
HAL Id: ujm-00572889
https://ujm.hal.science/ujm-00572889

Submitted on 10 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

True-Randomness and Pseudo-Randomness in Ring
Oscillator-Based True Random Number Generators
Nathalie Bochard, Florent Bernard, Viktor Fischer, Boyan Valtchanov

To cite this version:
Nathalie Bochard, Florent Bernard, Viktor Fischer, Boyan Valtchanov. True-Randomness and Pseudo-
Randomness in Ring Oscillator-Based True Random Number Generators. International Journal of
Reconfigurable Computing, 2010, 2010, pp.ID 879281. �10.1155/2010/879281�. �ujm-00572889�

https://ujm.hal.science/ujm-00572889
https://hal.archives-ouvertes.fr


True-randomness and Pseudo-randomness in Ring

Oscillator-based True Random Number Generators

Nathalie BOCHARD, Florent BERNARD, Viktor FISCHER, Boyan VALTCHANOV

Université de Lyon

CNRS, UMR5516, Laboratoire Hubert Curien

F-42000, Saint-Etienne, France

{nathalie.bochard, florent.bernard, fischer, boyan.valtchanov}@univ-st-etienne.fr

Abstract—The paper deals with true random number genera-
tors employing oscillator rings and namely with the one proposed
by Sunar et al. in 2007 and enhanced by Wold and Tan in
2009. Our mathematical analysis shows that both architectures
behave identically when composed of the same number of rings
and ideal logic components. However, the reduction of the
number of rings, as proposed by Wold and Tan, would inevitably
cause the loss of entropy in their generator. Unfortunately, this
entropy insufficiency is masked by the pseudo-randomness caused
by XOR-ing clock signals having different frequencies. Our
simulation model shows that the generator using more than 18
ideal jitter-free rings having slightly different frequencies and
producing only pseudo-randomness, will always let the statistical
tests pass. We conclude that smaller number of rings reduces
the security, if the entropy reduction is not taken into account in
post-processing. Moreover, the designer cannot avoid that some of
rings will have the same frequency, which will cause another loss
of entropy. In order to confirm this, we show how the attacker
can reach a state where more than 25 % of the rings are locked
and thus completely dependent. This effect can have disastrous
consequences on the security of the system.

Index Terms—True Random Number Generators; Random-
ness Tests; Clock Jitter; Ring Oscillators; FPGA;

I. INTRODUCTION

True Random Number Generators (TRNG) are used to gen-

erate confidential keys and other critical security parameters

(CSP) in cryptographic modules [1]. Generation of high rate

and high quality random bit-stream inside logic devices is

difficult because these devices are intended for implementing

deterministic data processing algorithms whereas generating

true-randomness needs some physical non deterministic pro-

cess.

The quality of the generated bit-streams is evaluated using

dedicated statistical tests such as FIPS 140-2 [1], NIST 800-22

[2], Diehard [3], etc. However, the statistical tests are not able

to give a mathematical proof that the generator generates true

random numbers and not only pseudo-random numbers that

can be employed in attacks [4]. For this reason, Killmann and

Schindler [5] propose to characterize the source of randomness

from the raw binary signal in order to estimate the entropy in

the generator output bit-stream.

The TRNGs implemented in reconfigurable devices usually

use metastability [6], [7], [8] or the clock jitter [9], [10], [11],

[12] as the source of randomness. Many of them employ

ring oscillators (RO) as a source of a jittery clock [13],

[14], [15]. One of principles employed the most frequently

in reconfigurable devices is that proposed by Sunar et al. in

[15]. This principle was later exploited and modified in [16],

and enhanced in [17] and [18]. Sources of randomness and

randomness extraction in RO-based TRNG were analyzed in

[19], [20] and [21].

In order to increase the entropy of the generated binary raw

signal and to make the generator “provably secure”, Sunar et

al. employ a huge number of ROs [15]. The outputs of 114

supposedly independent ROs are XOR-ed and sampled using

a reference clock with a fixed frequency in order to obtain a

raw binary signal. This binary signal is then post-processed

using a resilient function depending on the size of the jitter

and the number of ROs employed. The main advantages of

the generator of Sunar are:

• the claimed security level based on a security proof,

• easy (almost “push button”) implementation in FPGAs.

Without the security proof the generator of Sunar et al. can be

considered as just one of many existing TRNGs that passes the

statistical tests. This security approach is essential for TRNG

evaluation according AIS31 [5] that is accepted as a de facto

standard in the field. Unfortunately, the Sunar’s security proof

is based on at least two assumptions that are impossible or

difficult to achieve and/or validate in practice [11]:

• the XOR gate are supposed to be infinitely fast in order

to maintain the entropy generated in rings,

• the rings are supposed to be independent.

Wold and Tan show in [18] that by adding a flip-flop to the

output of each oscillator (before the XOR gate), the generated

raw bit-stream will have better statistical properties: the NIST

[2] and Diehard [3] tests will pass without post-processing and

with a significantly reduced number of ring oscillators.

It is commonly accepted that contrary to the original design

of Sunar et al., the modified architecture proposed by Wold

and Tan maintains the entropy of the raw binary signal after the

XOR gate, if the number of rings is unchanged. However, we

believe that several other questions are worthy of investigation.

The aim of our paper is to find answers to the following

questions and to discuss related problems:

• Is the security proof of Sunar valid also for the generator

of Wold and Tan?



• What is the entropy of the generated bit-stream after the

reduction of number of rings?

• How does security enhancement proposed by Fischer et

al. in [17] modify the quality of the generated binary raw

signal?

• How should the relationship between the rings be taken

into account in entropy estimation?

The paper is organized as follows: Section II analyzes the

composition of the timing jitter of the clock signal generated

in ring oscillators. Section III deals with the simulation and

experimental background of our research. Section IV compares

the behavior of the two generators in simulations and in

hardware. Section V discusses the impact of the size and type

of the jitter on the quality of the raw bit-stream. Section VI

evaluates the dependence between the rings inside the device

and its impact on generation of random bit-stream. Section

VII discusses the obtained results and replies to the questions

given in the previous paragraph. Section VIII concludes the

paper.

II. RING OSCILLATORS AND TIMING JITTER

Ring oscillators are free-running oscillators using logic

gates. They are easy to implement in logic devices and namely

in Field Programmable Gate Arrays (FPGAs). The oscillator

consists of a set of delay elements that are chained into a

ring. The set of delay elements can be composed of inverting

and non-inverting elements, while the number of inverting

elements has to be an odd number. The period of the signal

generated in the RO using ideal components is given by the

form

T = 2

k
∑

i=1

di, (1)

where k ∈ {3, 4, 5, . . . , n} is the number of delay elements

and di is the delay of the i-th delay element. This expression

is simplified in two ways:

• the delay di is supposed to be constant in time;

• the delays of interconnections are ignored.

In physical devices, the delay di varies between two half-

periods (i.e. between two instances i and i+k) and expression

(1) gets the form

T =

2k
∑

i=1

d(i−1 mod k)+1. (2)

In the case of ring oscillators, the variation of the clock

period is observed as the clock timing jitter, which can be

seen as a composition of the jitter caused by local sources

and the jitter coming from global sources, usually from power

supply and/or global device environment [19]. When observing

rings implemented in real devices and namely in FPGAs, the

delays of interconnections cannot be ignored anymore. For

simplicity, we propose to merge them with the gate delays.

This approach was validated in [21]. The delay di of gate i

including interconnection delay between two consecutive gates

in the ring oscillator can then be expressed as

di = Di +∆dLi +∆dGi, (3)

where Di is a constant delay of gate i plus interconnection

between gates i and i + 1 (mod k) corresponding to the

nominal supply voltage level and nominal temperature of the

logic device, ∆dLi is the delay variation introduced by local

physical events and ∆dGi is the variation of the delay caused

by global physical sources such as substrate noise, power

supply noise, power supply drifting, temperature variation, etc.

The delay dLi is dynamically modified by some amount of a

random signal ∆dLGi (LG - Local Gaussian jitter component)

and by some local cross-talks from the neighboring circuitry

∆dLDi (LD - Local Deterministic jitter component). The jitter

from local sources used in Eq. (3) can thus be expressed as

∆dLi = ∆dLGi +∆dLDi. (4)

The local Gaussian jitter components ∆dLGi coming from

individual gates and interconnections are characterized by

normal probability distribution N(µi, σ
2
i ) with the mean value

µi = 0 and the standard deviation σi. We can suppose that

these sources are independent. On the other side, the local de-

terministic components can feature some mutual dependency,

e.g. from cross-talks.

Besides being influenced locally, the delays of all logic

gates in the device are modified both slowly and dynamically

by global jitter sources. The slow changes of the gate delay

∆D (the drift) can be caused by a slow variation of the

power supply and/or temperature. The power source noise and

some deterministic signal, which can be superposed on the

supply voltage, can cause dynamic gate delay modification

composed of a Gaussian global jitter component ∆dGG and

a deterministic global jitter component ∆dGD. The overall

global jitter from Eq. (3) can therefore be expressed as

∆dGi = Ki(∆D +∆dGG +∆dGD), (5)

where Ki ∈ [0; 1] corresponds to the proportion of the global

jitter sources on the given gate delay. This comes from the

fact that the amount of the global jitter included in delays of

individual logic gates is not necessarily the same for all gates.

It is important to note, that Ki depends on the power supply

voltage, but this dependence may differ for individual gates.

In real physical systems, the switching current of each gate

modifies locally and/or globally the voltage level of the power

supply, which in turn modifies (again locally and/or globally)

the gate delay. This way, the delays of individual gates are not

completely independent. We will discuss this phenomenon in

Section VI.

III. SIMULATION AND EXPERIMENTAL SET-UP

The aim of the first part of our work was to compare the

behavior of two RO-based TRNGs: the original architecture

depicted in Fig. 1 a) that was proposed by Sunar et al. in [15]

and its modified version presented in Fig. 1 b) proposed by

Wold and Tan in [18]. Contrary to the strategy adopted in [18],



RO1

RO2

RON

Fs

Fs

Fs

Fs

RO1

RO2

RON

Fs

a) b)

Fig. 1. Original TRNG architecture of Sunar et al. (a) and modified
architecture of Wold and Tan (b)

where the behavior of the two generators was compared only

in hardware, we propose to compare it on simulation level,

too. This approach has two advantages:

• the functional simulation results correspond to an ideal

behavior of the generator, this way the two underlying

mathematical models can be compared;

• in contrast with the real hardware, thanks to simulation

we can modify the parameters of injected jitter and

evaluate the impact of each type of jitter on the quality

of the generated bit-stream.

The principle of our simulation platform and experimental

platform is depicted in Fig. 2. For both platforms, the two

generators were described in VHDL language and their ar-

chitectures differed only in the use of flip-flops on the rings

outputs (dashed blocks in Fig. 2). The bit-streams obtained

at the output of the final sampling flip-flop (before the post-

processing) were tested and evaluated for different types and

sizes of jitter in simulations and for different numbers of ring

oscillators in both simulations and hardware experiments. The

output of the TRNG was written into a binary file that was

used as an input file in statistical tests.

We avoided the post-processing in the generator of Sunar

et al. for two reasons:

• the post-processing function can hide imperfections in the

generated signal;

• using the same structures, we wanted to compare the two

generators more fairly.

At this first level of investigation, we used the statistical

tests FIPS 140-2 [1] in order to evaluate the quality of the

generated raw bit-streams. We preferred the FIPS tests before

the NIST test suite [2], because of the speed and the size

of files needed for testing. While using significantly smaller

files, the FIPS tests give a good estimation of the quality of

the generated raw signal. If these tests do not pass, it is not

necessary to go further. As our aim was to test a big set of

TRNG configurations, the time and data size constraints were

important. However, when the FIPS tests pass, we cannot

conclude that the quality of the sequence produced by the

TRNG is good. In this case, the generator should be thoroughly

inspected.

A. Simulation Methodology

In order to compare the two generators on the functional

simulation level (i.e. using ideal components), the behavior of

ring oscillators was modeled in VHDL by delay elements with

dynamically varying delays.

01011010

11001010
10010101
11001010

11001000

11001101

RO1

RO2

RON

Binary File

FIPS
TESTS

FPGA / MODELSIM COMPUTER

Fs

Fs

Fs

Fs

Fig. 2. Simulation and experimental platforms

The jittered half-period, generated in MatLab Ver. R2008b,

is based on equations (2) to (5). However, we take into

account only local Gaussian jitter ∆dLGi (the source of true-

randomness) and global deterministic jitter ∆dGD (the source

of pseudo-randomness which can easily be manipulated) in

our simulations. This approach was explained in [19]. Both

sources of jitter depend a priori on the time t. Thus the

simplified equation used in MatLab for generating jittery half-

periods over the time t, denoted by h(t), is expressed as

h(t) =
k

∑

i=1

(Di(t) + ∆dLGi(t) +Ki ×∆dGD(t)). (6)

The fix part of the generated delay that determines the mean

half-period of the ring oscillator is defined as a sum of k delay

elements featuring constant delay Di(t) = Di for each gate

i. The variable delay that is added to the mean half-period

is composed of a Gaussian component generated for each

gate individually and of a deterministic component generated

by the same generator for all gates and rings. The Gaussian

delay component ∆dLGi(t) can be seen as a stationary process

(i.e. mean and variance of ∆dLGi(t) do not change over the

time t). Thus ∆dLGi(t) can be generated using the normrnd
function in MatLab with mean 0 and standard deviation σi.

The deterministic component ∆dGD(t) applied at time t is

calculated in MatLab in the following way:

∆dGD(t) = AGD × sin(2πFGD × t), (7)

where AGD and FGD represent the amplitude and frequency

of the deterministic signal. Note, that the sin function can be

replaced with the square, sawtooth or other deterministic

function. Coefficients Ki are used to simulate the varying

influence of ∆dGD(t) on each gate i.
Once the parameters k, Di, Ki, σi, AGD and FGD were

set, a separated file containing a stream of half-period values

was generated for each ring oscillator. These files were read

during the VHDL behavioral simulations performed using the

ModelSim SE 6.4 software, as presented in Fig. 3 (a).

The output signals were sampled using a D flip-flop at the

sampling frequency Fs = 32 MHz and the obtained 20,000

samples were written during the simulation to a binary file.

Finally, generated sequences were tested using FIPS 140-2

tests.

B. Methodology of Testing in Hardware

Enhancements of the generator architecture brought by

Wold and Tan were related to the behavior of the XOR gate.



c) RO in Actel devicea) RO in simulation

LCELL LCELL LCELL

b) RO in Altera device

MATLAB Delays Evolution
File

h = ΣDi + ∆

∆ =

...

280ps
306ps
292ps
269ps

28; -7; 12; 1ps

ΣDi

h

Fig. 3. Implementation of ring oscillators in simulations and in hardware

In order to compare generators’ behavior in two different

technologies, we employed one from Altera (the same that

was used in [18]) based on Look-up tables (LUT) and one

from Actel based on multiplexers. We developed two different

modules dedicated to TRNG testing. Each module contained

a selected FPGA device, a 16 MHz quartz oscillator and low-

noise linear voltage regulators. The modules were plugged

into a motherboard containing Cypress USB interface device

CY7C6B013A-100AXC powered by an isolated power supply.

The Altera module contained the Cyclone III

EP3C25F256C8N device. The non-inverting delay elements

and one inverter were mapped to LUT-based logic cells

(LCELL) from Altera library (see Fig. 3 (b)). This way, either

odd or even number of delay elements could be used in order

to tune the frequency in smaller steps. We used Quartus II

software version 9.0 from Altera for mapping the rings into

the device. All delay elements were preferably placed in

the same logic array block (LAB) in order to minimize the

dispersion of parameters.

The Actel Fusion module featured the M7AFS600FGG256

FPGA device. The non-inverting delay elements were imple-

mented using AND2 gates from Actel library with two inputs

short-connected and one inverter (again from Actel library)

was added to close the loop (see Fig. 3 (c)).

On both hardware platforms, an internal PLL was used to

generate the 32 MHz sampling clock Fs. The generated bit-

streams were sent to the PC using the USB interface. A 16-

bit interface communicating with the Cypress USB controller

was implemented inside the FPGA. A Visual C++ application

running on the PC read the USB peripheral and wrote data into

a binary file that was used by the FIPS 140-2 tests software.

IV. COMPARISON OF THE GENERATORS’ BEHAVIOR IN

SIMULATIONS AND IN HARDWARE

First, we compared the behavior of both generators in

VHDL simulations. The generators used 1 to 20 ROs con-

sisting of k = 9 inverters each. To take into account the

differences related to the placement and routing of ROs, we

supposed that the mean delay Di of individual gates were

slightly different from one ring to another (between 275
ps and 281 ps). The additional Gaussian jitter ∆dLGi

have

mean 0 and standard deviation σi = 30 ps. No deterministic

component was added in this experiment (i.e. ∆dGD(t) = 0).

It is important to note that the same random data files were

used for both Sunar’s and Wold’s generators.

monobit

8000

9000

10000

11000

0 5 10 15 20

poker

0

200

400

600

800

0 5 10 15 20

failed runs

0

5

10

0 5 10 15 20

wold_simu sunar_simu

Fig. 4. Results of the FIPS 140-2 tests in simulation with 30 ps of Gaussian
jitter for Sunar’s and Wold’s architecture (excluding long runs that always
passed), the tests pass if the results are in the gray region or are equal to zero
for the “Runs” test

A. Simulation Results and Mathematical Analysis of the Gen-

erator Behavior

The simulation results for both evaluated generators are

presented in Fig. 4. Note that the “Monobit” and “Poker” tests

succeed if the test result lies in the gray area. The “Run” test

succeeds if no run fails. The “Long run” test is not presented

in the graphs because it always succeeded.

It can be seen that in all configurations the two versions

of the generator gave very similar (almost identical) results.

Next, we will explain the reason for this behavior.

Let bj(t) be the bit sampled at time t ≥ 0 at the output of

the ring oscillator ROj . This bit depends on the time t, the

period Tj > 0 generated by ROj and the initial phase ϕj of

ROj at time t = 0.

Note that Tj , t and ϕj are expressed in the time domain. This

dependency is given by the following relation:

bj(t) = 1−

⌊

(ϕj + t) mod Tj

Tj/2

⌋

. (8)

Equation (8) ensures bj(t) is a bit (i.e. bj(t) ∈ {0, 1}).

Indeed, by definition of operation mod Tj

0 ≤ (ϕj + t) mod Tj < Tj ,

then

0 ≤
(ϕj + t) mod Tj

Tj/2
< 2,



and by definition of the floor operation,

0 ≤

⌊

(ϕj + t) mod Tj

Tj/2

⌋

≤ 1,

that means
⌊

(ϕj + t) mod Tj

Tj/2

⌋

∈ {0, 1},

thus bj(t) = 1−

⌊

(ϕj + t) mod Tj

Tj/2

⌋

∈ {0, 1}.

Equation (8) holds if Tj is constant. Then if (ϕj + t)
mod Tj < Tj/2, the sample value will be ′1′ otherwise it

will be ′0′ (in the case where the rising edge appears first, Eq.

(8) would be bj(t) =
⌊

(ϕj+t) mod Tj

Tj/2

⌋

).

In both Sunar’s and Wold’s designs, outputs of N ring

oscillators are XOR-ed to get one random bit as it is shown

in Fig. 1.

From the mathematical point of view, XOR-ing the outputs

of N ring oscillators in Sunar’s architecture is given by:

S(t) =
N
⊕

j=1

bj(t), (9)

or

S(t) =

N
∑

j=1

bj(t) mod 2

=

N
∑

j=1

(

1−

⌊

(ϕj + t) mod Tj

Tj/2

⌋)

mod 2.

Thus

S(t) =



N +

N
∑

j=1

⌊

(ϕj + t) mod Tj

Tj/2

⌋



 mod 2. (10)

This way, the nth bit sampled at time n×Ts in the D flip-flop

is given by Eq. (10) for t = n× Ts.

In Wold’s architecture, each ring oscillator is sampled at

time n × Ts, which gives a set of bits {b1(n × Ts), b2(n ×
Ts), . . . , bN (n×Ts)}. Then all these bits are XOR-ed and the

result is sampled at time (n + 1) × Ts, giving the output of

Wold’s TRNG denoted by W ((n+ 1)× Ts):

W ((n+ 1)× Ts) =
N
⊕

j=1

bj(n× Ts). (11)

Thus using equations (9) and (11), the relation between outputs

of Wold’s TRNG and Sunar’s TRNG is given by,

W ((n+ 1)× Ts) = S(n× Ts). (12)

We can conclude that from the mathematical point of view,

assuming constant periods of ring oscillators and ideal com-

ponents, Sunar’s and Wold’s generators can be described in the

same way. The only difference is the right shift of the sequence

from the Wold’s generator. Note, that this conclusion explains

also the similar behavior of both generators in simulation as

it is shown in Fig. 4.

The claim that both ideal generators behave according to

the same mathematical model is very important, because it

means that the security proof of Sunar can be applied to both

of them. However, as we will see in the next section, their

behavior in hardware is very different.

B. Results Obtained in Hardware

We applied the FIPS 140-2 tests on the raw binary signals

generated by the two generators, while incrementing the

number of ROs. The results obtained for Actel FPGA are

presented in Fig. 5 and those obtained for Altera FPGA in

Fig. 6. The number of ROs varied from 1 to 20 by increments

of 1 and from 20 to 115 by increments of 5.

It can be seen that for the Sunar’s architecture the tests

passed neither for Altera, nor for Actel family. However, we

can note that the Altera Cyclone III device gave slightly better

results. This was probably due to the different behavior of

the XOR gate in selected technologies. In the same time,

concerning the architecture of Wold, the tests passed for both

technologies if the number of ROs was higher than 8. Note that

these results confirmed those obtained on standard evaluation

boards from Altera and Actel published in [22].

The claims of Wold are thus confirmed in both technologies

and various types of boards. However, it is not clear, what

kind of randomness lets the tests pass. Is it mostly a pseudo-

randomness (coming from the sequential behavior of the

generator characterized by the internal state evolution) that

can theoretically be attacked or a true-randomness that should

be employed? The tests are clearly not able to distinguish

between them. Again, the simulation can give answers to these

questions.

V. IMPACT OF THE SIZE AND TYPE OF THE JITTER ON THE

QUALITY OF THE RAW BIT-STREAM

As the architectures of Sunar and Wold have the same ideal

behavior, we will analyze only the architecture of Wold and

Tan, because its behavior in hardware is closer to the idealized

mathematical model. Next, we will study the impact of both

Gaussian and deterministic components of the jitter on the

generated raw signal.

A. Impact of the Size of the Gaussian Jitter on the FIPS 140-2

Tests

Again, we have simulated the behavior of the Wold’s archi-

tecture with 1 to 20 ROs composed of 9 elements. The half

period of each RO was composed of a mean value (frequency

of RO-generated clock signal varied between 197,5 MHz and

202 MHz in 250 kHz steps) and of an additional random value

(normally distributed with mean 0 and σi = 0, 10, 30 and

50 ps for each gate). The random signals were generated in

MatLab, independently for each RO. The results are presented

in Fig. 7.

Two facts can be observed in these figures:

• as expected, when the random jitter increases, the tests

pass more easily (i.e. with a reduced number of ROs);



monobit

8000

9000

10000

11000

0 20 40 60 80 100

poker

0

200

400

600

800

0 20 40 60 80 100

failed runs

0

5

10

0 20 40 60 80 100

sunar_actel wold_actel

Fig. 5. Results of the FIPS 140-2 tests for observed TRNG architectures
with varying number of ring oscillators in Actel Fusion device

• more surprisingly, the tests pass even if the random jitter

is not injected at all (σ = 0), and this for 18 ROs or

more.

Thanks to the mathematical model from Eq. (10), which

generates the same sequences as the simulation tool, we could

generate faster long bit-streams in order to perform NIST tests.

The results were conclusive: the NIST tests passed with this

full deterministic behavior (without any randomness) for only

18 ROs.

The fact that the tests (FIPS and NIST) pass for a few ROs

without Gaussian jitter means that both Sunar’s and Wold’s

architectures produce a great amount of pseudo-randomness.

We recall that pseudo-randomness in the generated sequence

depends on the frequencies of ROs and can be manipulated

from outside the chip (e.g. by modulating the power supply

or by an electro-magnetic interference as it was presented

recently at the CHES conference [23]). Furthermore, using

a mathematical model (e.g. that from Eq. (10)), some patterns

can be predicted. The proportion of pseudo-random and true-

random components in the generated sequence is thus very

important. However, in the solution proposed by Wold, the

number of ROs is significantly reduced, because the NIST tests

passed. This can be considered as a security-critical attempt

for cryptography applications and should certainly be avoided.

B. Injecting a Deterministic Jitter

In the next experiments, the Gaussian jitter remained con-

stant (σi = 30 ps per gate) and we applied a sinusoidal

deterministic jitter of 3 kHz and 0 to 10 ps in amplitude. The

monobit

8000

9000

10000

11000

0 20 40 60 80 100

poker

0

200

400

600

800

0 20 40 60 80 100

failed runs

0

5

10

0 20 40 60 80 100

sunar_altera wold_altera

Fig. 6. Results of the FIPS 140-2 tests for observed TRNG architectures
with varying number of ring oscillators in Altera Cyclone III device

results are presented in Fig. 8.

It can be seen that when the deterministic part increases, the

tests pass more easily. But there are two problems concerning

the deterministic component of the jitter:

• the results are strongly dependent on the frequency of the

injected signal: depending on the frequency, the output of

the TRNG can vary in time in a predictable way;

• the deterministic jitter can be manipulated (for example,

an attacker can superimpose a chosen signal that seems

to improve randomness so that the tests would pass more

easily, but in fact, he can predict some trends in sub-

sequences).

For the above mentioned reasons, the designer should reduce

the pseudo-randomness coming from the deterministic jitter

component as much as possible.

C. Reducing the Influence of the Deterministic Jitter Compo-

nent

As we pointed out in [17], the impact of the deterministic

jitter on the generated random numbers can significantly be

reduced by the use of a reference clock signal featuring the

same deterministic global jitter. This fact is not taken into

account in any observed TRNG designs [15], [16], [18]. In

the following experiments, we used a clock signal generated

by another internal ring oscillator as a sampling clock. The

generated signal frequency was divided by 8 and then used

as a sampling clock (having thus the frequency of about 25
MHz). We implemented the Wold’s TRNGs with 1 to 20 ROs.

In the first experiment, we did not inject the deterministic jitter



poker

0

200

400

600

800

0 5 10 15 20

monobit

9000

10000

11000

0 5 10 15 20

failed runs

0

5

10

0 5 10 15 20

sigma50 sigma30 sigma10 sigma0

Fig. 7. Results of the FIPS 140-2 tests in the Wold’s TRNG architecture
simulations with varying size of injected Gaussian jitter

component and we let the Gaussian part vary between 0 and

50 ps. The results are presented in Fig. 9. Next, we fixed

the Gaussian jitter to σ = 30 ps and we applied a sinusoidal

deterministic jitter of 3 kHz and 0 to 10 ps in amplitude. The

results are prese nted in Fig. 10.

As expected, increasing the standard deviation of the in-

jected Gaussian jitter component from 0 to 50 ps, the tests

passed more easily for both external and internal sampling

clocks (see Fig. 7 and Fig. 9, respectively). It is important to

note that for a fixed Gaussian jitter size, tests passed more

easily if the sampling was performed with an internal clock

signal (i.e. from another ring oscillator), because independent

Gaussian jitter components were included in both sampling

and sampled signals and they increased the entropy of the

generated bit-stream.

In the last experiment, the Gaussian jitter component was

constant and the deterministic jitter component varied. The

results for external and internal sampling clocks are presented

in Fig. 8 and Fig. 10, respectively. Contrary to the use of

an external clock, the influence of the deterministic jitter

was strongly reduced when an internal clock was used. As

expected, whatever the size of the injected deterministic jitter

component, the test results were similar.

VI. MUTUAL DEPENDENCE OF RINGS AND ITS IMPACT ON

THE QUALITY OF THE RAW BIT-STREAM

The aim of the following experiment was to validate the mu-

tual independence of ring oscillators implemented in FPGA.

Note that this mutual independence of rings is a necessary

poker

0

200

400

600

800

0 5 10 15 20

monobit

9000

10000

11000

0 5 10 15 20

failed runs

0

5

10

0 5 10 15 20

d10 d5 d1 d0

Fig. 8. Results of the FIPS 140-2 tests in the Wold’s TRNG architecture sim-
ulations while injecting a Gaussian jitter of 30 ps and a varying deterministic
jitter

condition for the validity of the security proof from [15].

First, we implemented pairs of 9-element ROs with similar

topology (similar routing) in both tested FPGA technologies.

The generated clock periods were measured using the high

bandwidth (3.5 Ghz) digital oscilloscope LeCroy WavePro

735Zi. The 1.2 V power supply of the FPGA core was replaced

with an external variable power supply. The output clock signal

periods were measured for the power supply ranging from 0.9

V to 1.3 V.

We can observe in Fig. 11 that for the Actel Fusion family

the periods of the generated clock signals depend on the power

supply in very similar, but not exactly the same way. We

note that for a certain voltage interval the periods overlap,

while outside this interval they tend to separate slightly. This

corresponds to the use of coefficients Ki in Section II and to

the claim that they depend on the power supply, but differently

for each gate or ring.

The difference between the two clock periods as the function

of the power supply can be observed in Fig. 12. We can notice

that it changes from negative to positive values following

a monotonously rising curve; but suddenly, in the interval

from 1.02 to 1.12 V, it drops almost to zero. The only

explanation of this effect is that the rings become locked

(otherwise they should cross only in one point). The fact that

the period difference is not zero is explained later. We can

conclude that in the locking range the role of coefficients

Ki on determination of the frequency (period) is overruled

by some other phenomenon. This is coming probably from



poker

0

200

400

600

800

0 5 10 15 20

monobit

9000

10000

11000

0 5 10 15 20

failed runs

0

5

10

0 5 10 15 20

sigma50 sigma30 sigma10 sigma0

Fig. 9. Results of the FIPS 140-2 tests of the Wold’s TRNG architecture
simulations with internal reference clock and varying size of injected Gaussian
jitter

the dependence of the frequency of one oscillator on the

current peaks caused by rising and falling edges of the second

oscillator, as it is explained in the end of Section II. This

phenomenon was not observed in the literature up to now.

The locking of two rings was also observable on the

oscilloscope, as it is depicted in Fig. 13 using the screen

persistence. We could observe several phenomena during our

experiments:

• when the rings’ frequencies were sufficiently close, it

was quite easy to lock the rings by modifying the power

supply;

• the locking could be observed for both technologies used;

• although most of the time the phase of the two signals

on the oscilloscope was perfectly stable, sometimes they

became unlocked for a very short time – this explains why

the period difference measured in long time intervals was

not exactly zero in the locking zone;

• we could quite easily obtain the state when about 25 %

of rings were locked – most of them were locked on a

dominant frequency and other smaller groups of rings on

other frequencies (this phenomenon was observed on all

tested cards – five cards for each evaluated technology);

• the state when two or more rings were locked on the

nominal voltage level (without manipulating the power

supply) could also be obtained.

poker

0

200

400

600

800

0 5 10 15 20

monobit

9000

10000

11000

0 5 10 15 20

failed runs

0

5

10

0 5 10 15 20

d10 d5 d1 d0

Fig. 10. Results of the FIPS 140-2 test of the Wold’s TRNG architecture
simulations while injecting a Gaussian jitter with σ = 30 ps and a varying
size of deterministic jitter, with internal reference clock

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
11

12

13

14

15

16

17

18

19

20

P
er

io
d

 [
n

s]

Supply voltage [V]

RO1 Experimental Data
RO1 Interpolation
RO2 Experimental Data
RO1 Interpolation

Fig. 11. Dependence of clock periods of two rings in Actel Fusion device
on the power supply

VII. DISCUSSION

As it was shown in Section II, the generator of Sunar et al.

and the generator of Wold and Tan are based on the same

mathematical model (see Eq. (10)), when built using ideal

components. This fact means that the proof of Sunar can

be valid for both architectures. We recall that the proof of

Sunar is based on the entropy estimation based on the jitter

measurement before the XOR gate, while supposing that this

gate does not reduce the entropy. However, this last assumption

is not true for the architecture of Sunar when implemented in

physical devices. The architecture of Wold and Tan solves this



0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
−20

−10

0

10

20

30

40

50

60

70

80
P

er
io

d
 d

if
fe

re
n

ce
 [

p
s]

Supply voltage [V]

Fig. 12. Difference between clock periods of two rings depending on the
power supply

Fig. 13. Waveforms of two locked (up) and unlocked (down) rings in Actel
Fusion device

problem and should be preferred.

Nevertheless, even the new architecture does not eliminate

serious doubts about the entropy contents in the raw signal.

Unfortunately, this entropy cannot be measured. Applying the

theory of Sunar et al., the entropy of the raw binary signal can

be estimated knowing the sampling frequency, size of the jitter

and number of independent rings. Supposing that the rings are

independent, this theory remains valid for the new generator

architecture as we showed in Section II. For this reason we can

conclude that while reducing number of rings, Wold and Tan

reduced unconsciously the entropy of the generated signal. In

order to maintain the security level, they should also modify

the resilient function, in order to increase the compression

ratio and to guarantee the output entropy per bit close to one.

Instead, they propose to remove the post-processing, which

is clearly a very dangerous action from the point of view of

security.

Equation (10) implies that both generators contain some

memory element (they are not memoryless in the sense of

term used in [5]). This means that besides the true random

behavior coming from the Gaussian jitter, they will feature a

pseudo-random behavior. This behavior can be described for

any time instant t depending on the previous generator state

characterized by phases ϕj of N rings that generate clocks

with periods Tj . Following the principle of the generator, the

presence of this kind of pseudo-randomness in generated bit-

stream is unavoidable.

There is another source causing the pseudo-randomness in

the raw binary signal. It comes from the global determinis-

tic jitter sources. Both above-mentioned sources of pseudo-

randomness are dangerous because they can mask the entropy

insufficiency (the tests of randomness will pass) and at the

same time they can be manipulated. However, the pseudo-

randomness coming from the evolution of the state of the

generator described by Eq. (10) is more dangerous, because it

can have two impacts: the attacker can manipulate the contents

of the bit-stream and at the same time the entropy can be

reduced.

For example, by modulating the power supply and thus

changing the periods Tj , the attacker can control the pseudo-

random behavior of the generator to some extent (mutual

relations between clock periods) and the state can be reached

where the rings are locked. This way, the effective number of

usable (independent) rings is reduced. As in the case of the

generator of Wold and Tan, the reduced number of rings will

lower the entropy of the generated signal and at the same time

the generator’s pseudo-random behavior will be simpler and

thus easier to guess.

VIII. CONCLUSIONS

As it was shown, the generator of Wold and Tan follows the

same mathematical model as that of Sunar et al. The security

proof of Sunar can thus be applied (theoretically) also in this

case. Because the generator of Wold and Tan gives much better

binary raw signal in hardware, it should be preferred. However,

in order to assure that the proof of Sunar will hold, the number

of rings shouldn’t be reduced as proposed in [18] only because

the tests passed. As we showed, the generator using more than

18 ideal jitter-free rings having slightly different frequencies

and producing only the manipulable pseudo-randomness, will

always let the tests pass.

In an ideal case (i.e. when the rings are independent) and

following the proof of Sunar, the number of rings is defined

by the size of the Gaussian component of the jitter and by the

reference clock frequency, both in relationship with the post-

processing resilient function. However, even if the number of

rings remains high, some of them could be locked and the

effective number of exploitable rings could be significantly

lower. In this case, which is easy to obtain in real FPGAs and

which can concern as much as 25 % of rings or more, the

entropy of the generated raw signal would be much lower

than expected and the generator would be predictable or

manipulable.



The locking of rings depends on their topology (placement

and routing) and on the technology used. The probability of

locking could perhaps be reduced by a careful placement and

routing on a per-device basis or by an independent powering

of all rings. Applying the first approach, the designer loses the

main advantage of this class of TRNGs – device-independent

design. The second approach is impossible to apply in FPGAs.

Another strategy can consist in detection of locking of rings

in order to stop the generation of random numbers. However,

the complexity of the detection circuitry would rise with the

square of number of rings and it would thus limit the practical

use of the generator, which is already penalized by the fact

that the number of rings is considerable.

Although locking of rings can have disastrous consequences

on the security of TRNGs based on ring oscillators, this

phenomenon is not yet observed in the literature. For this

reason, it should be studied extensively in the future.

ACKNOWLEDGMENT

This paper is an extended version of the conference paper

[22] presented at ReConFig09. The research was partially

supported by a grant from the French National Research

Agency - ANR-09-SEGI-013 and by the Rhone-Alpes Region

and Saint-Etienne Metropole, France.

REFERENCES

[1] Information Technology Laboratory. FIPS 140-2: Security Requirements
for Cryptographic Modules. Special Publication 140-2, May 2001.

[2] A. Rukhin, J. Soto, J. Nechvatal, J. Smid, E. Barker, S. Leigh, M. Leven-
son, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo. A Statistical
Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications, NIST Special Publication 800-22. Online.
Available at: http://csrc.nist.gov/, 2001.

[3] G. Marsaglia. DIEHARD: Battery of Tests of Randomness. Online.
Available at: http://stat.fsu.edu/pub/diehard/, 1996.

[4] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone. Handbook

of Applied Cryptography. CRC Press, 1997. Online. Available at:
http://www.cacr.math.uwaterloo.ca/hac/.

[5] W. Killmann and W. Schindler. AIS 31: Functionality classes and
evaluation methodology for true (physical) random number generators,
version 3.1. Bundesamt fur Sicherheit in der Informationstechnik (BSI),

Bonn, 2001.

[6] I. Vasyltsov, E. Hambardzumyan, Y.-S. Kim, and B. Karpinskyy. Fast
Digital TRNG Based on Metastable Ring Oscillator. In Elisabeth Oswald
and Pankaj Rohatgi, editors, Cryptographic Hardware and Embedded

Systems – CHES 2008, volume 5154 of LNCS, pages 164–180. Springer,
2008.

[7] B. Fechner and A. Osterloh. A meta-level true random number generator.
International Journal of Critical Computer-Based Systems, 1(1-3):267–
279, 2010.

[8] M. Varchola and M. Drutarovsky. New High Entropy Element for FPGA
Based True Random Number Generators. In S. Mangard and F.-X.
Standaert, editors, Cryptographic Hardware and Embedded Systems –

CHES 2010, volume 6225 of LNCS, pages 351–365. Santa Barbara, CA,
USA, Springer Verlag, 2010.

[9] V. Fischer and M. Drutarovsky. True Random Number Generator
Embedded in Reconfigurable Hardware. In Burton S. Jr. Kaliski,
Çetin K. Koç, and Christof Paar, editors, Cryptographic Hardware and

Embedded Systems – CHES 2002, volume 2523 of LNCS, pages 415–
430. Redwood Shores, CA, USA, Springer Verlag, 2002.

[10] K.H. Tsoi, K.H. Leung, and P.H.W. Leong. Compact FPGA-based true
and pseudo random number generators. Field-Programmable Custom

Computing Machines, 2003. FCCM 2003. 11th Annual IEEE Symposium

on, pages 51–61, 2003.

[11] M. Dichtl and J.D. Golic. High-Speed True Random Number Generation
with Logic Gates Only. In Pascal Paillier and Ingrid Verbauwhede,
editors, Cryptographic Hardware and Embedded Systems – CHES 2007,
volume 4727 of LNCS, pages 45–61. Vienna, Austria, Springer Verlag.

[12] J.L. Danger, S. Guilley, and P. Hoogvorst. Fast True Random Generator
in FPGAs. Circuits and Systems, 2007. NEWCAS 2007. IEEE Northeast

Workshop on, pages 506–509, 2007.
[13] T.E. Tkacik. A Hardware Random Number Generator. In Burton S.

Kaliski, Çetin K. Koç, and Christof Paar, editors, Cryptographic Hard-

ware and Embedded Systems – CHES 2002, volume 2523 of LNCS,
pages 450–453. Redwood Shores, CA, USA, Springer Verlag, 2002.

[14] P. Kohlbrenner and K. Gaj. An embedded true random number generator
for FPGAs. Proceedings of the 2004 ACM/SIGDA 12th international

symposium on Field programmable gate arrays, pages 71–78, 2004.
[15] B. Sunar, W.J. Martin, and D.R. Stinson. A Provably Secure True

Random Number Generator with Built-In Tolerance to Active Attacks.
IEEE Transactions on Computers, pages 109–119, 2007.

[16] D. Schellekens, B. Preneel, and I. Verbauwhede. FPGA vendor ag-
nostic true random number generator. Proc. 16th Int. Conf. Field

Programmable Logic and Applications-FPL, 2006.
[17] V. Fischer, F. Bernard, N. Bochard, and M. Varchola. Enhancing

Security of Ring Oscillator-based RNG implemented in FPGA. In Field-

Programable Logic and Applications (FPL), pages 245–250, Sept. 2008.
[18] K. Wold and C. H. Tan. Analysis and enhancement of random number

generator in FPGA based on oscillator rings. International Journal of

Reconfigurable Computing, 2009:8 pages, 2009.
[19] B. Valtchanov, A. Aubert, F. Bernard, and V. Fischer. Modeling and

observing the jitter in ring oscillators implemented in FPGAs. Design

and Diagnostics of Electronic Circuits and Systems, 2008. DDECS 2008.

11th IEEE Workshop on, pages 1–6, 2008.
[20] V. Rozic and I. Verbauwhede. Random Numbers Generation: Investi-

gation of Narrow Transitions Suppression on FPGA. In Martin Danek,
Jirı́ Kadlec, and Brent Nelson, editors, Field-Programable Logic and

Applications (FPL), pages 699–702, 2009.
[21] B. Valtchanov, A. Aubert, V. Fischer, and F. Bernard. Characterization

of randomness sources in ring oscillator-based true random number
generators in FPGAs. Design and Diagnostics of Electronic Circuits

and Systems, 2010. DDECS 2010. 13th IEEE Workshop on, pages 48–
53, 2010.

[22] N. Bochard, F. Bernard, and V. Fischer. Observing the randomness in
RO-based TRNG. Reconfigurable Computing and FPGAs, International

Conference on, 2009:237–242, 2009.
[23] W. T. Markettos and S. W. Moore. The Frequency Injection Attack on

Ring-Oscillator-Based True Random Number Generators. In Christophe
Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded

Systems – CHES 2009, volume 5747 of LNCS, pages 317–330. Springer.


