
HAL Id: ujm-00664312
https://ujm.hal.science/ujm-00664312

Submitted on 30 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cryptographic Extension for Soft General-Purpose
Processors with Secure Key Management

Lubos Gaspar, Viktor Fischer, Lilian Bossuet, Milos Drutarovský

To cite this version:
Lubos Gaspar, Viktor Fischer, Lilian Bossuet, Milos Drutarovský. Cryptographic Extension for Soft
General-Purpose Processors with Secure Key Management. International Conference on Field Pro-
grammable Logic and Applications, 2011. FPL 2011., Sep 2011, Chania, Crete, Greece. pp.500 - 505,
�10.1109/FPL.2011.99�. �ujm-00664312�

https://ujm.hal.science/ujm-00664312
https://hal.archives-ouvertes.fr

Cryptographic extension for soft general-purpose processors
with secure key management

Lubos GASPAR, Viktor FISCHER, Lilian BOSSUET
Université de Lyon

Laboratoire Hubert Curien, UMR 5516, CNRS
42000, Saint-Etienne, France

{lubos.gaspar, fischer, lilian.bossuet}@univ-st-etienne.fr

Milos DRUTAROVSKY
Technical University of Košice

Department of Electronics and Multimedia Communications
04120, Košice, Slovakia

Milos.Drutarovsky@tuke.sk

Abstract—General-purpose processors are not suitable for
secure cryptographic key management. Secret keys are usually
stored in the internal registers of the processor, and simple
attacks on protocols, software/firmware or cache memory can
often lead to key disclosure causing a system security failure.
The paper presents a novel principle of processor extensions
that enable secure key management. This principle is based on
the creation and physical separation of three security zones:
processor, cipher and key storage. In each of the three zones,
the secret keys are manipulated in a different manner – as
ordinary data or keys, in clear or encrypted. In order to
increase security, the security zones are separated from each
other on the protocol, architectural and physical level. The
proposed principle is validated as extensions to both NIOS II
and MicroBlaze processors. The NIOS II processor needs fewer
clock cycles per data block encryption, because the security
module is included in the processor’s data path. The data
path of the MicroBlaze is unchanged, and thus shorter, but
additional clock cycles are necessary for data transfers between
the processor and the security module. Although the interfacing
is different, both processors attain the required high security
level.

Keywords-Hardware security; Crypto-processor; FPGA soft-
core; NIOS II; MicroBlaze

I. INTRODUCTION

Cryptographic hardware systems implement computation-
ally extensive parallel cryptographic functions and complex
sequential algorithms such as cipher modes, key man-
agement and cryptographic protocols. In order to fulfill
contradictory speed/complexity requirements, sequential al-
gorithms are often implemented using embedded general-
purpose processors, while parallel functions are imple-
mented in coprocessors. This approach is very frequent in
asymmetric key cryptography [1], [2], and also in block
ciphers (such as AES) hardware implementations [3], [4].
Some embedded systems using processor/coprocessor ap-
proach implement both symmetric and asymmetric key
cryptography algorithms [5].

The use of processors weakens security in all the above
mentioned solutions. In order to face side-channel attacks
[6], [7], the keys must be changed/exchanged regularly
using a key management protocol. When a general-purpose

processor manipulates confidential keys, the keys are saved
in the clear in processor registers or cache memory and
are exposed to software attacks. One such attack has been
recently demonstrated by Bangerter et al. in [8]. A small
malicious software monitored the processor’s cache memory
during encryption and the confidential key was recovered
remotely from the captured data within a few minutes.

In order to counter software attacks, the authors in [9]
used two processors executing different tasks on different
security levels. They created two virtual zones inside the
physical memory: the protected memory zone was dedicated
to private key storage and the unprotected one to public
data memorization. The security processor had access to
both zones and the general-purpose processor was allowed
to access only the public virtual zone. Since both zones
were located in the same physical memory, certain types
of attacks, such as protocol attacks [10] or timing violation
attacks, were still possible.

It is clear that software attacks targeting confidential keys
can be countered only if enciphering is realized indepen-
dently from the general-purpose processor (GPP), e.g. in
a hardware cipher engine, and if the keys are stored in a
dedicated memory. However, storing the keys in an external
memory is not sufficient when facing software attacks.
If confidential keys pass to the cipher via the processor
in clear, they are vulnerable to attacks. In the proposed
novel solution, the processor can manipulate the keys only
indirectly: the keys are read/written from/to the key memory
via a cipher and the processor can never read them in clear.

The paper is organized as follows: Section II proposes and
discusses creation of hardware security zones that enable
secure key management in conjunction with GPPs. Section
III compares three basic ways of interfacing GPPs with
external modules. Section IV describes a novel principle
for the security extension of soft GPPs. In Section V, the
proposed security extension is evaluated and validated on
two implementations based on NIOS II and MicroBlaze
processors. Results are presented in Section VI and they are
discussed in Section VII. Section VIII concludes the paper.

2011 21st International Conference on Field Programmable Logic and Applications

978-0-7695-4529-5/11 $26.00 © 2011 IEEE

DOI 10.1109/FPL.2011.99

500

II. PRINCIPLE OF SEPARATION OF PROTECTED AND
UNPROTECTED ZONES

We have explained in the previous section that to face soft-
ware attacks on embedded systems using GPPs, processors
shouldn’t have access to confidential keys in the clear. It is
thus necessary to isolate them from the key memory. In order
to fulfill the highest security requirements, the separation
should be realized on three levels:

• the protocol level,
• the architectural level,
• the physical level.
Next, we will describe these levels in more detail.

A. Separation on the protocol level

Integrity and confidentiality of exchanged keys is one of
the most discussed security issues. In order to achieve a high
security level, a robust communication protocol is needed.
During key exchange, encrypted keys are usually transfered
to the processor in packets. When a packet arrives to the
processor, the keys are decrypted before being used for
data encryption or decryption. However, if the decryption
of the keys is carried out by the processor, these keys
are exposed to software attacks. Therefore, keys have to
be decrypted outside the processor in a dedicated unit so
that the unencrypted key or it’s fraction can never leave the
unit. Moreover, keys have to be authenticated before being
used. Once keys are decrypted and authenticated, they can
be used for data encryption/decryption and authentication,
but still outside the processor so that it will not have access
to them. However, encrypted/decrypted data blocks can be
processed by the processor e.g. when performing cipher
mode operations.

It is the protocol that has to clearly separate key man-
agement and data processing tasks and define how and by
which system units these tasks are performed. In addition to
the separation of tasks, the protocol defines a multiple-level
key hierarchy. Higher-level keys (i. e. master keys) are used
to encipher lower-level keys (i.e. session keys). The highest-
level key should be introduced to the system in unencrypted
form through a separate entry by the trusted entity. All low-
level keys should either be generated inside the security
module using a True Random Number Generator (TRNG)
or received in a packet and decrypted. The low-level keys
are used for data encryption, decryption and authentication.

B. Separation on the architectural level

The principle of the separation on the architecture level is
illustrated in Fig. 1. This principle is based on the creation
of three zones: a processor zone, a cipher zone and a key
zone. The processor exchanges data with a cipher through
the data bus (in black in Fig. 1). Encrypted session keys are
also transported through this data bus when being exchanged
with other communication counterparts. No other way for
accessing the key memory from the GPP must exist.

Unencrypted keys are stored in a dedicated memory
situated in a key storage zone. The key memory is separated
from the GPP by the cipher zone. The keys are transfered
between the cipher block and the key memory via the
key bus (in grey in Fig. 1). This bus must be completely
separated from the data bus interconnecting the GPP with
the cipher. It is essential that paths allowing unencrypted
secret keys to pass from the key bus to the data bus must not
exist. This precondition is one of the most important from
the security point of view because it enables separation of
the key storage and the processor zones.

Before enciphering/deciphering data blocks, the cipher is
initialized with the selected key via the cipher key bus (in
dashed grey in Fig. 1). Key selection is controlled by the
processor through a control bus. The control path must be
organized so that in case of an attack on the control bus, the
selection of an incorrect key (e.g. by addressing a key out
of the key address range) must be prevented.

The principle of the creation of security zones is in-
dependent from the type of encryption algorithm – any
symmetric key block cipher, with or without side channel
attack countermeasures can be used. Furthermore, the two
separation walls delimiting the cipher can be used during
dynamic reconfiguration of the cipher engine when changing
cryptographic algorithms, to prevent changes to the key
memory contents.

General-

purpose

processor

Data

bus

Key
data
bus

Control bus

CIPHER/

TRNG

1. Processor zone 2. Cipher zone 3. Key zone

Physical
separation walls

Cipher key

bus

KEY

STORAGE

Security module

Figure 1: Separation on the architectural level

C. Separation on the physical level

To achieve a high quality physical separation of the
processor and the key zones, separation has to be performed
on two levels. First, the architecture of buses has to be
organized in such a way that even after a physical attack,
keys from the key zone cannot pass unprotected into the
processor zone. Bus multiplexers directing the flow of data
to/from the cipher have to be placed so that even if their
control is violated, no physical path for keys to escape from
the key zone can be created.

In order to achieve a higher level of physical separation,
an isolated area of the chip has to be dedicated to each
zone. On the border of any two neighboring zones, an
empty area has to be used. This area represents an insu-
lation wall between neighboring zones (see Fig. 1). Only
selected signals are allowed to cross this wall. This counter-
measure minimizes the possibility of the loss or corruption
of secret keys by residual electromagnetic radiation from the

501

protected zone (i.e. key zone) to the unprotected zone (i.e.
processor zone). Using this approach, a physical attack on
one zone has a minimal impact on the other zones. This
physical insulation principle is recommended by NSTISS in
its Red/Black installation guidance [11].

III. COMMUNICATION INTERFACE

The data interface between the security module and the
processor plays a very important role in the system design.
When considering the architecture, a trade-off has to be
found between the performance, area and security criteria.
Unfortunately, this can often lead to contradictory require-
ments.

A. Interface properties

Overall system performance depends on the interface
type and parameters, such as bus width and latency. When
managing keys, small data blocks are exchanged between
the processor and the security module and pipelining is not
efficient. In order to achieve higher performance, it is the
best to suit the bus width to the cipher width. Unfortunately,
this is not always possible.

From the security point of view, point-to-point commu-
nication is in general more secure than point-to-multipoint
commnunication, because data are exchanged only between
two units, and other peripherals are not physically connected.
When using a point-to-multipoint interface, the bus is shared
among all communication counterparts, and data exchanged
between the security module and the processor can be
potentially eavesdropped by other peripherals. In this case,
some techniques, such as small firewalls protecting each
peripheral on the bus [12], can be used.

B. Interface types

The security module can be interfaced with a GPP using
the following types of connections:

1) The internal processor bus: The security module is in-
cluded in the processor data path. Data passes to the module
directly from registers as operands. Results are returned to
the registers. The security module is controlled directly by
the processor control unit through a dedicated control bus.
The advantage of this solution is its high performance and
minimal latency. Unfortunately, the module is a part of the
processor’s critical path and therefore it can slow the whole
system down if not properly designed. A high security level
is naturally achieved by the point-to-point connection.

2) The coprocessor-like bus: The security module is not
included in the processor data path, but it is connected
through a fast internal bus (often a coprocessor bus), running
mostly at the same clock frequency as the processor core.
This bus enables direct access to the processor registers thus
minimizing communication latency, although the latency
is higher when compared to the previous alternative. The
connection has a point-to-point nature therefore a high
security level is maintained.

3) The peripheral bus: The security module is connected
to the processor through a bus using a point-to-multipoint
connection. In the best case, the module is connected di-
rectly to a high-performance system bus, otherwise data
are transferred across one or several bus bridges increasing
the latency. Furthermore, the security module cannot be
controlled by a dedicated control bus and instructions must
be fetched across the same bus as the data. Because of these
disadvantages, this type of connection will not be considered
in this paper.

IV. IMPLEMENTATION OF THE SECURITY MODULE

The implementation of the security module is illustrated
in Fig. 2. Three zones (the processor, the cipher and the
key storage zone) can be clearly distinguished. Three type
of buses are used: he data bus (in black), the key transfer
bus (in grey) and the cipher key bus (in dashed grey). It is
important that key buses never pass through the processor
zone and data buses never pass through the key storage zone.
The module is organized so that secret keys can never leave
the key zone without passing through the cipher. This strict
separation on the architectural and physical level guarantees
a very high security level.

As presented in Sec. II, any encryption algorithm can
be used in the security module. In order to validate the
principle, we use a 128-bit Advanced Encryption Standard
(AES) core. Input data, keys and output data are registered
in cipher block input/output registers. The cipher engine has
a 128-bit folded data path, and encryption is completed in
11 clock cycles.

Keys are organized in two hierarchical levels. High-level
master keys for encryption and authentication are stored in
the master key register. These keys are initialized via ded-
icated key input during system initialization by the trusted
entity. Master keys are used solely for encryption, decryption
and authentication of low-level session keys. Session keys
are generated inside the module by a TRNG (any principle
can be used) or received from the processor and decrypted
and authenticated using master keys. When generated inside
the module, keys are post-processed in the decipher core.
Session keys are used only for encryption/decryption (using
cipher modes) and authentication of data (e. g. using CBC-
MAC mode).

The authentication of keys is supported directly inside the
module by including a comparator (CMP) that is responsible
for comparison of digital fingerprints. The security module
is controlled by a local control unit (CTRL) that interprets
the fetched instructions. Comparison results or cipher status
flags are saved in the status register, which can be read by the
processor. This principle of demand-response dialog permits
the secure and high-performance operation of the module.

502

IN

OUT

Instr

MKin

Session

Key

register

Master

Key

register

DECIP.

CIP.

TRNG

CMP

CTRL

Data bus Key data bus Cipher key bus

Figure 2: The security module implementation

A. Communication algorithm

Before establishing the communication channel between
two parties A and B, master key registers of the communi-
cating security modules have to be initialized with the same
encryption and authentication keys by a trusted entity.

Subsequently, the device that starts the communication has
to generate a session key. The session key is generated by
the TRNG inside the security module on the communication
side A. The key is then post-processed in the decipher,
using a master key, and stored in the session key register.
Afterwards, a digital fingerprint is generated by enciphering
the generated key using an authentication master key.

When both the session key and its fingerprint are gener-
ated, the data blocks can be encrypted using the session key
and sent to the GPP. The GPP implements cipher modes by
processing subsequent data blocks according to the selected
algorithm. Finally, the processor creates a packet. This
packet contains a generated session keyKs, its fingerprint
Ps, encrypted data and a Message Authentication Code
(MAC) of the packet. At the end of the transaction, the
packet is sent to communication partner B.

Processor B receives the packet, recognizes the packet
header and extracts the encrypted session key with its digital
fingerprint Ps. The key is sent to the security module, where
it is decrypted using a master key and stored in the session
key register. The fingerprint Rs of the session key is com-
puted by enciphering it with a master authentication key. The
processor sends the received fingerprint Ps to the security
module, where it is compared with the computed fingerprint
Rs. If the fingerprints match, the receiving processor can
decrypt data using the acquired session key by executing
selected cipher mode operations.

V. EXTENSION OF SELECTED SOFT-CORE PROCESSORS

Proposed security extensions were implemented in two
FPGA families using Altera NIOS II and Xilinx MicroBlaze
soft processors. Each processor system included the same
security module that was connected to the processor using a
wrapper, which was compatible with the processor interface.
The wrapper is responsible for the translation of the control
commands and the bus width conversion (a 128-bit security
module data bus is transformed into a 32-bit processor bus).

Both communication interfaces use point-to-point commu-
nication increasing device security.

A. NIOS II with the security module extension

Implementation of the NIOS II processor with its secu-
rity extension is illustrated in Fig. 3. All security module
operations are implemented as custom instructions. Data are
transfered from the processor register in 32-bit words via
the wrapper. When the instruction execution is finished, data
from the security module is sent back to the processor, again
in 32-bit blocks.

Because of the use of custom instructions, the NIOS II
control unit drives signals that control directly the operation
of the security module. This direct connection eliminates an
unwanted latency increase, thus accelerating the execution
of custom instructions.

Since the security module is included in the NIOS II data
path, the critical path of the processor is extended by the
data path of the security module. This directly affects the
processor’s maximum clock frequency.

Data

registers

ALU

Control

unit

A
B

ALU

OUT

N
IO

S
 I
I

Master Key

128b

to 32b

32b to

128b32 Security

module

MKin

Instr

OUT

IN

128

128

M
o

d
u

le
 w

ra
p

p
e

r

Figure 3: Interfacing NIOS II with the security module

B. MicroBlaze with the security module extension

Implementation of the MicroBlaze processor with its se-
curity extension is illustrated Fig. 4. In contrast to the NIOS
II processor, a custom instruction set implementation is not
possible. However, the MicroBlaze architecture supports a
high-performance Fast Simplex Link (FSL), which allows
interfacing external modules with processor registers. The
FSL bus is 32 bits wide. So 128-bit data blocks have to be
divided into four 32-bit blocks before being transfered to the
security module.

Unfortunately, control signals cannot pass directly from
the MicroBlaze control unit to the security module. Instruc-
tions are sent to the module via the FSL data bus and
FIFOs. Before each operation, one 32-bit instruction word
has to be sent. However, this operation imposes an additional
instruction on the program code, which slows down the
code execution and data exchange between the processor
and the security module. On the other hand, the security
module is not a part of the processor’s critical path, thus the
clock frequency of the processor is not affected. Despite
the fact that FIFOs insert additional latency, they enable

503

separation of processor and security module clock domains,
thus security module can run on a higher clock frequency
than the complex processor.

Data

registers

ALU

Control

unit

A B

ALU

OUTM
ic

ro
B

la
z
e

Master Key

128b

to 32b

32b to

128b

32

Security

module

MKinOUT

IN/Instr

128

128

M
o

d
u

le
 w

ra
p

p
e

r

F
IF

O
F

IF
O

FSL0

F
S

L
1

Figure 4: Interfacing MicroBlaze with the security module

VI. RESULTS

The two processors with their security extension modules
presented in the previous section were described in VHDL
and mapped to two FPGA families. The NIOS II system
was implemented in the Altera NIOS II evaluation board
featuring a Stratix II series device, the EP2S60F672C5ES.
The project was compiled and mapped to the selected
device using Quartus II version 9.2. The MicroBlaze sys-
tem and its extension were implemented in the Xilinx
ML605 evaluation kit featuring a Virtex 6 series device,
the XC6VLX240TFF1156. For synthesis and mapping, ISE
version 12.4 was used. A small hardware module including a
Cypress EZ USB interface was connected to both evaluation
boards for data transfers from/to the PC.

The implementation results concerning the logic area and
memory requirements are presented in Table I. The area
is expressed as the number of occupied Adaptive Logic
Modules (ALM) for the Altera family and as Slices for
the Xilinx family. For comparison, we recall that one ALM
in the Altera Stratix II family contains two 4-input Look-
up tables (LUTs) and two flip-flops (FFs). One Slice in
the Xilinx Virtex 6 family contains four 6-input LUTs
and eight FFs. Therefore, the results cannot be directly
compared. The memory requirements are given in kbits for
both technologies. Besides the processor and its security
extension, a small module containing a data interface to
the external Cypress USB interface device was embedded
in both systems. It was used only for testing purposes and
it does not constitute an inherent part of the system. It is
therefore not included in Tab. I. For clarity, we present the
results for the processor and for its extension separately. The
results are discussed in the next section.

In order to compare the achieved throughput fairly, the
clock frequency of both systems was set to 50 MHz. The
throughput was evaluated by transferring packets from the
PC to the FPGA (and vice versa) via the USB interface.
Each packet contained an encrypted session key, its digital

Table I: FPGA resource utilization

Extended NIOS II Ext. MicoBlaze
ALMs RAM kb Slices RAM kb

System total 2531 243.9 1954 1206.0
→ Processor 1204 187.9 1350 774.0
→ Sec. module 1327 56.0 604 432.0

Extension overhead 110.2% 29.8% 44.7% 55.8%

fingerprint and five 128-bit payload blocks. Packets were
analyzed in the processor, which then sent the session key
and its fingerprint to the security module. Once the key was
decrypted and authenticated, the processor sent data blocks
to be decrypted. Subsequently, the processor recreated new
packets containing the received data and sent them back to
the PC. When implementing complete protocol, the NIOS II-
based system achieved the overall throughput of 25,1 Mb/s
and the MicroBlaze-based system achieved 18,4 Mb/s.

The security of both solutions depends on the type of in-
terface between the security module and the processor. Since
the separation of the key and processor zones was achieved
on the protocol and architectural level, both implementations
should be robust against software and timing violation
attacks. In order to validate this assumption, preliminary
software attacks were implemented in tests by experimental
reordering and/or replacing of instructions. To introduce
faults into the control logic, a preliminary timing violation
attack was carried out by increasing the clock frequency
over its maximum allowed value. These tests confirmed
the robustness of the proposed techniques of separation
that were shown to be secure-by-design. We consider this
evaluation as a preliminary security estimation and further
extensive tests should be carried out in the future.

VII. DISCUSSION

Area requirements for NIOS II and MicroBlaze extensions
from Tab. I seem to be different. This is due to differences
between ALMs and slices in Altera and Xilinx families
and also because of the size of the soft processors. In the
Altera FPGA, the security module area is similar to that
of the NIOS II processor (1327 versus 1204 ALMs giving
110%). However, since the security module included both
AES cipher and decipher cores, we can conclude that the
security extension cost due to zones separation is negligible.
On the other hand, the MicroBlaze processor occupies bigger
area and the security module overhead is only 30%. The
separation cost remains negligible.

As presented in Section VI, the MicroBlaze processor
with its extension achieves 73% of the throughput of the
NIOS II implementation. This is caused by the more com-
plicated communication protocol (data and control words)
across the FSL bus in MicroBlaze, compared to the straight-
forward custom instruction implementation in NIOS. This
difference could be reduced if data were transferred to the

504

security module using DMA transfers. This way, the FSL
bus would serve only to transport instructions to the security
module.

As required, preliminary attacks that were carried out
against the processor implementations were not successful.
The implemented protocol and architectural separations of
the key and processor zones were therefore shown to be
effective. Furthermore, a higher security level could be
achieved if the security zones were physically isolated on
the chip. Although this physical isolation by insulation walls
was not realized, it can be easily done in the future because
of existing strict separation of logical modules.

The principle presented in this paper concerns two soft
GPPs. We believe that it can be extended to other GPPs, thus
increasing significantly their security. This approach is very
practical, because of the short design time and low costs.
However, faster and perhaps more secure implementations
could be obtained by creating a specific-purpose processor
such as the one published in [13] taking advantage of a re-
duced instruction set dedicated to cryptographic operations.
Nevertheless, this custom processor would have to comply
with all the above mentioned separation techniques and the
principle is thus generalizable.

Since encryption standards are always evolving, it is
important that the cipher implementation inside the security
module be made easy to update. One of possible solutions
could be the use of a dynamic reconfiguration technique.
This technique allows for creation of a special dynamically
reconfigurable zone reserved for the cipher core. This option
helps to avoid expensive hardware upgrades. Moreover, the
physical separation techniques are similar to those used
in dynamic reconfiguration procedure. A zone that is dy-
namically reconfigurable can be very easily isolated from
surrounding modules by an empty space created around it
serving as an insulation wall.

VIII. CONCLUSION

We have proposed a novel principle allowing general-
purpose processors to operate with secret keys in a highly
secure way. The principle is based on creation of separated
processor, cipher and key zones. Separation is implemented
on the protocol, architectural and physical level, and it
guarantees that unencrypted keys can never be transfered
from the key zone to the processor zone. The only way to
transfer the keys to the processor zone is through the cipher
zone: they are encrypted before entering the processor zone
and must be decrypted when entering the memory zone.
The proposed solution enhances security substantially when
compared with existing soft-core cryptographic extensions.

The separation principle was implemented in FPGAs and
tested using both NIOS II and MicroBlaze processors. The
obtained throughput, including the processing of packets,
key management and data encryption/decryption and authen-
tication was about 25 and 18 Mb/s, respectively. This speed

was limited mainly by processors and their data interfaces.
The area of the system increased by 110% when compared
with the smaller NIOS II processor and by 44% when the
MicroBlaze processor was taken as a basis.

ACKNOWLEDGMENT

The work presented in this paper was realized in the
frame of the SecReSoC project number ANR-09-SEGI-013,
supported by the French National Research Agency (ANR).

REFERENCES

[1] K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede,
“Multicore curve-based cryptoprocessor with reconfigurable
modular arithmetic logic units over GF (2n),” IEEE Transac-
tions on Computers, pp. 1269–1282, 2007.

[2] M. Machhout, Z. Guitouni, K. Torki, L. Khriji, and R. Tourki,
“Coupled FPGA/ASIC Implementation of Elliptic Curve
Crypto-Processor,” International Journal, vol. 2.

[3] F. Crowe, A. Daly, T. Kerins, and W. Marnane, “Single-chip
FPGA implementation of a cryptographic co-processor,” in
2004 IEEE International Conference on Field-Programmable
Technology, 2004. Proceedings, 2004, pp. 279–285.

[4] Y. Eslami, A. Sheikholeslami, P. Gulak, S. Masui, and
K. Mukaida, “An area-efficient universal cryptography pro-
cessor for smart cards.”

[5] M. Hani, H. Wen, and A. Paniandi, “Design and imple-
mentation of a private and public key crypto processor for
next-generation it security applications,” Malaysia Journal of
Computer Science, vol. 19, no. 1, pp. 29–45, 2006.

[6] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,”
CRYPTO99, pp. 789–789, 1999.

[7] F. Standaert, L. van Oldeneel tot Oldenzeel, D. Samyde, and
J. Quisquater, “Power analysis of FPGAs: How practical is
the attack?” FPL’03, pp. 701–711, 2003.

[8] E. Bangerter, D. Gullasch, and S. Krenn, “Cache games–
Bringing access-based cache attacks on AES to practice,”
Workshop COSADE, pp. 215–221, 2011.

[9] A. Ashkenazi and D. Akselrod, “Platform independent over-
all security architecture in multi-processor system-on-chip
integrated circuits for use in mobile phones and handheld
devices,” Computers & Electrical Engineering, vol. 33, no.
5-6, pp. 407–424, 2007.

[10] R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov,
“Cryptographic processors - a survey,” Proceedings of the
IEEE, vol. 94, no. 2, pp. 357–369, 2006.

[11] J. M. McConnell, “TEMPEST/2-95,” NSTISSAM, 1995.

[12] P. Cotret, J. Crenne, G. Goniat, J.-P. Diguet, L. Gaspar,
and G. Duc, “Distributed security for communications and
memories in a multiprocessor architecture,” Workshop RAW,
2011.

[13] L. Gaspar, V. Fischer, F. Bernard, L. Bossuet, and P. Cotret,
“HCrypt: A Novel Concept of Crypto-processor with Secured
Key Management,” ReConFig’10, pp. 280–285, 2010.

505

