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Ultrafast laser processing of bulk transparent materials can significantly gain in flexibility when the number
of machining spots is increased. We present a new photoinscription regime where an array of regular dots is
generated before the region of main laser focus under single pulse exposure in fused silica and borosilicate crown
glass without any external spatial phase modulation. The specific position of the dots does not rely on nonlinear
propagation effects but is mainly determined by beam truncation and is explained by a Fresnel propagation
formalism taking into account beam apodization and linear wavefront distortions at the air/glass interface.
The photoinscription regime is employed to generate a two-dimensional array of dots in fused silica. We show
that an additional phase modulation renders flexible the pattern geometry. (© 2010 Optical Society of America

OCIS codes: 000.0000, 999.9999.

Femtosecond laser sources are flexible tools for micro-
processing of transparent materials [1]. When ultrashort
laser pulses are focused inside a transparent material,
the nonlinear interaction between the strong electromag-
netic field and the dielectric material allows for localized
modifications of the material structural properties. As a
main result, the ultrafast exposure may modify several
optical properties such as birefringence, absorption and
refractive index on a micrometer scale [2]. The technique
has reached an indisputable maturity with the fabrica-
tion of several embedded photonic devices (see [1] and
references therein). There is a strong interest in improv-
ing the processing speed of the technique by multiplying
the number of machining foci. With the help of wave-
front tailoring devices such as spatial light modulators
or diffractive optical elements, several groups have shown
the possibility to increase the number of machined points
for surface and bulk patterning [3,4] and bulk parallel
writing of waveguides [5]. As another solution to multi-
point machining, the self-formation of regular voids un-
der the accumulation of many light pulses was reported
where the spacing, size and number of voids depend on
the accumulation dose and the pulses energy [6,7].

We present here a novel photoinscription regime allow-
ing for single step multispot bulk writing without extrin-
sic user-induced wavefront manipulation and occurring
with a single laser pulse. This results in the generation of
regular micrometric modifications on the axis before the
region of main focus with examples given here in fused
silica (FS) and borosilicate crown glass (BKT7).

Usually tightly focused femtosecond pulses confine
severely the energy in the focal region [8]. However, it
was demonstrated in particular conditions that the mod-
ified area can extend after the focus yielding consecutive
voids with quite regular spacing. This regime usually re-
quires a defined number of pulses and multiple refocusing
points due to self-focusing or spherical aberrations [6,7].

In this processing window, arrays of voxels were ma-
chined to illustrate of the applicative potential [7].

The photowriting regime we emphasize here has the
significant advantage that only one light pulse suffices to
generate tens of permanent dots without the need of spa-
tial beam shaping systems. Fused silica and BK7 sam-
ples were irradiated with 160fs pulses from an 800 nm
Ti:Sapphire amplified ultrafast laser system operating
at 160 Hz. Single pulses selected with a synchronized
electromechanical shutter were focused inside the target
by various microscope objectives with numerical aper-
tures (NA) of 0.45,0.42 and 0.28. The truncation ra-
tio T is the ratio between the Gaussian beam diame-
ter at the 1/e? intensity point and the lens aperture di-
ameter. We varied T' from 0.5 to 1 in our calculations
as well as experimentally using various magnifying tele-
scopes before the focusing lens. The laser-induced struc-
tures were observed with a Zernike-type positive opti-
cal phase-contrast microscopy (PCM) system coupled to
a high-resolution CCD camera providing a side-image
of the relative changes in the refractive index induced
by the irradiation. Positive and negative refractive in-
dex changes correspond to the image black and white
areas, respectively. Figure 1 shows bulk modifications in
FS and BKT7 subsequent to single femtosecond pulse ir-
radiation for various pulse energies. The laser focus is
situated 200 pm beneath the material surface, in condi-
tions of negligible spherical aberrations [9]. This location
corresponds to the structures generated with the lowest
pulse energy at the bottom of Fig.1 (a) and (b).

In the moderate energetic regimes below 2 nJ, we note
a drastic difference in the response of BK7 and FS un-
der laser irradiation as already reported [8]. While the
response of BK7 is dominated by thermal expansion in
a large region resulting in the onset of a low density
material [10], the response of FS is characterized by the
appearance of a reduced white zone in PCM correspond-
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Fig. 1. PCM pictures of single pulse irradiation effects
in FS and BK7 at different pulse energies (E) with
NA= 0.45 and T" = 1. The laser propagates along z.
For sufficient energy, a particular photowriting regime
occurs where regularly spaced dots appear up to 200 pm
before the focus area upon single pulse in both glasses.

ing to a void [11], and a filament of higher refractive
index. Time-resolved investigations associated the void
with the region of stronger absorption of the electronic
plasma and subsequent local mechanical rarefaction [12].

The new photoinscription regime is clearly observable
on the traces obtained at the highest energies in Fig.1
and corresponds to powers (tens of MW) severly exceed-
ing the critical power for self-focusing in both glasses. A
very regular succession of dots (see arrows) aligned on
the laser propagation axis z precedes the area of main
focusing in both glasses. We observed that this line ex-
tends to the sample surface if sufficient pulse energy is
employed, yielding ~ 20 dots under a single pulse. The
local mapping of these pre-dots is quasi-identical in both
materials which can be surprising since those glasses are
known to behave very differently under femtosecond ex-
posure [8]. In the context of femtosecond processing, it
is tempting to assign the cartography of these struc-
tures to nonlinear propagation in the form of a regular
succession of self-focusing and plasma defocusing phe-
nomena, with repetitive concentration of light. In fact,
it was shown that loose focusing conditions favoring fil-
amentary propagation permit the photowriting of vari-
ous permanent structures [13]. However a succession of
self-focusing points strongly depends on the peak inten-
sity and temporal characteristics of the pulse [14]. We
conducted studies varying the pulse duration to validate
this hypothesis (not shown). Investigations with longer
pulses revealed that the position of the dots stays identi-
cal for pulse durations under the picosecond. For longer
pulses, the dots do not appear. Also, comparing the 20 pJ
and the 8 uJ irradiations in FS (Fig.1 (a)), shows that
the position of the dots stays identical regardless of the
pulse peak intensity, thus not validating the nonlinear
propagation for being responsible for the dots mapping.

Interestingly, the distance separating two consecutive
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Fig. 2. (a), (b) PCM pictures of single pulse irradia-
tion effects in FS and BK7 with the Fresnel propaga-
tion results with NA= 0.45 and 7" = 1. The dashed
lines shows the correspondence between the position of
the dots and the calculated fluence peaks. (¢) Horizontal
section of the PCM picture (red) and of the numeri-
cal results (black) for BK7. (d) Calculated focusing of a
pure (top) and truncated (bottom) Gaussian beam show-
ing fluence peaks before the focus due to truncation. (e)
Array of dots written in FS in this regime. Each line
was written with a single pulse. The main damage (not
shown) is situated on the right.

dots is slightly smaller in F'S than in BK7, following the
tendency of their respective refractive indices at 800 nm
(nq—sio, ~ 1.453 and npxr ~ 1.509). This observation
motivated us to precisely calculate the laser beam lin-
ear propagation using a Fresnel propagation code [15] to
calculate the irradiation pattern over the focal volume.
Within the paraxial approximation and neglecting spec-
tral effects, the transverse intensity profile I(2’,y’) after
propagation over the distance D of a complex laser field

A(z,y) focused by a lens of focal distance f is defined
~ im (20 2\(1_1\]|2
by: I(x’,y’) o “Ffm/’fy’ [A(x,y)e Y ($ +y )(D f)
, where Fy, r, is the two-dimensional (2D) Fourier
Transform with respect to the spatial frequencies in the
(2’,y") plane. For a non-truncated collimated Gaussian
beam, A(z,y) reduces to a Gaussian function and the
calculated fluence around the focus shows a single flu-
ence peak at the beam waist (see Fig. 2 (d) top). The
effect of beam truncation from the focusing lens can be
incorporated in A(m,y) with a rect function, resulting
in a modulated fluence map with the appearance of flu-
ence peaks before the main focus as illustrated in Fig. 2
(d) (bottom). We calculated the phase and amplitude
of the laser beam after propagation from the lens until
the air/glass interface. Then a phase term was added to
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Fig. 3. Calculated intensity profiles along the optical axis
z just before the main focus for different wavefront mod-
ulations controlling the dots local mapping. (a) no phase
modulation yielding ”"11111” sequence. (b) and (c) vari-
ous modulations yielding 711011” and ”10101”.

the laser spatial phase to take into account the phase
distortion due to the refraction. The analytical expres-
sion of this additional phase term v (p) is easily obtained
from geometrical considerations [9].The air/glass inter-
face is accompanied by a certain amount of reflection
depending on the incidence angle and the beam polar-
ization. We took into account the corresponding varia-
tion of amplitude using the corresponding Fresnel coef-
ficients. The beam polarization is in the incidence plane
which is parallel to the microscopy images shown here.
The propagation calculations were then carried out for
an ensemble of X — Y planes comprising the focal area.
Figure 2 (b) shows the calculated focal fluence maps for
FS and BK7 with the PCM pictures of the bulk modifica-
tion (respectively Fig. 2 (a) and (b)). The calculated flu-
ence peaks preceding the focus precisely match the dots
position (see the vertical dashed lines). An horizontal
cross section along the optical axis of the PCM picture
and the simulations is shown in Fig. 2 (c) for BK7. The
mapping of the on-axis dots clearly matches the Fresnel
propagation results. We also experimentally verified this
correspondence for the other NAs (0.28 and 0.42). As
a comparison, the non-truncated Gaussian propagation
does not show the regular dot pattern (Fig.2 (d)). This
was equally checked experimentally using 7' = 0.5 (not
shown), validating thus the role of beam truncation.

As an illustration of the potential applications of this
photowriting regime, a 2D array of dots is presented on
Fig. 2 (e). The 70 shown dots were written with only 14
single pulse irradiations, which illustrates the possibility
to write many structures with a high throughput. Those
modifications can be used as data points or arrays of
waveguides or phase gratings (i.e with a continuous irra-
diation under transversal displacement of the sample).

The next step is to show that the dots amplitude can
be controlled to render this photowriting regime more
appealing for data storage or multi-waveguide writing

by higher flexibility. A phase-only spatial modulation
appears as an appropriate way to achieve the dots posi-
tion control while preserving a high energetic exposure.
As an illustration of this potentiality, 2D phase modu-
lations were numerically calculated with a evolutionary
algorithm to produce user-defined dots mapping. Fig-
ure 3 shows the resulting numerical intensity profiles for
three different optimized phase modulations showing the
possibility to write arbitrary binary data sequences. The
experimental implementation with a spatial phase mod-
ulators [5] will be the object of a future publication.

In conclusion, we described a novel single pulse pho-
toinscription regime where an axial array of regular dots
is generated before the main laser focus area in various
glasses. The dots topology matches the fluence peaks
calculated from Fresnel linear propagation simulations
deriving essentially from the beam truncation. As an il-
lustration, a 2D array of dots in FS is achieved in this
processing window. An additional employement of spa-
tial phase modulation increases the flexibility of the pro-
cess leading to patterns at designed locations.
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