β )=γ c β Q β ∈ /P γ+ .
The proof is entirely the same as the proof of the analogous Proposition 1.3.3.

For each ℓ, the part f ℓ of a standard form of f of level γ ℓ is uniquely determined. This is a straightforward consequence of the proposition.

By Proposition 1.5.5, if γ ℓ > ν(f ) then ν(f ) equals the smallest value of a monomial appearing in the standard form of f of level γ ℓ . Theorem 1.5.6 (1) Take γ ∈ Φ, γ < γ λ . Then P γ P γ+ is generated as a k-vector space by {in ν Q β } where Q β runs over the set of all standard monomials with respect to λ, satisfying ν(Q β ) = γ.

(2) The part of the graded k-algebra gr ν (A) of degree strictly less than γ λ is generated by the initial forms of the approximate roots of V(γ λ ).

The same proof as that of Theorem 1.3.4 works here. Now, for each ordinal ℓ, let X = X V(γ ℓ ) be a set of independent variables, indexed by V(γ ℓ ) and consider the graded k-algebra k X V(γ ℓ ) , where we define deg X j = ν(Q j ). Let P denote the homogeneous monomial ideal of k X V(γ ℓ ) generated by all the monomials in X V(γ ℓ ) of degree greater than or equal to γ ℓ+1 . We have the natural map

φ ℓ : k[X V(γ ℓ )] P → gr ν A Pγ ℓ+1 X j → in ν Q j .
Now, for ℓ = 0, let I 0 = (0). For ℓ > 0, let I ℓ denote the ideal of k[X V(γ ℓ ) ] P generated by I <ℓ and all the homogeneous polynomials of the form

X α0 + λ 1 X α1 + λ 2 X α2 + • • • + λ b0 X α b 0 ( 65 
)
where

Q α0 + λ 1 Q α1 + λ 2 Q α2 + • • • + λ b0 Q α b 0 is the homogeneous part of least degree of Ex(Q), Q ∈ V(γ ℓ ) ∪ Θ(γ ℓ ).
Once again the proofs of Corollary 1.3.5 and Corollary 1.3.6 give the analogous corollaries :

Corollary 1.5.7 We have Ker φ ℓ = I ℓ .

Corollary 1.5.8 Take an element γ ∈ Φ, γ < γ λ . The valuation ideal P γ is generated by all the generalized monomials of value ≥ γ in {Q | (Q, Ex(Q)) ∈ Ψ(γ λ )}. The ideal P γ λ is generated by all the generalized monomials of value

≥ γ λ in {Q | (Q, Ex(Q)) ∈ Ψ(γ λ ) ∪ Θ(γ λ )}.
Part 2. Separating ideal and connectedness 2.1 A description of the separating ideal.

Let A be a noetherian ring and α and β points in Sper A. The purpose of this section is twofold. First we prove a general result on the behaviour of < α, β > under localization. Secondly, we restrict attention to the case when A is regular and is either complete or < α, β > is primary to a maximal ideal of A. In this case, we describe generators of the separating ideal < α, β > as generalized monomials in those approximate roots Q j which are common to ν α and ν β .

We will need the following basic properties of the separating ideal, proved in [START_REF] Madden | Pierce-Birkhoff rings[END_REF]:

Proposition 2.1.1 Let the notation be as above. We have:

(1) < α, β > is both a ν α -ideal and a ν β -ideal.

(2) α and β induce the same ordering on A <α,β> (in particular, the set of ν α -ideals containing < α, β > coincides with the set of ν β -ideals containing < α, β >).

(3) < α, β > is the smallest ideal (in the sense of inclusion), satisfying (1) and ( 2). (4) If α and β have no common specialization then < α, β >= A.

Notation. If p ∈ Sper A, p α ⊂ p, the notation αA p will stand for the point of Sper A p with support p α A p and the total order on A p p α A p given by ≤ α .

Proposition 2.1.2 Let A be a ring. Consider points α, β ∈ SperA whose respective supports are p α , p β and let ǫ be a common specialization of α and β with support p.

(1) We have < α, β > A p =< αA p , βA p >.

(2) Let p be a prime ideal of A, containing < α, β >.

Then < α, β >⊂< α, β > A p ∩ A. ( 66 
)
with equality if < α, β > is p-primary.

(3) If p = p ǫ with ǫ the unique common specialization of α and β (in particular, whenever

p = < α, β >
and p is maximal), we have equality in (66).

Remark 2.1.3 In (2) of the Proposition, the special case of interest for applications is p = p ǫ , with ǫ ∈ Sper A a common specialization of α and β.

Proof: Let f be a generator of < α, β > such that f changes sign between α and β. Say, f (α) ≥ 0 and f (β) ≤ 0. As the orders on A/p α and A p /p α A p are the same (the quotient field is the same) -and similarly for p β -f changes sign between αA p and βA p . Thus f ∈< αA p , βA p >.

Conversely, a generator of < αA p , βA p > is of the form g/s, s∈ /p, such that g s (αA p ) ≥ 0 and g s (βA p ) ≤ 0, for instance. But, as p is a specialisation of α and β and s∈ /p, s has the same sign on α and β (and is non-zero at both points), so g keeps different signs on α and β which means that g ∈< α, β >, and, consequently, g s ∈< α, β > A p . This proves (1) of the Proposition.

(2) of the Proposition is a standard general statement about localization of ideals at a prime ideal.

(3) of the Proposition follows immediately from the fact that p is the center of the valuation ν α and < α, β > is a ν α -ideal.

Let (A, m, k) be a regular local ring and α and β two points of Sper(A) having a common specialization ǫ whose center is the maximal ideal m of A. Then ν α and ν β are both centered at m.

Let Φ α = ν α (A \ {0}) and Φ β = ν β (A \ {0}). Let γ αs be the s-th element of Φ α and similarly for β. Let P γαs denote the ν α -ideal of value γ αs and similarly for P γ βs . Let r be the ordinal such that γ αr = ν α (< α, β >). Then γ βr = ν β (< α, β >) by Proposition 2.1.1. We have P γαs = P γ βs for s = 1, . . . , r by Proposition 2.1.1.

Let Q j (α) denote the j-th approximate root for ν α (in the case when A is complete j is an ordinal rather than a natural number); we will denote the monomials in these approximate roots by Q(α) γ ; similarly for Q j (β) and Q(β) γ . Let us consider the sequences of vectors m i = (m i1 , m i2 , . . . , m itiα ), m ij ∈ P γαi /P γα,i+1 which are the initial forms of the monomials Q(α) αij of value γ αi (see section 1.2 and (53)). We do the same with ν β and write n 1 , n 2 , . . . the corresponding sequences of initial forms.

Let M αh be the set of all the generalized monomials in Q(α), of value γ αh with respect to ν α . Let M βh be the same kind of set with respect to ν β . Now, let s αh denote the cardinality of M αh ; similarly for s βh .

For a given ℓ, consider the following three conditions (1) ℓ , (2) ℓ , (3) ℓ :

(1) λj n ij (here we adopt the convention that the sign can be strictly positive, strictly negative or zero) where m ij , n ij are the initial forms of the monomials Q(α) αij , Q(β) αij in the graded rings gr να (A), gr ν β (A). Note that if conditions

ℓ s αi = s βi , 1 ≤ i ≤ ℓ (2) ℓ M αi = M βi for i ≤ ℓ ( 
(1) ℓ -(3) ℓ hold then the set of k-linear relations among the m ij , i ≤ ℓ, is the same as the set of k-linear relations among the n ij .

Proposition 2.1.4 The ordinal r is the smallest ordinal r ′ such that at least one of the conditions (1) r ′ -(3) r ′ does not hold.

Proof: Let r ′ be the smallest ordinal such that at least one of the conditions (1) r ′ -(3) r ′ does not hold. By definitions, we have M αr ′ = ∅ and M βr ′ = ∅. We have the following 2 possibilities: First, suppose M αr ′ = M βr ′ (which includes the case s αr ′ = s βr ′ ). Say, M αr ′ ⊂ M βr ′ . Take generalized monomials Q γ ∈ M αr ′ \ M βr ′ , and

Q δ ∈ M βr ′ . Then ν α (Q γ ) ≤ ν α (Q δ ), but ν β (Q γ ) > ν β (Q δ ).
Then there exists a linear combination, with coefficients in (A \ m), of Q γ and Q δ , of value γ αr ′ with respect to ν α , which changes sign between α and β. This shows that

ν α (< α, β >) ≤ γ αr ′ in this case.
The second case is M αr ′ = M βr ′ and there exist λ1 , . . . , λs αr ′ such that the sign on α of s αr ′ j=1 λj m r ′ j differs from the sign on β of s αr ′ j=1 λj n r ′ j (by assumption, we are in the case s αr ′ = s βr ′ ). By a small perturbation of the λj (for instance, by adding or subtracting a "small" element of k to λ1 ), we can ensure both that λ j Q α r ′ j ∈ A which changes signs between α and β. We have ν α (f ) = γ αr ′ (and ν β (f ) = γ βr ′ ), so ν α (< α, β >) ≤ γ αr ′ also in this case. Now take an f ∈ A with ν α (f ) < γ αr ′ . Then f ∈ P γαs ,

γ αs < γ αr ′ , (67) 
so in να (f ) ∈ P γαs /P γαs+ . By theorem 1.5.6, in να (f ) is a k-linear combination of m s1 , . . . , m stsα . By (67) and the definition of r ′ , this linear combination has the same sign for α and for β (in other words, P γαs /P γαs+ = P γ βs /P γ βs+ with same order induced by α and by β. This means that in να (f ) has the same sign on α and β, so ν α (< α, β >) ≥ γ αr ′ ). This completes the proof.

Corollary 2.1.5 Let α, β ∈ Sper(A), both centered in the maximal ideal. Let r be as above.

Denote by γ = γ αr the ν α -value of < α, β >. Let Q 1 , . . . , Q q be the common approximate roots of the valuations ν α and ν β . Then < α, β > is generated by the generalized monomials in Q 1 , . . . , Q q of ν α -value ≥ γ (and the same with ν β instead of ν α ).

Proof: As < α, β > is a ν α -ideal (and a ν β -ideal), this is a consequence of Corollary 1.5.8.

Definition 2.1.6 For a graded algebra G, we define

G * = f g f, g ∈ G, g = 0 and homogeneous / ∼. where f g ∼ f ′ g ′ whenever f g ′ = f ′ g.
The Alvis-Johnston-Madden example. Let us consider α and β in Sper(R[x, y, z]) given by curvettes

x(t) = t 6 , (68) 
y(t) = t 10 + ut 11 , (69) z(t) = t 14 + t 15 ( 70 
)
where u takes 2 distinct values u α > 2 and u β > 2. Applying the above procedure, we show that ν α (< α, β >) = 31. Indeed, we have

Q 1 = x, Q 2 = y, Q 3 = z for α and β.
The first level approximate roots are

Q 4 = y 2 -xz = (2u -1)t 21 + u 2 t 22 , (71) 
Q 5 = yz -x 4 = (u + 1)t 25 + ut 26 , (72) Q 6 = z 2 -x 3 y = (2 -u)t 29 + t 30 (73) 
for both α and β. Let T denote the preimage of in v t under the natural map

(gr να R[x, y, z]) * ֒→ (gr v R[[t]]) * , so that (gr να R[x, y, z]) * ∼ = (R[T ]) * .
Then in να (yQ 4 ) = (2u α -1)T 31 and in να (xQ 5 ) = (u α + 1)T 31 , and similarly for β. Since u α = u β , the matrix (2u α -1) (u α + 1)

(2u β -1) (u β -1)
is non-singular, so there exists an R-linear combination of in να (yQ 4 ) and in να (xQ 5 ) which is strictly positive on α and strictly negative on β. According to Proposition 2.1.4,

ν α (< α, β >) ≤ 31.
One can check that 31 is the lowest value for which either there is a linear combination of generalized monomials with this property or the set of monomials of that value for α does not equal the corresponding set for β, so that in fact ν α (< α, β >) = 31.

For the next approximate root

Q 7 = yQ 4 + 2u -1 u + 1 Q 5 , (74) 
we have

Q 7 (α) = Q 7 (β).

Some sets which are conjecturally connected

Let (A, m, k) be a regular local ring. Take α, β ∈ SperA, both centered at m, and elements f 1 , . . . , f r ∈ A\ < α, β >. The Connectedness Conjecture 0.1.11 asserts that there exists a connected set C, containing α, β, such that C is disjoint from the zero set of

f 1 • • • f r . Assume that either A is complete or √ < α, β > = m.
In this section, we describe a set C, which contains α, β, disjoint from the set f 1 • • • f r = 0, and which we conjecture to be connected. Under the above assumptions, this reduces the Connectedness Conjecture for α and β to proving the connectedness of C.

Let Q Λ = {Q λ , λ ∈ Λ} be the approximate roots common to α and β. Let Q γ1 , Q γ2 , . . . be the list of monomials in Q Λ , arranged in the increasing order of the ν α values. There exists an ordinal s such that < α, β > is generated by the set {Q γj ; j ≤ s, Q γj ∈< α, β >}. Let σ be the unique ordinal such that Q γa ∈ / < α, β > for a < σ and Q γσ , Q γσ+1 , . . . ∈< α, β >.

Next, we study the standard form of f i of level ν α (< α, β >). In the case when A is complete, this standard form may contain infinitely many generalized monomials Q γ . Since A is noetherian, we can choose a finite subset Q ǫji , 1 ≤ j ≤ n i of these monomials such that all of the others lie in the ideal (Q ǫji , 1 ≤ j ≤ n i )A. For i ∈ {1, . . . , r}, let

f i = mi j=1 b ji Q θji + ni j ′ =1 c j ′ i Q ǫ j ′ i (75) be the standard expansion of f i of level ν α (< α, β >) where ν α (Q θji ) = ν α (f i ) < ν α (Q ǫ j ′ i ) for all j ∈ {1, . . . , m i } and j ′ ∈ {1, . . . , n i }. Remark 2.2.1 1. If k = k α (in particular, if k is real closed), then m i = 1. 2. By Proposition 1.5.5, mi j=1 b ji in να Q θji = 0. Conjecture 2.2.2 1. Let C =    δ ∈ SperA ν δ (Q θji ) < ν δ (Q ǫ j ′ i ) for all j ∈ {1, . . . , m i }, j ′ ∈ {1, . . . , n i } sgn δ (Q q ) = sgn α (Q q ) for all Q q appearing in Q θji sgn δ ( mi j=1 b ji Q θji ) = sgn α ( mi j=1 b ji Q θji )    . ( 76 
)
Then C is connected.

2. Let C ′ defined by the inequalities

mi j=1 b ji Q θji > δ n i |Q ǫ j ′ i | ∀i ∈ {1, . . . , r}, ∀j ′ ∈ {1, . . . , n i } (77)
and the two sign conditions appearing in (76). Then C ′ is connected.

Remark 2.2.3 1. We have α, β ∈ C. 2. C ∩ {f 1 • • • f r = 0} = ∅.
Indeed, inequalities (76) imply that, for every δ ∈ C, f i has the same sign as We start with a general plan of the proof and an outline of different sections of Part 3. In §3.1 we recall Zariski's theory of complete ideals. We explain how the construction of approximate roots in arbitrary dimension restricts to the special case of dimension 2 (and that the standard construction in dimension 2 is, indeed, recovered from the general one as a special case) and prove some general lemmas about approximate roots in regular two dimensional local rings and their behaviour under sequences of point blowings up. In §3.2 we define the notion of real geometric surfaces which are glued from affine charts of the form Sper A j , where A j is a regular two-dimensional ring, in order to be able to talk about point blowings up of Sper A. We also define the notion of a segment on the exceptional divisor of a blowing up and prove that such a segment is connected; another notion useful later in the proof is that of a maximal segment. One slightly delicate point here is that since the residue field k of A is not assumed real closed we need to fix an order on k and always restrict attention to points of the real spectra of various A j which induce the given order on k. The bulk of the proof per se is contained in § §3.3-3.5. As explained above, our problem is one of proving connectedness (resp. definable connectedness) of the set C.

In §3.3 we use Zariski's theory and other results from §3.1 to construct a sequence of point blowings up which transform C into a quadrant, that is, a set Ũ of all points δ of a suitable affine chart Sper A j centered at the origin satisfying either x ′ (δ) > 0, y ′ (δ) > 0, or just x ′ (δ) > 0. In §3.4 we use results from [START_REF] Andradas | Constructible Sets in Real Geometry[END_REF] to prove connectedness of Ũ by reducing it to that of a quadrant in the usual Euclidean space, assuming that A is excellent. In §3.5 we prove the definable connectedness of Ũ (without any excellence assumptions) after introducing a new object called the graph associated to Ũ and a finite sequence of point blowings up of Sper A.

Approximate roots in dimension 2 and Zariski's theory.

In the special case of regular 2-dimensional local rings, the theory of approximate roots is well known: see, for instance [START_REF] Zariski | Samuel Commutative Algebra[END_REF], Appendix 5 or [START_REF] Spivakovsky | Valuations in function fields of surfaces[END_REF]. We briefly recall the construction here since it is much simpler than in the general case.

We start with two purely combinatorial lemmas about semigroups. Take an integer g ≥ 2.

Lemma 3.1.1 Let β 1 , β 2 . . . , β g be positive elements in some ordered group. Let α j , j ∈ {2, . . . , g} be positive integers. Assume

β i ≥ α i-1 β i-1 , i ∈ {3, . . . g}. ( 78 
)
Let γ 1 , . . . , γ g be integers such that 0 ≤ γ j < α j for 2 ≤ j ≤ g and g j=1 γ j β j ≥ α g β g . Then γ 1 > 0.

Proof : We prove by descending induction that i j=1 γ j β j ≥ α i β i for i ≥ 2. The case i = g is given by hypothesis. Assume then that i+1 j=1 γ j β j ≥ α i+1 β i+1 . Subtracting γ i+1 β i+1 and using the fact that γ i+1 < α i+1 , we obtain i j=1 γ j β j ≥ (α i+1γ i+1 )β i+1 ≥ α i β i . This completes the induction. So for i = 2, we obtain γ 1 β 1 + γ 2 β 2 ≥ α 2 β 2 ; subtracting γ 2 β 2 and using the fact that γ 2 < α 2 , we get

γ 1 β 1 ≥ (α 2 -γ 2 )β 2 > 0, hence γ 1 > 0.
Notation. Let β 1 , β 2 . . . , β g be positive elements in some ordered group. We will denote by (β 1 , . . . , β i-1 ) the group generated by β 1 , . . . , β i-1 and by sg(β 1 , . . . , β i-1 ) the semigroup generated by β 1 , . . . , β i-1 , that is, the semigroup formed by all the N-linear combinations of β 1 , . . . , β i-1 . For i ∈ {2, . . . , g}, α ′ i will denote the smallest positive integer such that α ′ i β i ∈ (β 1 , . . , β i-1 ). If there is no such integer, we put α ′ i = ∞. Write

α ′ i β i = i-1 j=1 α ji β j where α ji ∈ Z. ( 79 
) Lemma 3.1.2 Let β 1 , β 2 .
. . , β g be positive rational numbers such that

β g ≥ α ′ g-1 β g-1 . If g ≥ 3, assume that {a ∈ (β 1 , . . . , β g-1 ) | a ≥ α ′ g-1 β g-1 } = {a ∈ sg(β 1 , . . . , β g-1 ) | a ≥ α ′ g-1 β g-1 }; ( 80 
)
in particular, we can choose α jg ≥ 0 for all j ∈ {1, . . . , g -1} in (79) when i = g. Then

{a ∈ (β 1 , . . . , β g ) | a ≥ α ′ g β g } = {a ∈ sg(β 1 , . . . , β g ) | a ≥ α ′ g β g }. ( 81 
)
Proof. Multiplying all the β i by the same rational number does not change the problem, so we may assume that β 1 , β 2 , . . . , β g are positive integers, such that gcd(β 1 , β 2 , . . . , β g ) = 1. For g = 2, we have

α ′ 2 = β 1 . If a ∈ (β 1 ) and a ≥ β 1 β 2 , then a > 0, hence a ∈ sg(β 1 ); thus {a ∈ (β 1 ) | a ≥ β 1 β 2 } ⊂ {a ∈ sg(β 1 ) | a ≥ β 1 β 2 },
the opposite inclusion being obvious. Assume that g ≥ 3. Write

α ′ g β g = g-1 j=1 α jg β j . (82) 
To prove (81), let

β = γ 1 β 1 + γ 2 β 2 + • • • + γ g β g be an element of {a ∈ (β 1 , . . . β g ) | a ≥ α ′ g β g }.
Using the relation (82) we can write, for each n ∈ Z,

β = g-1 j=1 (γ j -nα jg )β j + (γ g + nα ′ g )β g = g-1 j=1 γ ′ j β j + (γ g + nα ′ g )β g .
After replacing γ g by γ g + nα ′ g for a suitable n ∈ Z, we may assume that 0

≤ γ g < α ′ g . Since β ≥ α ′ g β g , this implies that g-1 j=1 γ j β j ≥ β g ≥ α ′ g-1 β g-1 . (83) 
By (80) , we may take γ j ≥ 0 in (83). This completes the proof of the Lemma.

Corollary 3.1.3 Let β 1 , . . . , β g be positive rational numbers satisfying

β i ≥ α ′ i-1 β i-1 , i ∈ {3, . . . g}. (84) 
Then equalities (80) and (81) hold.

β 2 , . . . , β i-1 are rational multiples of β 1 . Assume that β q > α q-1 β q-1 , q ∈ {3, . . . , i -1} and β

(j) i > α i-1 β i-1 . Assume that, in the notation of §1.2, we have Ψ β (j) i + = Q 1 , . . . , Q i-1 , Q (j) i 
.

A monomial i-1 ℓ=1 Q ǫ ℓ ℓ is standard if 0 ≤ ǫ ℓ < α ℓ for ℓ ∈ {2, . . . , i -1}. ( 89 
)
This allows us to extend the notion of standard to monomials with ǫ 1 < 0: such a monomial is called standard if (89) is satisfied. Similarly, we may talk about standard monomials in

in ν Q 1 , . . . , in ν Q i-1 .
Assume, in addition, that we have defined elements z 2 , . . .

, z i-1 ∈ k ν , algebraic over k, where z ℓ is a k-linear combination of standard monomials in in ν Q 1 , . . . , in ν Q ℓ of degree 0. Let k ℓ = k(z 2 , . . . , z ℓ ). We obtain a tower of finite field extensions k = k 1 ⊂ k 2 • • • ⊂ k i-1 ⊂ k ν . If in ν Q (j) i is transcendental over k[in ν Q 1 , . . . , in ν Q i-1 ], put Q i = Q (j) i and construc- tion stops. Assume in ν Q (j) i is algebraic over k[in ν Q 1 , . . . , in ν Q i-1 ]. Then β (j) i ∈ i-1 q=1 Qβ q . Let α ,(j) i be the smallest positive integer such that α ,(j) i β (j) i ∈ (β 1 , . . . , β i-1 ). Then ν Q (j) i α ,(j) i = ν i-1 r=1 Q α (j) ri r 
, hence the image of

in ν Q (j) i α ,(j) i in ν i-1 r=1 Q α 
(j) ri r in k ν is not zero.
By Corollary 3.1.3, we may take α

(j) ri ≥ 0 for 1 ≤ r ≤ i -1.
The assumption on in ν Q

(j) i implies that in ν Q (j) i α , (j) i in 
ν i-1 r=1 Q α (j) ri r
satisfies an algebraic equation of the

form X d + a 1 X d-1 + • • • + a d = 0, a ℓ ∈ k i-1 . (90) 
For ℓ ∈ {1, . . . , d}, write

a ℓ i-1 r=1 in ν Q α (j) ri r ℓ = γ=(γ1,...,γi-1) b ℓγ i-1 r=1 in ν Q γr r (91) 
as a k-linear combination of standard monomials. By Lemma 3.1.1, we have

γ 1 ≥ 0 whenever b ℓγ = 0. Let b ℓγ be a representative of b ℓγ in A. Let α (j) i = dα , (j) i 
and

Q = Q (j) i α (j) i + d ℓ=1   γ=(γ1,...,γi-1) b ℓγ i-1 r=1 Q γr r   Q α ,(j)(d-ℓ) i i . (92) 
Then

ν(Q) > ν Q (j) i α (j) i = α (j) i β (j) i ≥ α ,(j) i β (j) i > α i-1 β i-1 ≥ α , i-1 β i-1 . (93) If in ν Q (j) i ∈ /k[in ν Q 1 , . . . , in ν Q i-1 ] (which is equivalent to saying that α (j) i > 1), put Q i = Q (j) i , Ex(Q i ) = Ex(Q (j) i ), β i = β (j) i , α i = α (j) i , α , i = α ,(j) i , Q (1) 
i+1 = Q, β (1) 
i+1 = ν Q (1) i+1 . 
Formulae (92) and (93) become

Q (1) i+1 = Q αi i + d ℓ=1   γ=(γ1,...,γi-1) b ℓγ i-1 r=1 Q γr r   Q α , i (d-ℓ) i . (94) and β 
(1)

i+1 = ν Q (1) i+1 > ν(Q αi i ) = α i β i ≥ α , i β i . (95) 
The expression Ex Q

i+1 is just the right hand side of (94).

For β

(j) i < γ ≤ β (1) 
i+1 , we have Ψ(γ) = Ψ β (j)

i + and Ψ β

(1)

i+1 + = Q 1 , . . . , Q i , Q (1) 
i+1 . Moreover, the elements β 1 , . . . , β

i+1 satisfy the hypothesis of Corollary 3.1.3, hence also its conclusion.

If in ν Q (j) i ∈ k[in ν Q 1 , . . . , in ν Q i-1 ] (which is equivalent to saying that α (j) i = 1), put Q (j+1) i = Q and β (j+1) i = ν Q (j+1) i .
Formulae (92) and (93) become

Q (j+1) i = Q (j) i + γ=(γ1,...,γi-1) b 1γ i-1 r=1 Q γr r (96) and β (j+1) i = ν Q (j+1) i > β (j) i > α 
, i-1 β i-1 . (97) 
The expression Ex Q (j+1) i is just the right hand side of (

we have

Ψ(γ) = Ψ β j i + and (98) Ψ β (j+1) 
i + = Q 1 , . . . , Q i-1 , Q (j+1) i 
.

Moreover, the elements β 1 , . . . , β i-1 , β

satisfy the hypothesis of Corollary 3.1.3, hence also its conclusion. Remark 3.1.4 Either the process stops after a finite number of steps or we obtain an infinite sequence

Q = Q 1 , Q 2 , . . . , Q i , . . . (100) 
or a sequence

Q = Q 1 , Q 2 , . . . , Q i-1 , Q (j) i , j ∈ N. (101) 
In the case when Q is given by (100), it is a system of approximate roots, whether or not A is complete. In the case (101) assume, in addition, that the ring A is m-adically complete.

In that case,

Q ∞ = lim j→∞ Q (j) i
is a well defined element of A and Q ∪ {Q ∞ } is a system of approximate roots.

We recall some basic facts from Zariski's theory of complete ideals in regular two-dimensional local rings.

Let (A, m) be a regular 2-dimensional local ring, x, y a regular system of parameters and let ν be a valuation centered at A. Definition 3.1.5 An ideal I in a normal ring B is said to be integrally closed or complete if it contains all the elements z of B satisfying a monic equation of the form

z n + a n-1 z n-1 + • • • + a 0 = 0 where a n-i ∈ I n-i .
An ideal I in A is said to be simple if it cannot be factored in a non trivial way as a product of two other ideals.

A local blowing up of A with respect to ν along m is the map

A → A[ y x ] m1 , where m 1 is the center of ν in A[ y x ]. For an element f ∈ A, we have x νm(f ) | f in A[ y x ] m . The strict transform of f in A[ y x ] m is the element x -νm(f ) f . Remark 3.1.6 Any ν-ideal is a complete ideal. Now let I be a simple m-primary ν-ideal. Then (1) The set m = I 0 ⊃ I 1 ⊃ • • • ⊃ I ℓ = I
of simple ν-ideals of A containing I is entirely determined by I (it does not depend on ν).

(2) Let A → A 1 be the local blowing up with respect to ν along m and, for i ≥ 1, let I ′ i be the transform of I i (that is,

I ′ i = x -µ I i A 1 with µ = ord m I i ).
Then

m 1 = I ′ 1 ⊃ I ′ 2 ⊃ • • • ⊃ I ′ ℓ-1 = I ′
is the set .

(3) Iterating this procedure ℓ-times, we obtain a sequence of local blowing ups

(A, m) → (A 1 , m 1 ) → • • • → (A ℓ , m ℓ ) (102) 
such that the transform I (ℓ) of I is m ℓ . For any f ∈ A \ I, the strict transform of f in A ℓ is a unit of A ℓ .

We recall the following general result from the theory of approximate roots in regular 2-dimensional local rings ( [START_REF] Spivakovsky | Valuations in function fields of surfaces[END_REF]).

Let A be a 2-dimensional regular local ring, ν a valuation on A. Now let Q k , k = 1, . . . , g + 1 be the approximate roots of ν such that Q 1 , . . . , Q g ∈ /I and Q g+1 ∈ I. Each I i is generated by the generalized monomials Q γj j , γ j ∈ N, such that γ j β j ≥ ν(I i ).

Proposition 3.1.7 There exist natural numbers ℓ 1 < ℓ 2 < • • • < ℓ g ≤ ℓ and a regular system of parameters x ℓi , y ℓi for each i ∈ {1, . . . , g} having the following properties :

(1) x ℓi is a monomial of the form

i-1 j=1 Q γj j , γ j ∈ N, ( 2 
)
y ℓi is the strict transform of Q i in A ℓi , (3) Q 1 , . . . , Q i-1 are monomials in x ℓi , y ℓi times a unit of (A ℓi ) (x ℓ i ,y ℓ i ) .
For α, β ∈ SperA, let Q 1 , . . . , Q s be the approximate roots common to α and β.

Corollary 3.1.8 If i ≤ s, both ν α and ν β are centered at (x ℓi , y ℓi ).

Let A be a 2-dimensional regular local ring, ν a valuation on A. Keep all the above notations.

Convention : below, we adopt the convention that α 1 = 1.

Lemma 3.1.9 For i ≥ 3, ν m (Q i ) = i-1 j=1 α j .
Proof : Let i = 3, then we can write Q 3 = y α2 + c rs x r y s where c rs is a unit in A, with ν(x r y s ) ≥ α 2 ν(y). As ν(y) ≥ ν(x), this implies ν m (Q 3 ) = α 2 .

Recall (cf. (92)) that

Q i+1 = Q αi i + d ℓ=1   γ=(γ1,...,γi-1) b ℓγ i-1 r=1 Q γr r   Q α ′ i (d-ℓ) i
. Now to prove the lemma, it suffices to prove that

α i ν m (Q i ) ≤ ν m i-1 r=1 Q γr r Q α ′ i (d-ℓ) i (103)
for all ℓ and γ such that b ℓγ = 0. First remark that, according to the inequalities (95) and (97), we deduce by an easy induction on iℓ that

β i i-1 q=ℓ α q ≥ β ℓ . (104) 
We have

α i β i = i-1 j=1 γ j β j + α ′ i (d -ℓ)β i , so α ′ i ℓβ i = i-1 j=1 γ j β j ≤ i-1 j=1 γ j β i i-1 q=j α q by (104). Dividing both sides by βi i-1
q=1 αq , we get

α ′ i ℓ i-1 q=1 α q ≤ i-1 j=1 γ j j-1 q=1 α q . ( 105 
)
By the induction assumption, the left hand side equals ν m (Q In what follows, we study standard monomials i j=1 Q γj j , with i < s, that is monomials such that 0 ≤ γ j < α j for j ∈ {2, . . . , i}.

α ′ i ℓ i )

Corollary 3.1.10 Consider two standard monomials

i j=1 Q γj j and i j=1 Q γ ′ j j such that (γ i , γ i-1 , . . . , γ 1 ) < lex (γ ′ i , γ ′ i-1 , . . . , γ ′ 1 )
and having the same ν-value. We have

ν m   i j=1 Q γj j   > ν m   i j=1 Q γ ′ j j   . Let n = ν m (Q 3 ); note that α 2 = n. Moreover [k 2 : k] | n and [k 2 : k] = n if and only if β 1 | β 2 . Corollary 3.1.11 Consider two standard monomials i j=1 Q γj j and i j=1 Q γ ′ j j , with 3 ≤ i < s, such that (γ i , γ i-1 , . . . , γ 3 ) < lex (γ ′ i , γ ′ i-1 , . . . , γ ′ 3 ). We have ν m   i j=3 Q γj j   ≤ ν m   i j=3 Q γ ′ j j   -n.
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Proof : Let j ≥ 3 be the greatest integer such that γ j < γ ′ j . We have

ν m   i j=3 Q γ ′ j j   -ν m   i j=3 Q γj j   = j ℓ=3 γ ′ ℓ ℓ-1 q=1 α q - j ℓ=3 γ ℓ ℓ-1 q=1 α q = (γ ′ j -γ j ) j-1 q=1 α q + j-1 ℓ=3 (γ ′ ℓ -γ ℓ ) ℓ-1 q=1 α q .
Claim: For j ≥ 4 and c ℓ < α ℓ , we have

j-1 ℓ=3 c ℓ ℓ-1 q=1 α q < j-1 q=1 α q . ( 106 
)
Proof of Claim: By induction on j. For j = 4, the inequality is immediate. Assume the Claim is true for j -1. The left hand side of (106) can be rewritten as

j-1 ℓ=3 c ℓ ℓ-1 q=1 α q = j-2 ℓ=3 c ℓ ℓ-1 q=1 α q + c j-1 j-2 q=1 α q < j-2 q=1 α q + c j-1 j-2 q=1 α q ≤ j-1 q=1 α q .
The Claim is proved. The monomials being standard, 0 ≤ γ ℓ , γ ′ ℓ < α ℓ , so γ ′ ℓγ ℓ > -α ℓ and applying the Claim, we deduce that

j-1 ℓ=3 (γ ′ ℓ -γ ℓ ) ℓ-1 q=1 α q > - j-1 q=1 α q . Since γ ′ j -γ j ≥ 1, we get (γ ′ j -γ j ) j-1 q=1 α q + j-1 ℓ=3 (γ ′ ℓ -γ ℓ ) ℓ-1 q=1 α q > 0.
Each term being an integer divisible by α 2 , the above expression is greater or equal to α 2 = n.

Real geometric surfaces and their blowings up

Let A be a ring and U an open subset of Sper(A). Let S U denote the multiplicative set

S U = {g ∈ A | g(α) = 0 for all α ∈ U }.
Let A U = A SU . We have a natural ring homomorphism

ρ U : A U → α∈U A(α).
Define the ring O U to be the ring of all maps

f : U → α∈U A(α)
satisfying the following conditions :

(1) ∀α ∈ U , f (α) ∈ A(α);

(2) there exists an open covering

U = i∈Λ U i (107) 
and, for each i, an element

f i ∈ A Ui such that ∀β ∈ U i , we have ρ Ui (f i ) β = f (β).
The functor which sends U to O U makes Sper(A) into a locally ringed space which we will call an affine real geometric space. This notion is inspired by the notion of real closed spaces defined by Niels Schwartz ([35]).

From now till the end of this section we will assume that all our rings are integral domains. Remark 3.2.1 Note that ι : A U ֒→ O U and, if U is connected, this inclusion becomes an equality. Indeed, consider an element f ∈ O U , the open covering (107) and the local representatives f i ∈ A Ui of f as above. Let K denote the common field of fractions of A and all of the A U . Finding an element g ∈ A U such that ι(g) = f amounts to proving that for each i, j ∈ Λ we have

f i = f j , (108) 
viewed as elements of K. By connectedness of U , it is sufficient to prove (108) under the assumption that U i ∩ U j = ∅. Take a non-empty basic open subset V ⊂ U i ∩ U j , defined by finitely many inequalities V = {α ∈ Sper A | g 1 (α) > 0, . . . , g s (α) > 0}. Since V = ∅, Propositions 4.3.8 and 4.4.1 (Formal Positivestellensatz) of [START_REF] Bochnak | Géométrie algébrique réelle[END_REF] imply that V contains a point α such that p α = (0). Then A(α) = K, so the equality

ρ Ui (f i ) α = f (α) = ρ Uj (f j ) α ∈ A(α) implies that f i = f j in A(α) = K, as desired.
Notation To simplify the notation, we will write A i instead of A Ui .

Definition 3.2.2 A real geometric space is a locally ringed space (X, O X ) which admits an open covering X = s i=1

Sper(A i ) such that each (U i , O X |U i ) is isomorphic (as locally ringed space) to an affine real geometric space.

Definition 3.2.3 A real geometric surface is a real geometric space X where all A i can be chosen to be regular 2-dimensional noetherian rings.

Let k be a field and z an independent variable. Let A be a regular two-dimensional ring, x, y elements of A, p a maximal ideal of A of height 2, containing x. Suppose given an isomorphism ι : A (x) →k[z] θ such that y mod (x) is sent to z and θ is a non-zero polynomial in z. Let g = z d + ā1 z d-1 + • • • + ād denote the monic generator of the ideal ι p (x) . Let a i be an element of the coset ι -1 (ā i ). Then x, y d + a 1 y d-1 + • • • + a d is a set of generators of p; it induces a regular system of parameters of A p . Definition 3.2.4 The pair x, y d + a 1 y d-1 + • • • + a d will be called a privileged system of parameters of A p with respect to the ordered pair (x, y). Definition 3.2.5 A marked real geometric surface is a real geometric surface X together with the following additional data:

(1) A finite covering X = s i=1 Sper(A i ) where each A i is a regular 2-dimensional noetherian ring.

(2) For each i, a pair of elements x i , y i ∈ A i and a field k i , which admits a total ordering.

(3) A subset ∆ i ⊂ Sper A i , called the privileged subset of Sper A i . Let z, w be independent variables. We require one of the following to hold:

(a) There exists an irreducible polynomial h ∈ k i [w] and a homomorphism

ι : A i → k i [z, w] θzθw (zh) , where θ z ∈ k i [z, w]\(z, h), θ w ∈ k i [w]\(h)
, which maps x i to z mod (zh), y i to w mod (zh) such that ∆ i is the set of points of Sper A i defined by the vanishing of all the elements of Ker ι (in particular, ) such that x(δ) = 0 and which induce the given order on k is homeomorphic to D.

∆ i ∼ = Sper k i [z, w] θzθw ( 
Finally, let X be a real algebraic surface such that D ⊂ Sper k[z] ⊂ X. Let +∞ denote the point of D with support (0) such that z(+∞) > c for all c ∈ k. Let ∞ be the closed point of X such that ∞ ∈ {+∞}. Assume there is an open set Sper A i ⊂ X such that p ∞ in A i has height 2. We extend the above notion of interval to include the case when δ 2 = ∞ with the obvious meaning assigned to [δ 1 , ∞] = δ>δ1 [δ 1 , δ] ∪ {∞}, (δ 1 , ∞), .... Similarly, we may take a closed point -∞ ∈ {-∞}. As points of X, we have ∞ = -∞. However, our ordering on D provides us with a well defined notion of intervals of the form (-∞, δ 1 ), [-∞, δ 1 ) and so on. ) sending (δ 1 , δ 2 ) to an interval (δ 1 , δ 2 ) where δ 1 , δ 2 ∈ k. It is wellknown and easy to prove that such an interval is connected -in the spectral topology (see for instance [START_REF] Bochnak | Géométrie algébrique réelle[END_REF]). Let (A, m, k) be a regular 2-dimensional local ring and (x, y) a regular system of parameters. Now consider a sequence

X t πt-1 → • • • π1 → X 1 π0 → Sper A (109) 
of point blowings up where the first blowing up π 0 : X 1 → Sper A is the blowing up along m.

Fix a point ǫ ∈ Sper A such that p ǫ = m -this is equivalent to fixing a total ordering on k. For q ∈ {0, . . . , t -1}, let η q ∈ X q be the closed point, compatible with the given order, such that π q is a blowing up along η q .

For i ∈ {1, . . . , t}, let X i = Let 

ρ i = π 0 • . . . • π i-1 : X i → Sper A.
B iℓ ∼ = k iℓ [z iℓ ]
where k iℓ is a finite algebraic extension of k and z iℓ is an independant variable.

Definition 3.2.15 A subset E ⊂ ρ -1 i (ǫ) is a component of ρ -1 i (ǫ) if E is either a compo- nent of π -1 i-1 (η i-1
) or a strict transform of a component of ρ -1 i-1 (ǫ) when i > 1.

Definition 3.2.16 Let ρ i : X i → Sper(A). Fix a component E ⊂ ρ -1 i (ǫ). Fix an index j ∈ {1, . . . , s i }. A j-distinguished point of E is a point δ ∈ E such that either δ∈ /Sper A ji or ρ -1 i ({xy = 0}) ⊃ {x ′ y ′ = 0} and x ′ (δ) = y ′ (δ) = 0 where (x ′ , y ′ ) ∈ A ji is the privileged regular system of parameters at δ (in particular, the privileged set of Sper A ji is given by {x ′ = 0} ∪ {y ′ = 0}).

A j-maximal interval I is a subset I ⊂ E such that there exist j-distinguished points δ 1 , δ 2 ∈ E, δ 1 = δ 2 , such that (1) I = [δ 1 , δ 2 ] and I is connected;

(2) There are no j-distinguished points in I \ {δ 1 , δ 2 }. A maximal interval is an interval which is j-maximal for some j. Remark 3.2.17 Note that a j-maximal interval may contain a -distinguished point, where j = . This occurs if [δ 1 , δ 2 ] is a j-maximal interval, δ ∈ (δ 1 , δ 2 ) and ∃ ∈ {1, . . . , s i },  = j, such that (δ 1 , δ 2 ) ∩ Sper A i = ∅ and δ ∈ / Sper A i . Proposition 3.2.18 Fix a component E ⊂ ρ -1 i (ǫ) and a maximal interval [δ 1 , δ 2 ] ⊂ E. Take q ∈ {1 , 2}. There exists j ∈ {1, . . . , s i } such that [δ 1 , δ 2 ] is j-maximal and letting x i , y i ∈ A ji be the elements given by Definition 3.2.5 we have:

(

1) i [δ 1 , δ 2 ] \ {δ q } ⊂ Sper A ji , ( 2 
) i for all δ ∈ [δ 1 , δ 2 ] \ {δ q } with ht(p δ ) = 2,
x i is a part of the given privileged regular system of parameters of (A ji ) p δ ,

( Let the notation be as in Remark 3.2.10 with y 1 playing the role of z.

) i [δ 1 , δ 2 ] ∩ Sper A ji = η ∈ Sper A ji x i (η) = 0 and δ 1 ≤ y i (η) ≤ δ 2 where δ 1 , δ 2 ∈ k ji ∪ {-∞, ∞}, 3 
There are exactly two maximal intervals [0, ∞] and [-∞, 0]. Say, for example, I = [0, ∞], q = 2, then j = 1 satisfies the conclusion of the Proposition. And similarly for the other three cases. Now take i ≥ 2 and suppose the result true for i -1. Let δ p,i-1 = π i-1 (δ p ), p = 1, 2. Let η i-1 be the center of the blowing up π i-1 . First, assume that

E ⊂ π -1 i-1 (η i-1 ). ( 110 
)
Take  ∈ {1, . . . , s i-1 } such that η i-1 belongs to the privileged set of Sper A ,i-1 . Let (u, v) be the given privileged regular system of parameters at η

i-1 . If j is such that (δ 1 , δ 2 ) ⊂ Sper A ji then A ji is one of A ,i-1 [ u v ] or A ,i-1 [ v u ]; pick one of these two possible choices j such that [δ 1 , δ 2 ] is j-maximal. In this case (1) i is equivalent to saying that [δ 1 , δ 2 ] = [-∞, ∞]. (111) 
Now, if we had [δ 1 , δ 2 ] = [-∞, ∞], the point x i = y i = 0 would be a distinguished point in (δ 1 , δ 2 ) (by definition of distinguished point). This is a contradiction and (1) i is proved in the case when (110). (2) i and (3) i of the Proposition follow immediately from the definition of marked real geometric surface. ¿From now on, assume that E ⊂ π -1 i-1 (η i-1 ).

(112)

The case of height 2.

Now assume ht(< α, β >) = 2, that is m = √ < α, β > is maximal. By Proposition 2.1.2, replacing A by A m does not change the problem, so we may assume that A is local with maximal ideal m.

Let g ∈ N be such that Q 1 , . . . , Q g ∈ / < α, β >, Q g+1 ∈< α, β > be the approximate roots common to ν α and ν β as in section 3.1.

Let (x, y) be a regular system of parameters of A such that ν α (x) = ν α (m) and ν β (x) = ν β (m).

Let π : A → A ′ be a local blowing up with respect to ν α and denote by k ′ the residue field of A ′ . Recall from ( [START_REF] Zariski | Samuel Commutative Algebra[END_REF], Appendix 5) that the weak transform I ′ ⊂ A ′ of an ideal I ⊂ A is defined by I ′ = x -a IA ′ where a = ν m (I). Proposition 3.3.2 We assume that π is also a local blowing up with respect to ν β . Let α ′ and β ′ be the strict transforms of α and β. Then the separating ideal < α ′ , β ′ > is equal to the weak transform of < α, β >.

Proof : Since by hypothesis, α ′ , β ′ are both centered at a maximal ideal m ′ , we have < α, β > m. In particular, x∈ / < α, β >, hence x does not change sign between α and β. Then f ∈ A changes sign between α and β if and only if x -a f changes sign between α ′ and β ′ .

Since < α, β > is generated by elements changing sign between α and β, its weak transform is generated by elements which change sign between α ′ and β ′ ; hence the weak transform of < α, β > is contained in < α ′ , β ′ >.

To prove the opposite inclusion, let I ′ =< α ′ , β ′ > and let I be the inverse transform of I ′ , that is the unique complete ideal of A whose weak transform is I ′ ([45], Appendix 5, p. 388). It remains to prove that I ⊆< α, β >.

In order to do this, it suffices to find an element z ∈ I which changes sign between α and β and such that ν α (z) = ν α (I).

Let J + be the greatest ν α -ideal of A ′ whose ν α -value is strictly greater than ν α (I). Note that

IA ′ J + ∩ IA ′ is a k ′ -vector space. Let b 1 , . . . , b ℓ , b j = i r=1 Q γjr r
, where i is the maximal index of the approximate roots Q s involved, be a set of elements of I which induces a basis of IA ′ J + ∩ IA ′ , each monomial being standard. Moreover, since x divides y in A ′ , if ν α (x) = ν α (y), we may assume γ j2 = 0 for all j and b 1 the unique monomial which maximizes the vector (γ i1 , γ i-1,1 , . . . , γ 31 ) in the lexicographical ordering.

Let a = ν m (I). Let z ∈ I ′ be such that ν α (z) = ν α (I ′ ) and z changes sign between α ′ and β

′ . Let z † = x a z. Then z † ∈ IA ′ and ν α (z † ) = ν α (IA ′ ) = ν α (I). Write z † = ℓ j=1 z j b j .
We may assume z 1 = 1. Denote by z j the image of z j in the residue field k ′ .

First, suppose ν α (x) < ν α (y). Then k ′ = k. For each j ∈ {1, . . . , ℓ}, let w j be a representative of z j in A. Put z = ℓ j=1 w j b j . Next, suppose ν α (x) = ν α (y), since b 1 the unique monomial which maximizes the vector (γ i1 , γ i-1,1 , . . . , γ 31 ), by the corollary (3.1.11), we have, for j ≥ 2,

ν m i r=3 Q γjr r ≤ ν m i r=3 Q γ1r r -n ≤ a -n. Write z † = b 1 + ℓ j=2 (z j x n )(x -n b j ). Write z j = n-1 t=0 c t y x t
where c t ∈ k. So letting a t be an element of A such that a t = c t and v j ∈ A be the element v j = n-1 t=0 a t y t x n-t , we have

ν α (v j -z j x n ) > nν α (x). ( 113 
)
Lemma 3.3.5 Let E be an irreducible component of the exceptional divisor passing through η ℓ , defined by x ℓ = 0. There exists f ∈ A\ < α, β > such that f = x n ℓ v, v is a unit of (A ℓ ) m ℓ and n is odd.

Proof : Let j ∈ {1, . . . , ℓ -1} be such that E is the strict transform in X ℓ of π -1 j-1 (η j-1 ). Let ν j be the divisorial valuation corresponding to E; this valuation is defined as follows : for each f ∈ A ℓ , write f = x n ℓ g such that x ℓ ∤ g in (A ℓ ) m ℓ , then ν j (f ) = n. Let m = p 0 ⊃ • • • ⊃ p j be the complete list of simple ν j -ideals given by Zariski's theory of complete ideals. Note that, since j ℓ, p j ⊃< α, β >.

It follows from Zariski's factorization theorem for complete ideals that ν j (A \ {0}) is generated by ν j (p 0 ), . . . , ν j (p j ). Since the value group of ν j is Z, the semigroup ν j (A \ {0}) contains all the sufficiently large integers. Hence one of ν j (p 0 ), . . . , ν j (p j ) is odd.

The lemma shows that x ℓ does not change sign between α (ℓ) and β (ℓ) in Case 1 (resp. neither x ℓ nor y ℓ change sign between α (ℓ) and β (ℓ) in Case 2).

Let Ũ = δ ∈ Sper A ℓ sgn(x ℓ (δ)) = sgn(x ℓ ǫ ∈ {δ} in Case 1 and Ũ = δ ∈ Sper A ℓ sgn(x ℓ (δ)) = sgn(x ℓ (α)), sgn(y ℓ (δ)) = sgn(y ℓ (α)), ǫ ∈ {δ}
in Case 2. The above reasoning shows that α (ℓ) , β (ℓ) ∈ Ũ ⊂ U .

To prove the Definable Connectedness Conjecture (resp. the Connectedness Conjecture for excellent A), it remains to prove the definable connectedness of Ũ (resp. connectedness of Ũ whenever A is excellent).

We are now ready to prove the above two versions of the Connectedness Conjecture. Proof: Let ǫ, ℓ and Ũ as above. By the above considerations, it is sufficient to prove that Ũ is connected. Thus it remains to prove the following lemma. Proof: The point ǫ determines an order on k. Let R denote the real closure of k relative to this order. Consider the natural homomorphisms

A → Â = k[[X 1 , . . . , X n ]] σ → R[[X 1 , . . . , X n ]] ( 115 
)
where σ is induced by ǫ. Let ǫ denote the point of Sper  such that p ǫ = (X 1 , . . . , X n ) and ≤ ǫ is the total ordering of k given by ǫ.

Following ([3], proposition 8.6), D is connected if and only if

D = {δ ∈ Sper k[[X 1 , . . . , X n ]] | X i (δ) > 0, i ∈ T, ǫ ∈ {δ}}
is connected (this is where we are using the fact that A is excellent). Moreover, D is the image of

D = {δ ∈ Sper R[[X 1 , . . . , X n ]] | X i (δ) > 0, i ∈ T } under the natural map induced by σ Sper R[[X 1 , . . . , X n ]] → Sper k[[X 1 , . . . , X n ]].
Thus it suffices to prove that D is connected. By ([3], proposition 8.6), D is connected if and only if the set

D † = {δ ∈ Sper R[X 1 , . . . , X n ] (X1,...,Xn) | X i (δ) > 0, i ∈ T, δ is centered at (X 1 , . . . , X n )} is connected.
We have the following natural homomorphisms

R[X 1 , . . . , X n ] ψ φ / / R[X 1 , . . . , X n ] X1•••Xn R[X 1 , . . . , X n ] (X1,...,Xn)
and the corresponding maps of real spectra Sper R[X 1 , . . . , X n ] X1,...,Xn

φ * / / Sper R[X 1 , . . . X n ] Sper R[X 1 , . . . , X n ] (X1,...,Xn) ψ * O O . Define D 0 = {δ ∈ Sper R[X 1 , . . . , X n ] | X i (δ) > 0, i ∈ T, δ is centered at (X 1 , . . . , X n )} and 
D loc = {δ ∈ Sper R[X 1 , . . . , X n ] X1•••Xn | X i (δ) > 0, i ∈ T, φ * (δ) is centered at (X 1 , . . . , X n )}.
Now the maps φ * and ψ * induce homeomorphisms

φ * | D loc : D loc ∼ = D 0 and (116) 
ψ * | D † : D † ∼ = D 0 . (117) 
Thus it suffices to prove that D loc is connected. But

D loc = N ∈N D N
where

D N = δ ∈ Sper R[X 1 , . . . , X n ] X1•••Xn 1 N ≥ X i (δ) ≥ 0, i ∈ T .
By Proposition 7.5.1. of [START_REF] Bochnak | Géométrie algébrique réelle[END_REF], each D N is a non-empty closed connected subset of Sper R[X 1 , . . . , X n ] X1•••Xn , hence D loc is connected by ([21], lemma 7.1).

The lemma proves that any "quadrant" is connected, Ũ is a quadrant, hence it is con-Remark 3.4.3 The above proof is a special case of the following general principle. Let A be an excellent regular local ring with regular parameters x = (x 1 , . . . , x n ) whose residue field k is equipped with a total ordering. Let R be the real closure of k. We have natural morphisms . This allows to transpose all the results of ( [START_REF] Lucas | On connectedness of sets in the real spectra of polynomial rings[END_REF]) from the case of polynomial rings to that of arbitrary excellent regular local rings. 

Sper A Sper R[[X 1 , . . . , X n ]] π φ o o Sper R[X 1 . . . ,
By the previous case, each of D(δ 1 , ξ), D(ξ, δ 2 ) is contained either in F (t) or G (t) . Without loss of generality, assume that D(δ 1 , ξ) ⊂ F (t) . By (121) and the relative closedness of F (t) , we have δ ∈ F (t) . By (122) and the relative closedness of G (t) , we have D(ξ, δ 2 ) ⊂ F (t) , so D(δ 1 , δ 2 ) ⊂ F (t) as desired.

Corollary 3.5.5 Let [δ 1 , δ 2 ] be a maximal interval. Then D(δ 1 , δ 2 ) is entirely contained either in F (t) or in G (t) .

Proof : This follows from the preceding lemma by induction on the number of special points inside [δ 1 , δ 2 ].

In order to address the global connectedness, we need a notion of signed dual graph associated to a sequence of point blowings up of a point ǫ ∈ Sper A and a subset W of Sper A.

For each maximal interval I (see Definition 3.2.16), take Sper A jt ⊂ X t such that I \Sper A jt is empty or consists of one distinguished point (such an A jt exists by Proposition 3.2.18). When necessary, we will denote this j by j(I). Let x jt , y jt ∈ A jt be the elements given in the Definition 3. Given two equivalent admissible pairs (I, s) and ( Ĩ, s), the set of endpoints of I coincides with the set of endpoints of Ĩ (viewed as points of the marked real geometric surface X t ). In this way, given an equivalence class of admissible pairs {(I, s)}, it makes sense to talk about endpoints of {(I, s)}. Definition 3.5.7 1. A vertex of the signed dual graph Γ t associated to X t and W is an equivalence class of an admissible pair (I, s), which we will still denote, by abuse of notation, by (I, s).

2. By definition, two distinct vertices (I, s) and ( Ĩ, s) of Γ t are connected by an edge of Γ t if the following conditions hold :

(a) I and Ĩ share a common endpoint ξ and suppose that Ĩ⊂ /{x ji 0};

(b) we have W (t) ∩ {δ ∈ X t | sgn(x jt (δ)) = s, sgn(x t (δ)) = s, {δ} ∋ ξ} = ∅.

x jt

x jt ξ 3) for a picture of U (1) ; the case of V 1 is similar but easier). Proof: By induction on i. For i = 1, the graph consisting of one vertex is connected and satisfies the conclusion of the Proposition. The induction step follows from the next Lemma, which describes the transformation law from Γ i to Γ i+1 in the case when W = U or W = V .

(c) If a belongs to no edges (in other words, if i = 1) then

Γ 2 = •-• -• -• • • • • • • •-• 2ω + 1
is a chain of 2ω + 1 vertices and 2ω edges. The graph Γ i+1 is obtained from Γ i by performing successively the above operation for each vertex a as above.

-Case 2. , σ), c i+1 = (J, s). We have to verify that those three pairs are admissible; first, we will show the admissibility of ([ξ a , δ ′ 1 ], σ). Since (I, s) is admissible, we know that ∅ = W (I, s) ⊂ W (i) ∩ Sper A ji and we need to show that

∅ = W ([ξ a , δ ′ 1 ], σ) ⊂ W (i+1) ∩ Sper A ji [x ′ ji ]. ( 126 
)
To prove (126), note that π i induces an isomorphism outside the set {ξ t ′ | 1 ≤ t ′ ≤ ℓ}; in particular, it induces an isomorphism of a neighbourhood of the open interval (ξ a , δ ′ 1 ) onto a neighbourhood of (ξ t , δ 1 ). Moreover, the fact that a and b are connected by an edge of Γ i implies that sgn(x ,i (δ)) = s for δ ∈ W (I, s). Hence δ ′ ∈ π -1 i (W (I, s)) if and only if {δ ′ } ∩ (ξ a , δ ′ 1 ) = ∅ and sgn(x ′ ji (δ ′ )) = s • s. In other words, W ([ξ a , δ ′ 1 ], σ) = π -1 i (W (I, s)). This proves (126), so ([ξ a , δ ′ 1 ], σ) is admissible. By symmetry, the pair ([ξ b , δ ′ 2 ], σ) is also admissible.

To prove the admissibility of (J, s), we note that x ,i = 0 is the local equation of the exceptional divisor in Sper A ji [x ′ ji ] and hence π i (W (J, s)) = {δ ∈ Sper A ji | {δ} ∋ ξ t , sgn(x ,i (δ)) = s, sgn(x ji (δ)) = s}.

Now the fact that a and b are connected by an edge of Γ i (see Definition 3.5.7 (b)) implies that ∅ = W (J, s) ⊂ W (i+1) ∩ Sper A ji [x ′ ji ], so (J, s) is admissible.

To check that a i+1 and c i+1 are connected by an edge of Γ i+1 , consider the set 

{δ ′ ∈ Sper A ji [x ′ ji ] | {δ ′ } ∋ ξ a ,
W (i+1) ∩ {δ ′ ∈ X i+1 | sgn(x ′ ji (δ ′ )) = (-1) t s, sgn(x ji (δ ′ )) = s, {δ ′ } ∋ ζ t+1 } = ∅.
The image of this set under π i is

W (i) ∩ {δ ∈ X i | sgn(x ji (δ)) = s, {δ} ∋ ξ (q)
t+1 , δ tangent to {x ji = 0}} and the result follows. This 

  Given any ordered domain D, let D denote the convex hull of D in its field of fractions D (0) : D := f ∈ D (0) d > |f | for some d ∈ D .

Proposition 1 . 1 . 2

 112 Let G ν be the graded algebra associated to a valuation ν : K → Γ, as above. Consider a sum of the form y = s i=1 y i , with y i ∈ K. Let β = min 1≤i≤s ν(y i ) and

1. 4

 4 Approximate roots in a complete regular local ring We now generalize the notion of approximate root to a complete regular local ring A of dimension n, with maximal ideal m, and residue field k = A m . Let u = (u 1 , . . . , u n ) be a regular system of parameters and ν : A \ {0} → Γ a valuation, centered in m. Denote by ν m the m-adic valuation.

  There exist c τ , b τ ∈ k and an ordinal ℓ 0 < µ such that, for all ℓ, ℓ 0 < ℓ < µ, the monomial Q τ appears in f ℓ with coefficient c τ and in δ ℓ with coefficient b τ . Corollary 1.5.4 The limits lim → ℓ<µ f ℓ and lim → ℓ<µ δ ℓ exist in the m-adic topology. Proof of Corollary 1.5.4 : This is an immediate consequence of the Lemma and Corollary 1.4.8. Proof of Lemma 1.5.3: The existence of c τ in the lemma follows immediately from the construction and the induction hypothesis.

If

  

3 )ℓ

 3 For any i ≤ ℓ and λ1 , . . . , λsαi ∈ k, the sign on α of the linear combination sαi j=1 λj m ij is the same as the sign on β of sαi j=1

  s αr ′ j=1 λj m r ′ j = 0 in gr να A and s αr ′ j=1 λj n r ′ j = 0 in gr ν β A. But this gives an f = s αr ′ j=1

  mi j=1 b ji Q θji ; in particular, none of the f i vanish on C. 3. Either of those conjectures implies the Connectedness Conjecture. Part 3. A proof of the conjecture for arbitrary regular 2-dimensional rings.

  and the right hand side equals ν m ( Therefore inequality (103) follows from inequality (105).

  zh) ); elements of the real closure k of k with respect to the given order. We may speak about theinterval (δ 1 , δ 2 ) = {δ ∈ D | δ 1 < z(δ) < δ 2 }. If p δ = (0),we compare δ i and z(δ) via the natural embeddings k[z](δ) ֒→ k(z) and k ⊂ k(z). Now, let m be an ideal of A with ht m = 2 and A m = k. Given a blowing up along m as above, consider the open set Sper(A[ y x ]). The set of points δ ∈ Sper(A[ y x ]

Lemma 3 . 2 .

 32 [START_REF] Herrera Govantes | Valuations in algebraic field extensions[END_REF] Let D be as in the remark before andδ 1 < δ 2 ∈ D such that ht(p δi ) = 1. The closed interval [δ 1 , δ 2 ], the semi-open interval [δ 1 , δ 2 )and the open interval (δ 1 , δ 2 ) are connected. Proof : We will prove it for the open case, the closed and the semi-open being similar. Let k ֒→ k be the inclusion of k into its real closure determined by the given order. This map corresponds to a morphism Sper(k[z]) → Sper(k[z]) which induces a homeomorphism between D and Sper(k[z]

Remark 3 . 2 . 12

 3212 Let θ ∈ k[z] be a non-zero polynomial. We have natural homeomorphisms Sper k[z] θ →Sper k[z]\{α 1 , . . . , α t } and λ : D∩Sper k[z] θ →D\{α 1 , . . . , α t } where {α 1 , . . . , α t } is the set of points α i ∈ Sper k[z] such that θ ∈ p αi . Let δ 1 , δ 2 ∈ D be as above. Assume that α i ∈ /(δ 1 , δ 2 ) for all i ∈ {1, . . . , t}. Then λ((δ 1 , δ 2 )) is connected in D \ {α 1 , . . . , α t }. Definition 3.2.13 Let m be a maximal ideal of A of height 2. Let X ′ → Sper A be the blowing up along m. Let E = {ǫ ∈ Sper A | p ǫ = m}. The sets π -1 (ǫ), ǫ ∈ E are called the components of π -1 (m).

Sper

  A ji be the open affine covering in the definition of marked real geometric surface.

Remark 3 . 2 . 14

 3214 The real geometric space ρ -1 i (m) has the form ρ -1 i (m) = ℓ Sper B iℓ with

with the notation of Remark 3 . 2 .A 21 .

 3221 [START_REF] Fuchs | Telweise geordnete algebraische Strukturen[END_REF] and the proof of Lemma 3.2.11.Proof: First, let i = 1. We have X 1 = Sper A Let x 1 = x, y 1 = y x .Fixing the component E is equivalent to fixing a total order on k; this data is already given. We haveE ∩ Sper A[y 1 ] ⊂ Sper k[y 1 ].

3. 4

 4 Proof of the Connectedness Conjecture in the case of an excellent regular 2-dimensional ring. Theorem 3.4.1 Let A be an excellent regular local 2-dimensional ring. Let C ⊂ Sper A be the subset satisfying the conditions of (76). Then α and β belong to the same connected component of C.

Lemma 3 . 4 . 2

 342 Let A be an excellent regular n-dimensional local ring, x 1 , . . . , x n regular parameters of A. Fix a subset T ⊂ {1, . . . , n} and let D = {δ ∈ Sper A | x i (δ) > 0, i ∈ T and ǫ ∈ {δ}}. Then D is connected.

3. 5

 5 Proof of the Definable Connectedness Conjecture for regular 2-dimensional local rings. Next we prove the Definable Connectedness Conjecture, hence the Pierce-Birkhoff Conjecture, without the excellence hypothesis on A. Theorem 3.5.1 Let (A, m, k) be a regular 2-dimensional local ring, (x, y) a regular system of parameters of A. The sets U = {δ ∈ Sper A | x(δ) > 0, ǫ ∈ {δ}} (118) V = {δ ∈ Sper A | x(δ) > 0, y(δ) > 0, ǫ ∈ {δ}} (

Figure 1 :

 1 Figure 1: The sets U and V Proof : We argue by contradiction. Let Ω be either U orV . Write Ω = F G, F = F i , G = G i where {F i }, {G i } are finite collectionsof basic open sets. Each F i and G i is defined by finitely many inequalities of the form g > 0, g ∈ A. Let g 3 , . . . , g r ∈ A be the list of elements of A, appearing in the definition of all of F i and G i and let g 1 = x, g 2 = y. A proof of the Theorem will be given after a few auxiliary definitions and results.Let Sper A ← X 1 ← • • • ← X t be a sequence of point blowings up. Let X t =

2 . 5 .

 25 By Proposition 3.2.18, we have I ∩ Sper A jt ⊂ {x jt = 0}.Let W (t) = ρ -1 t (W ). Let I a maximal interval, denote by I • its interior, and s ∈ {+, -}, letW (I, s) = {δ ∈ Sper A jt | sgn(x jt (δ)) = s, {δ} ∩ I • = ∅}. (123)Definition 3.5.6 Consider a pair (I, s) as above. We say that (I, s) is admissible ifW (t) ∩ Sper A jt ⊃ W (I, s) = ∅.(124)Consider two admissible pairs (I, s), ( Ĩ, s). We say that these two pairs are equivalent if the following conditions hold :(a)I ∩ Sper A jt ∩ Sper A t = Ĩ ∩ Sper A jt ∩ Sper A t , (b) the sets {δ ∈ Sper A jt ∩ Sper A t | sgn(x jt (δ)) = s} and {δ ∈ Sper A jt ∩ Sper A t | sgn(x t (δ)) = s}coincide in a neighbourhood of I ∩ Sper A jt ∩ Sper A t .

Figure 2 :

 2 Figure 2: This figure represents an edge of Γ t connecting two vertices (I, s) and ( Ĩ, s). Here I = [0, ∞], Ĩ = [0, ∞], s = s = +. Example: If W = U or W = V then Γ 1 consists of one vertex and no edges (see Fig. (3) for a picture of U(1) ; the case of V 1 is similar but easier).

Figure 3 :

 3 Figure 3: This figure shows the set U (1) in the affine charts

  2: (a) i = 1 and W = U , then Γ 2 = •-•-• is a chain of three vertices and two edges (b) i > 1 or W = V , then each vertex a = (I, s) such that ξ ∈ I is an endpoint of Γ i . For each such vertex a, we add a new vertex b and a new edge (a, b).Proof: Case 1 : Let δ 1 , δ 2 be points of Sper A ji such that I = [δ 1 , ξ t ], Ĩ = [ξ t , δ 2 ]. Let δ ′ 1 = π -1 i (δ 1 ), δ ′ 2 = π -1 i (δ 2 ). Let x ji , x ,i ∈ A ji be as in the Definition 3.5.6 applied to (I, s) and ( Ĩ, s), respectively. The pair (x ji , x ,i ) forms a regular system of parameters at ξ t . Letx ′ ji = xji x,i and x ′ ,i = x,i xji . Let ξ a ∈ x ′ ji = 0 ∩ π -1 i (ξ t ) ⊂ Sper A ji [x ′ ji ] and ξ b ∈ x ′ i = 0 ∩ π -1 i (ξ t ) ⊂ Sper A ji [x ′ ,i ]; note thatthese conditions characterize ξ a and ξ b uniquely. Let J = [ξ a , ξ b ], viewed as a maximal interval of Sper A ji [x ′ ji ]. Let σ = s • s. Let a i+1 , b i+1 , c i+1 be the vertices of Γ i+1 defined by a i+1 = ([ξ a , δ ′ 1 ], σ), b i+1 = ([ξ b , δ ′ 2 ]

  proves 2.1(a). The cases 2.1(b) and (c) are similar but easier. Case 2.2: (a) Let a = (I, s). Then x ji = y. Put y ′ = x y ; (x ji , y ′ ) is a regular system of parameters at ξ. Let A 11 = A[x ji , y ′ ]. The point ξ ∈ Sper A 11 is the unique point such that supp(ξ)= (x ji , y ′ ) and which induces the given order on k. Let A 12 = A 11 [x ′ ji , y ′ ] where x ′ ji = xji y ′ . Let I ′ ⊂ {x ′ji = 0} be the 1-maximal interval given by -∞ ≤ y ′ ≤ +∞ and Ĩ′ ⊂ {y ′ = 0} the 1-maximal interval given by 0 ≤ x ′ ji ≤ +∞. Now the vertices of Γ 2 are ( Ĩ′ , +), (I ′ , +), ( Ĩ′ , -) with the edges clearly defined.

Figure 5 :

 5 Figure 5: This figure shows the set U (2) in the cases 2.2.a and 2.1.c respectively

  X n ] (X1,...,Xn)Let D ⊂ Sper A be a constructible set such that all the elements of A appearing in the definition of D belong to A ∩ R[X 1 , . . . , X n ] (X1,...,Xn) . Let D = φ -1 (D), let U be the subset of all points of Sper R[X 1 , . . . , X n ] (X1,...,Xn) centered at the origin. Let D pol be the subset of U defined by the same formulae as D. By ([3], proposition 8.6), to show that D is connected, it is enough to prove that D pol is connected.In many cases, this principle applies also to nested intersection D =

	D N of con-
	N ∈N

structible sets defined by elements of A ∩ R[X 1 , . . . , X n ] (X1,...,Xn)

  This proves the admissibility of ([ζ t , ζ t+1 ], (-1) t • s). The proof that ([δ ′ 1 , ζ λ+1 ], s) and ([ζ λ+ω , δ ′ 2 ], (-1) ω • s) are admissible is similar and we omit it. To prove the admissibility of ([-∞, ∞] t , s), note thatπ -1 i ({δ ∈ X i | {δ} ∋ ξ (q) t , sgn(x ji (δ)) = s}) ⊃ W ([-∞, ∞] t , s),where the notation W ([-∞, ∞] t , s) is applied to the affine chart Sper A ji [ y ′ xji ] and the elementx ji ∈ Sper A ji [ y ′xji ]. We claim that the graph Γ i+1 contains a bamboo consisting of the above 2ω + 1 vertices, arranged in the following order :([δ ′ 1 , ζ λ+1 ], s), ([-∞, ∞] λ+1 , s), ([ζ λ+1 , ζ λ+2 ], -s), ([-∞, ∞] λ+2 , s), ([ζ λ+2 , ζ λ+3 ], s), . . . , ([-∞, ∞] λ+ω , s), ([ζ λ+ω , δ ′ 2 ], (-1) ω s).(129)We discuss a sample of edge of this bamboo, for example, ([ζ t , ζ t+1 ], (-1) t s), ([-∞, ∞] t+1 , s). The existence of the other edges can be proved in a similar way. The two maximal intervals ([ζ t , ζ t+1 ] and [-∞, ∞] t+1 have a common endpoint, namely, ζ t+1 . We must show that

sgn(x ,i (δ ′ )) = s, sgn(x ′ ji (δ ′ )) = σ}.

nected. This completes the proof of the Connectedness Conjecture for any excellent 2dimensional ring A.

b •-•-• -• -• • • • • • • •-• -• c 2ω + 1(b) If a belongs to only one edge (a, b), remove a and the edge (a, b) and introduce the bamboo b•-•-• -• -• • • • • • • •-• 2ω + 1

Proof : For i = 3, (80) is immediate. Now the corollary follows from Lemma 3.1.2 by induction on i.

Let ν be a valuation centered at A and let (x, y) be a ν-prepared system of coordinates, such that ν(x) = ν(m). In what follows, we will omit the description of V(γ), Λ(γ), Θ(γ), since in the simplified situation of n = 2, the sets Ψ(γ) suffice to carry out the entire construction.

Put Q 1 = x, Ex(Q 1 ) = x, Q 2 = y, Ex(Q 2 ) = y and β i = ν(Q i ), i ∈ {1, 2}. If β 1 , β 2 are rationally independent, then α ′ 2 = ∞ and the construction stops, there are no more approximate roots. In this case, all the ν-ideals are generated by monomials in (x, y). Assume then α ′ 2 < ∞. This means that there is a relation α ′ 2 β 2 = α 12 β 1 for a positive integer α 12 .

Let α ′ 2 and α 12 be as above. Let Ψ(β 1 ) = ∅. For γ ∈ Φ, β 1 < γ < β 2 , Ψ(γ) = {x} and

We prove that (80) is satisfied for i = 3. Let β = γ 1 β 1 + γ 2 β 2 be an element of

As α ′ 2 β 2 = α 12 β 1 , we have, for each n ∈ Z, β = (γ 1 -12 )β 1 + (γ 2 + nα ′ 2 )β 2 . After replacing γ 2 by γ 2 + nα ′ 2 for a suitable n, we may assume that 0 ≤ γ 2 < α ′ 2 . Since β ≥ α ′ 2 β 2 , this implies that γ 1 ≥ 0.

Then we have ν Q

is algebraic over k, this means that it satisfies an algebraic equation of the form

Let a i be a representative of a i in A. Let α 2 = dα ′ 2 and

The expression Ex Q

(1) 3

is just the right hand side of this formula.

Let β

(1)

, then β

(1)

satisfy the conclusion of Lemma 3.1.2. By construction, α 2 β 2 is the smallest element of Φ such that the monomials

are k-linearly dependent. The unique k-linear dependence relation is given by Q

3 . Hence, according to the general construction of §2, we have Θ

3 and Ψ(β

are already defined. Let

Assume that the initial form in ν Q q is algebraic over k[in ν Q 1 , . . . , in ν Q q-1 ] for q ∈ {2, . . . , i -1}. Let α q denote the degree of its minimal polynomial. Note that, in particular, all of (b) ∆ i = {x i = 0}; there is an isomorphism ι :

(4) For each i and each α ∈ {x i = 0} ⊂ ∆ i with ht p α = 2, a regular system of parameters of (A i ) pα , privileged with respect to (x i , h) in case (a) and with respect to (x i , y i ) in case (b).

(5) In case (a), for each i and each α ∈ {h = 0} ⊂ ∆ i with ht p α = 2, a regular system of parameters of (A i ) pα , privileged with respect to (h, x i ). Remark 3.2.6 Let A be a regular 2-dimensional ring, m a maximal ideal of A and (x, y) a regular system of parameters of A m . Then Sper A is a marked real geometric surface.

We now define the notion of blowing up of a real marked geometric surface. Let X = i Sper A i be a marked real geometric surface and take a point δ ∈ X. Assume that δ belongs to the privileged set and ht(p δ,i ) = 2 in every affine chart Sper A i containing δ. We want to define the blowing up of X along δ. First consider the case X = Sper A. Let x, y ∈ A and k be the pair of elements and the field appearing in the definition of marked real geometric surface.

Let (u, v) be the privileged system of regular parameters of A p δ given by the definition. It follows from definition that (u, v) = (x, y) in Case (c), u = x in Case (a) provided δ ∈ {x = 0} as well as in Case (b), and

A blowing up of Sper A along p δ (or, by abuse of language, blowing up along δ) is the marked real geometric surface X ′ defined as follows. As a topological space, we put

We have a natural surjective morphism π : X ′ → Sper A.

To define a structure of marked real geometric surface on X ′ , we let the two elements required in Definition 3.2.5 (2) be x

for Sper A ′ 2 . Below, for q ∈ {1, 2}, we denote the privileged set of A ′ q by ∆ ′ q and the field required in the Definition 3.2.5 [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation II[END_REF] for Sper A ′ q by k ′ q . We now define ∆ ′ q and k ′ q in the different cases.

• If Case (c) holds for Sper A:

The existence of a privileged regular system of parameters required by the Definition 3.2.5 comes from the isomorphism

The existence of a privileged regular system of parameters required by the Definition 3.2.5 comes from

. By the definition of privileged regular system of parameters of A p δ , there is an irreducible polynomial v w ∈ k[w], relatively prime to θ w such that ι( p δ (x) ) = (v w ). The existence of a privileged regular system of parameters at any point of ∆ ′ 2 , required by the Definition 3.2.5, comes from

.

• If Case (a) holds, there are three cases to consider : (i) δ ∈ {x = 0} \ {h = 0}, ∆ ′ q , k ′ q , q = 1, 2, are given by the same formulas as in Case (b). Let A ′ 3 = A v . The structure of marked real geometric surface on Sper A ′ 3 is induced from that of Sper A. We have k ′ 3 = k and ∆ ′ 3 = {x = 0} ∪ {h = 0} and

. By the definition of privileged regular system of parameters of A p δ , there is a polynomial

. The existence of a privileged regular system of parameters comes from the isomorphisms

.

The structure of marked real geometric surface on Sper A ′ 3 is induced from that of Sper A. We have k

The existence of a privileged regular system of parameters comes from the isomorphisms

and

We then define the real marked geometric surface X ′ to be

Sper A ′ i where p = 2 in cases (b), (c) and (a) (iii) and p = 3 in cases (a) (i) and (ii). Remark 3.2.7 Note that Sper A ′ 3 ⊂ Sper A ′ i , i = 1, 2; but, in the applications, we need to have the set ∆ ′ 3 defined by fixed elements x ′ 3 , y ′ 3 .

Sper A i be a marked real geometric surface and δ ∈ X belonging to the privileged set and supported in a height 2 ideal p δ,i in some affine chart Sper

i → Sper A i be the blowing up of Sper A i along p δ,i . Let (u, v) be the regular system of parameters of (A i ) p δ,i given by the definition of real marked geometric surface. We have

Sper A ′ ji where p = 2 or 3 as above. The marked real geometric surfaces X ′ 1 , . . . , X ′ s and the maps X ′ i → Sper A i glue together in a natural way to give a marked real geometric surface X ′ = s i=1 X ′ i and the map X ′ → X.

Definition 3.2.8 We call X ′ the blowing up of X along δ or the point blowing up of X along δ. The point δ is called the center of this blowing up. If X = Sper A, the blowing up of X along δ depends only on the ideal p δ and not on the ordering ≤ δ , so we may speak also about blowing up along p δ .

Definition 3.2.9 Let α, δ be two distinct points of the real marked surface Sper A with

Let π : X ′ → Sper A be a blowing up along δ. Let (u, v) be the given privileged system of parameters at δ. Since α = δ, {u, v} ⊂ p α . If u∈ /p α , the strict transform α ′ of α is defined as follows. Let p α ′ be the strict transform of p α in A ′ 1 and ≤ α ′ be the order of

2 is defined similarly.

On the way to prove the connectedness of C of (76), we will now prove a preliminary result on connectedness of a certain type of subsets (intervals) of the exceptional divisor on a suitable blowing up of Sper A. Remark 3.2.10 Fix an order on k. Let D be the set of points δ ∈ Sper(k[z]) which induce the given order on k. Given two points

. So, by the induction hypothesis, the Proposition holds for [δ 1,i-1 , δ 2,i-1 ] ⊂ π i-1 (E). Take  ∈ {1, . . . , s i-1 } which satisfies the conclusion of the Proposition with i replaced by

. This j satisfies the conclusion of the Proposition.

Next assume that η i-1 ∈ Sper A ,i-1 . Take the elements u, v ∈ A ,i-1 which induce the privileged regular system of parameters at η i-1 , given by the definition of marked real geometric surface.

If

, which is impossible. The intersection is taken as subsets of the topological space

In all the cases the index j chosen in this way satisfies the conclusion of the Proposition.

3.3 A proof of the Pierce-Birkhoff conjecture for regular 2-dimensional rings.

Let A be a 2-dimensional regular local ring, ν a valuation on A.imensional ring. In this section, we prove that A is a Pierce-Birkhoff ring ( [START_REF] Madden | Pierce-Birkhoff rings[END_REF]). Our proof is based on Madden's unpublished preprint ( [27]), but there are some differences. Here, we have tried to present a proof which should be a pattern for a general proof of the conjecture in any dimension. 1

Theorem 3.3.1 Let A be a 2-dimensional regular ring, then A is a Pierce-Birkhoff ring.

Actually, we prove that A satisfies the Definable Connectedness Conjecture and also, in the special case where A is excellent, the Connectedness Conjecture.

We start with some results which do not assume that A is excellent and which are needed in the proof of both of the above versions of the Connectedness Conjecture. Let α, β ∈ Sper A. By Remark 0.1.10, we may assume that neither of α, β is a specialization of the other.

There are two possibilities : either ht(< α, β >) = 1 or ht(< α, β >) = 2.

The case of height 1.

Let δ be the most general common specialization of α and β and let p = √ < α, β > be the support of δ. Then A p is a discrete valuation ring; take an element t ∈ A whose image in A p is a regular parameter of A p . Since ht(p) = 1 and neither of α, β is a specialization of the other, we have p α = p β = (0). There are only two orders on A which induce the given order on A/p : one with t > 0 and one with t < 0. Since α = β, < α, β >= p : of course, any element g of p can be written as g = t γ a b , a, b∈ /p. As t ∈< α, β >, if γ ≥ 2, ν α (g) = ν β (g) > ν α (t) so g ∈< α, β > and if γ = 1, g changes sign between α and β, so again g ∈< α, β >. Now let f 1 , . . . , f r ∈ / < α, β >= p, so f i (δ) = 0 for i ∈ {1, . . . , r}. As δ ∈ {α} and δ ∈ {β}, we conclude that α and β belong to the same connected component of Sper 

We have z ∈ IA ′ ∩ A = I (because I is a contracted ideal). In both cases, ν α (x) = ν α (y) and ν α (x) < ν α (y), since z † changes sign between α ′ and β ′ and in view of (113), z changes sign between α and β. This ends the proof of the proposition.

be a sequence of blowings up induced by ( 102), where we take I =< α, β >. Let C ℓ be the preimage of C (see (76)) in Sper R[x ℓ , y ℓ ]. By proposition (3.1.7), there monomials ω 1 , . . . , ω s , ǫ 1 , . . . , ǫ s , θ 1 , . . . , θ t , λ 1 , . . . , λ t in x ℓ , y ℓ such that

By connectedness theorem ( [START_REF] Lucas | On connectedness of sets in the real spectra of polynomial rings[END_REF]), C ℓ is connected, hence so is C. This completes the proof of the Connectedness Conjecture for R[x, y] and so provides a new proof of the classical Pierce-Birkhoff Conjecture in dimension 2.

Let A be a regular 2-dimensional local ring with regular parameters (x, y). Consider the set C ′ defined by the inequalities (77

and the two sign conditions appearing in (76).

Consider the sequence (102) of local blowings up with I =< α, β >. Let C ′ ℓ be the preimage of C ′ in Sper A ℓ . Rather than prove connectedness of C ′ ℓ , we will prove that α (ℓ) and β (ℓ) lie in the same connected component of C ′ ℓ ; this will imply that α and β lie in the same connected component of C ′ . Let ǫ denote the common specialization of α (ℓ) and β (ℓ) . By definition of (102), we have p ǫ = m ℓ . Let U be the subset of C ′ ℓ consisting of all the generizations of ǫ lying in C ′ ℓ . It is sufficient to prove that α (ℓ) and β (ℓ) in the same connected component of U .

There are two cases to consider.

Case 1. Only one component of the exceptional divisor (that is the inverse image ρ -1 ℓ-1 (m)) passes through η ℓ .

Case 2. Two components of the exceptional divisor pass through η ℓ . Let (x ℓ , y ℓ ) be a regular system of parameters of (A ℓ ) m ℓ such that the local equation of the exceptional divisor at η ℓ is x ℓ = 0 in case 1 and x ℓ y ℓ = 0 in case 2. By Zariski's theory of complete ideals, for any f ∈ A\ < α, β >, the strict transform of f in A ℓ is a unit. In other words, f has the form f = x n ℓ v in case 1 (resp. f = x n ℓ y m ℓ v in case 2) where v denotes a unit in (A ℓ ) m ℓ .

The inequalities (114), appearing in the definition of C ′ , hold on all of U . The set U is defined inside the set of generizations of ǫ in Sper A ℓ either by specifying sgn(x ℓ ) or by specifying both sgn(x ℓ ) and sgn(y ℓ ). Definition 3.5.2 We say that a collection {h 1 , . . . , h r } of elements of A are simultaneously locally monomial in X t if for all j ∈ {1, . . . , s} and any maximal ideal m ′ ⊂ A jt , there exists a regular system of parameters (x ′ , y ′ ) of A ′ := (A jt ) m ′ such that all of h 1 , . . . , h r monomials in (x ′ , y ′ ) multiplied by units of (A jt ) m ′ .

Let g 1 , . . . , g r ∈ A be as above. By standard results on resolution of singularities, there exists a sequence Sper A ← X 1 ← • • • ← X t of point blowings up such that g 1 , . . . , g r are simultaneously locally monomial in X t . Denote by ρ t : X t → Sper A the composition of all the morphisms in that sequence (with the notations following (109)).

Let

x ′ , y ′ , A jt be as in the definition of simultaneously locally monomial.

locally near δ.

Given a special point δ ∈ ρ -1 t (ǫ) and (u ′ , v ′ ) a regular system of parameters at δ, let

Lemma 3.5.4 Take a point ξ ∈ ρ -1 t (ǫ), not lying on the strict transform of {x = 0}. Take j ∈ {1, . . . , s i } such that ρ -1 t (ǫ) is contained in the privileged set of Sper A jt near ξ. Let x jt , y jt ∈ A jt be the elements given in Definition 3.2.5. Assume that the privileged set is given by {x jt = 0} and is homeomorphic to Sper k ′ [z] θz , where θ z is a non-zero polynomial, with k ′ finite over k and that ht(p ξ )=2. Let (x ′ , y ′ ) be as in the definition of simultaneously locally monomial where we take m ′ = p ξ (we may assume x ′ = x jt ). We view k ′ as an ordered field via the inclusion k ′ ⊂ A jt (ξ). Let

Take special points δ 1 , δ 2 ∈ E such that the intervals (δ 1 , ξ) and (ξ, δ 2 ) are connected and contain no special points.

For i ∈ {1, 2}, let (x ′ , v ′ i ) be a regular system of parameters at

Then the set

Proof : First, assume ξ is not special. Then there are no special points in (δ 1 , δ 2 ). Let

Replacing η by its specialization, we may assume that ht(p η ) = 2. For each i ∈ {1, . . . , r}, locally near η, write

Take an open set W , containing η, such that for all δ ∈ W and all i ∈ {1, . . . , r}, we have

Since η ∈ F (t) ∩ G (t) , there exist δ ∈ F (t) ∩ W , γ ∈ G (t) ∩ W and an i ∈ {1, . . . , r} such that g i changes sign between δ and γ.

Since x ′ (resp. x ′ , y ′ ) does not change sign between γ and δ this contradicts (120).

Consider the point blowing up π i : X i+1 → X i . Let ξ be the center of the blowing up; recall that, by definition of blowing up in the category of real marked geometric surfaces, ξ belongs to the distinguished set of X i . Let Sper A ji be an affine chart of X i containing ξ. Let p ξ be the support of ξ in A ji . Let k ji be the field of Definition 3.2.5 [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation II[END_REF]. Let E 1 , . . . , E p be the components of the set {x ji = 0} ∩ ρ -1 i (ǫ). Picking a component E q , q ∈ {1, . . . , p} amounts to fixing a total order on k ji , which induces the order on k given by ǫ. For q ∈ {1, . . . , p}, let {ξ

ℓ } be the set of points of E q supported at p ξ . For each q ∈ {1, . . . , p}, the total order on k ji corresponding to E q induces a total order on the set {ξ (q) 1 , . . . , ξ

ℓ }, we may assume ξ

It follows from the definition of distinguished that one of the points ξ (q) t is j-distinguished if and only if all of them are.

Fix a pair (q, t), q ∈ {1, . . . , p}, t ∈ {1, . . . , ℓ}. Two cases are possible : • Case 1 : There exist a = (I, s), b = ( Ĩ, s) two vertices of Γ i connected by an edge (a, b) such that ξ (q) t is the point common to I and Ĩ (note that the pair a, b is not, in general uniquely determined by ξ (q) t ). In particular, the points ξ (q) t are j-distinguished. In this case, we have p = 1, so we may denote our points by ξ 1 , . . . , ξ ℓ . Let x ji , xji be a privileged regular system of parameters at the points ξ t .

• Case 2 : We are not in Case 1.

-Case 2.1. : None of the points ξ (q) t is j-distinguished. Let (x ji , y ′ ) be a regular system of parameters of the local ring A p ξ . The set π -1 i (ξ

t ) is covered by two affine charts :

The point ξ is j-distinguished and lies on the strict transform of {x = 0} or {y = 0}. In this case, p = ℓ = 1.

Next, we study the neighbourhood of π -1 i (ξ

t ) for each q ∈ {1, . . . , p}, t ∈ {1, . . . , ℓ} and analyze the changes from Γ i to Γ i+1 induced by the blowing-up π i locally on the part of Γ i which represents a neighbourhood of ξ (q) t . Since π i induces an isomorphism outside the points ξ (a) t , the rest of the graph Γ i remains unchanged under the blowing-up π i . In the statement of the following lemma, we refer to the cases 1 and 2 defined above. Lemma 3.5.9 • Case 1 : Fix t ∈ {1, . . . , ℓ}. For each pair of vertices a, b as above, remove the edge (a, b) and add a new vertex c and two new edges (a, c) and (b, c). The graph Γ i+1 is obtained from Γ i by successively performing the above operation for each of ξ 1 , . . . , ξ ℓ .

• Case 2 : Consider a vertex a = (I, s) such that ξ (q) t ∈ I for some t ∈ {1, . . . , ℓ} and q ∈ {1, . . . , p}. Write I = [δ 1 , δ 2 ] (again, the vertex a is not, in general, uniquely determined by ξ (q) t ). -Case 2.1: Take λ ∈ {0, . . . , ℓ -1} and ω ∈ {1, . . . , ℓ -λ} such that

for some q ∈ {1, . . . , p}. Replace a by a bamboo with 2ω + 1 vertices. More precisely, we distinguish three cases : 

where the last inclusion comes from the fact that a and b are connected by an edge in Γ i .

Hence

which proves that a i+1 is connected to c i+1 . By symmetry, b i+1 is also connected to c i+1 . 

Without loss of generality, we may assume that y ′ (δ 1 ) > 0. Each of this maximal intervals gives rise to an admissible pair as follows.

The t , ξ (q) t+1 ). Since y ′ (δ 1 ) > 0 and since y ′ changes sign once at each point ξ (q) t the sign of y ′ on (ξ (q) t , ξ (q) t+1 ) is (-1) t . Hence

t , ξ (q) t+1 ) = ∅, sgn(x ji (δ)) = s}. (128) 1 By δ tangent to {xji = 0}, we mean δ such that ∀N ∈ N, N |xji(δ)| < |x,i(δ)| (b) Let a = (I, s) be a vertex such that ξ ∈ I; the vertex a is an endpoint of Γ i . Suppose that ξ ∈ Sper A ji . Let (x ji , y ′ ) be a regular system of parameters at ξ. Let A j,i+1 = A ji [x ′ ji , y ′ ] where x ′ ji = xji y ′ . Without loss of generality, assume that x ji > 0, y ′ > 0 on W (i) .

Let I ′ ⊂ {x ′ ji = 0} be the strict transform of I in Sper A j,i+1 . Then I ′ is an (i + 1)maximal interval. Let Ĩ′ ⊂ {y ′ = 0} be the (i + 1)-maximal interval given by 0 ≤ x ′ ji ≤ +∞. Now the new vertex b added to Γ i+1 is ( Ĩ′ , +). It is connected by an edge to a which is represented in Sper A j,i+ by (I ′ , +). This completes the proof of Lemma 3.5.9 and with it Proposition 3.5.8.

Let us finish the proof of Theorem 3.5.1. To each vertex (I = [δ 1 , δ 2 ], s) of Γ t we associate the set D(δ 1 , δ 2 ) ⊂ U (t) which by Corollary 3.5.5 is entirely contained in F (t) or G (t) . This defines a partition Γ F = (I, s) D(δ 1 , δ 2 ) ⊂ F (t) , Γ G = (I, s) D(δ 1 , δ 2 ) ⊂ G (t) of the set of vertices of Γ t . Assume that Γ F = ∅ and Γ G = ∅. Since Γ t is connected, there exist a = ([δ 1a , δ 2a ], s a ) ∈ Γ F , b = ([δ 1b , δ 2b ], s b ) ∈ Γ G such that (a, b) is an edge of Γ t . Then D(δ 1a , δ 2a ) ⊂ F (t) , D(δ 1b , δ 2b ) ⊂ G (t) and D(δ 1a , δ 2a ) ∩ D(δ 1b , δ 2b ) = ∅. This is a contradiction. This concludes the proof of Theorem 3.5.1.