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Abstract—The paper analyzes and proposes some enhance-
ments of Ring Oscillators based Physical Unclonable Functions
(PUFs). PUFs are used to extract a unique signature of an
integrated circuit in order to authenticate a device and/or to
generate a key. We show that designers of RO PUFs implemented
in FPGAs need a precise control of placement and routing and
an appropriate selection of ROs pairs to get independents bits
in the PUF response. We provide a method to identify which
comparisons are suitable when selecting pairs of ROs. Dealing
with power consumption, we propose a simple improvement that
reduces the consumption of the PUF published by Suh et al. in
2007 by up to 96.6%. Last but not least, we point out that ring
oscillators significantly influence one another and can even be
locked. This questions the reliability of the PUF and should be
taken into account during the design.

Index Terms—Physical unclonable functions (PUFs), reconfig-
urable device, cryptographic key generation, IC authentication

I. INTRODUCTION

Security in integrated circuits (ICs) became a very important

problem due to high information security requirements. In

order to assure authenticity and confidentiality, cryptographic

keys are used to encrypt the information. Several solutions

were proposed for key generation, each with their upsides and

downsides.

Confidential keys can be generated using True Random Num-

ber Generators (TRNGs) and stored in volatile or non volatile

memories. Saving the confidential key in a non volatile mem-

ory inside the device ensures that the key will never be lost

and that it will not be disclosed in case of passive attacks.

On the other hand, non volatile memories are easy targets for

invasive attacks [5]. Volatile memories are typical for Field

Programmable Gate Arrays (FPGAs). Storing the confiden-

tial key in a volatile memory permits to erase the memory

contents in case of invasive attack detection. This implies the

use of a communication channel to transmit the key after

device configuration [5]. Communication channels are usually

easy to corrupt and information can be easily intercepted.

The confidentiality and authenticity of designs are therefore

compromised. A solution is backing-up the embedded volatile

memory block with a battery. However, it was proved that

battery-backed RAMs content can be read after a long period

of storage [2],[1],[17],[9] even if the memory is not powered

any more. Thus, the need of generating secret keys inside the

IC became obvious.

An alternative to TRNG for key generation is the Physical

Unclonable Function (PUF). PUFs are functions that extract

a unique signature of an IC, based on randomness during

the manufacturing process. This signature can be used as

device-dependent key or device identification code. The main

advantage of this principle introduced by Pappu et al. in [14],

[15] is the fact that the key does not need to be stored

in the device and it is thus harder to disclose. Based on

intrinsic physical characteristics of circuits obtained during the

manufacturing process, the extracted signature is impossible to

reproduce by a different IC or by an attacker. PUFs work on

challenge-response pairs. The challenge is usually a stimulus

sent from outside the device, and the response is the signature

of the circuit.

The quality of a PUF is determined mainly by its uniqueness

and its reliability. To quantify these properties of a PUF, two

types of response variations: intra- (for reliability) and inter-

(for uniqueness) chip variations [18] are used. The intra-chip

variation refers to the responses of the same PUF (the same

device) at the same challenge, regardless of environmental

changes (e.g. temperature, voltage). In the ideal case, this

variation should be 0. This means that the response of the PUF

for a given challenge should always be the same. The intra-

chip variation measures the reproducibility of the response.

The function must be able to reproduce the same response

over and over again, especially in the case of reconfigurable

devices.

The inter-chip variation refers to the responses of different

PUFs (different devices) at the same challenge. Ideally, this

variation should be of 50%, meaning that every bit is equally

likely to be a zero or a one. If this variation is close to 50%

then the uniqueness of the responses is guaranteed.

In this paper, we focus on PUF implementation issues in

reconfigurable devices and on the independency of bits in

the response. Reconfigurable devices are intensively used for

implementing cryptographic algorithms on hardware due to



the “reconfigurable” property of such circuits. Thus we have

to deal with two objectives: to keep the reconfigurable property

of FPGAs and to guarantee the uniqueness and reliability of

a PUF. In other words, if the PUF response changes when the

device is reconfigured, the uniqueness and reliability of a PUF

are questionable. We analyze and propose some enhancements

of the concept introduced in 2007 by Suh et al. [18]. This

principle is a ring oscillators based PUF (RO-PUF). It was

chosen for our experiments, because it is one of the most

suitable for implementation in FPGAs, independently from the

technology. The PUF uses a relatively high number of ring

oscillators in order to emphasize the intrinsic characteristics

of ICs and extract the signature. The principle is based on the

fact that the frequency of ROs depends on gate and routing

delays determined partially in an uncontrolled way by the

manufacturing process.

In the first part of our work, we had to deal with implementa-

tion issues related to the mapping of the PUF to various FPGA

technologies. We found out that, contrary to what original

authors stated [18], the placement and routing constraints play

a very important role (even when ROs are identically laid

out) in the design of the function, especially if one wants

to obtain sufficient inter-chip variability. The precise control

of the initial phase of ROs and careful design of frequency

comparators is another important issue that determines the

precision of the function and thus reduces intra-chip variations.

This was not discussed before. Furthermore, in the response

there are bits that are dependent one to each others. We

propose a method justified by mathematical means in order

to identify which pairs of ROs we have to select to ensure

independency of bits in the response. The main disadvantage

of the original design is the high power consumption. We

propose a simple modification enabling significant power

economy. Finally, during our experiments we observed a very

important phenomenon that has a significant impact on the

generated results and that was completely neglected in the

original design: the existence of a mutual dependence between

the ROs can lead sometimes to their mutual locking in FPGAs.

It is essential to take into account this unavoidable behavior

of ROs in the PUF design.

The paper is organized as follows. In Sect. II we present related

work on PUFs implementation and metrics used to measure the

quality of a PUF. Section III deals with PUF design issues and

with the first problem stated: the need of manual placement

and routing of the design. Then we remark that some bits

in the response might be dependent due to an inappropriate

selection of ROs. An example of such a situation and a model

of RO pair selection is proposed in Sect. IV and a method to

identify pairs that will give independent bit in the response

is provided. Section V presents results of implementation of

the RO PUF in main FPGA technologies and analyzes the

quality of the PUF in relationship to the selected technology

and the quality of the evaluation board. It also evaluates the

impact of the mutual dependence of rings on the reliability of

the PUF. Section VI proposes some important enhancement of

the function and finally, Section VII concludes the paper.

II. PUF BACKGROUND

A. Source of Noise in Electronic Devices

From its manufacturing to its usage, an electronic device

is faced with many sources of noise coming from different

processes and having different signification from one to an-

other. We can distinguish at least three classes of sources of

randomness:

• In manufacturing process: this noise is due to variation in

the silicon layers during the manufacturing process. Once

the device is manufactured, it contains these informations

wich are specific to each integrated circuit. An ideal PUF

should be built to extract the maximum amount of this

manufacturing noise in order to identify a circuit.

• Local noise: this noise appears when the circuit is

working. It is due to the random thermal motion of

charge carriers. This noise is very suitable for random

number generation but inappropriate for PUF. It should

be reduced compared to manufacturing noise to decrease

the intra-chip variation.

• Global environmental noise: this noise comes from envi-

ronmental condition (e.g. global temperature and voltage)

when the circuit is working. This noise can disrupt the

PUF response and increase the intra-chip variation mak-

ing a circuit idenfication more difficult to perform. Fur-

thermore, this source of noise can be easily manipulated

from outside. Therefore, PUFs must be developped in

order to reduce the influence of this global environmental

noise.

B. Related Works and PUF Evaluation

Several concepts of PUF and implementation in reconfig-

urable devices have already been introduced until now. In

[8], the random initialization of SRAM cells in FPGAs is

used to generate a specific signature. But in recent FPGAs,

manufacturers tend to initialize SRAM cells to a known value

that make SRAM cells based PUF difficult to use. A similar

idea is used on FPGA flip-flops and is based on their initial

unstable states [11]. Other PUFs are based on differences in

the silicon layers of the device leading to differences between

delay paths [18],[7],[12]. The main difficulty in these last

designs is to guarantee a perfect symmetry on delay paths in

order to exploit the slight differencies due to the manufacturing

process. Furthermore the placement and routing must be done

carefully to exploit the noise due to manufacturing process.

In most of these PUFs, delay paths are implemented with ROs

(RO-PUFs). In [13], a new approach is studied in order to

use RO-PUF. The so-called Compensation Method permits to

reduce the influence of unsuitable source of noise on the PUF

response. It is realized with Configurable ROs (CROs). One

disadvantage pointed by the authors is the reduction of the

maximum number of independent bits that can be extracted

from such a PUF leading to an increase in the number of ROs

that should be used.

As mentioned in introduction, PUF quality is evaluated by

its uniqueness and its reliability. In [13], authors proposed two



metrics. These metrics cannot directly give the characterization

of inter-die variation process which can only be estimated

based on PUF responses. Thus it depends greatly on how

the PUF is implemented to extract the maximum amount of

manufacturing noise.

Let (i, j) be a pair of chips with i 6= j and Ri (resp. Rj) the

n−bit response of chip i (resp. chip j). The first metric is the

average inter-die Hamming Distance (HD) among a group of

k chips and is defined as:

Inter − dHD(k) =
2

k(k − 1)

k−1
∑

i=1

k
∑

j=i+1

HD(Ri, Rj)

n
×100%

(1)

This distance should converge to 50% in the case of an ideal

PUF.

The second metric introduced by the authors of [13] is used to

ensure the reliability of a PUF. An n−bits response is extracted

from chip i (Ri) at normal operating conditions. Then at a

different operating condition (different temperature or different

voltage), x samples (R′
i,y)y∈{1,...,x} of the response of the

same PUF at this operating conditions are extracted. The

average intra-die HD over x samples for the chip i is defined

as:

Intra− dHD(x, i) =
1

x

x
∑

y=1

HD(Ri, R
′
i,y)

n
× 100% (2)

This distance should be close to 0% to ensure reliable re-

sponses from the PUF in a given chip at various operating

conditions.

In [10], a deeper analysis on a special PUF (the Arbiter

PUF that was originally proposed in [12]) evaluation lead

the author to consider 4 indicators on the evaluation of the

intra-chip variation (Randomness, Steadiness, Correctness and

Diffuseness). For the inter-chip variation the metric used is

also the uniqueness (expressed differently than in [13]). Even

if measurements of Uniqueness and Reliability seem sufficient

to qualify a PUF, it can be interesting to go further (especially

in the case of an unexpected high intra-chip variation).

III. PUF DESIGN ISSUES

A. Principle of the PUF and its implementation in FPGA

In the principle of the PUF published in [18] that was

selected for our experiments, N identically laid-out ROs are

placed on the IC. Slight differences between their frequencies

will appear because of the unavoidable differences in the

silicon layers of the semiconductor device caused by the

manufacturing process. Pairs of oscillators are chosen one after

another and their frequencies compared. The response of the

PUF is equal to 1 if the first RO is faster and 0 otherwise.

The RO PUF in Fig. 1, as not many details were given

by the authors in [18], is realized using 32 ROs controlled

by an enable signal for all selected technologies (ALTERA,

XILINX, ACTEL). Two counters are used to define the winner

of the race by counting N periods of the two generated clock

signals: if one of the two counters (the winner of the race)
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reaches a predefined value N, the arbiter stops the race and

saves its result in the shift register. The principle of the race

arbiter is depicted in Fig. 2. Once one of counters reached the

maximum value N, it sets its output signal ”finished” to 1. This

value causes that the ”done” signal of the winning counter is

also set to 1 and it blocks the ”done” signal of the second

counter, which cannot be set any more. This means that the

race can have only one winner, pointed out by the OR gate

(0 for counter 2, 1 for counter 1). Once the race result was

obtained and saved, the oscillation and counter could restart

using the same control signal (enable).

When compared with the original principle published in

[18], the proposed principle is more precise - it can recognize

differences that are smaller than 1 bit, so the counting period

can be shorter and the PUF response faster. In our experiments,

we used 10-bit counters and the most significant bit was used

as the output signal (signal ”finished”) of the counter.

The output of the PUF presented in Fig. 1 is 1 bit wide.

In order to obtain a wider response, we use a shift register

with a 16 bit output. To get more responses at once, the

challenge generator is included in the design. It is a simple 8-

bit counter incremented after each race. For each value of the

challenge generator, two different oscillators are chosen for

comparison. They are separated in two groups of 16 (group

A and group B). The output of the counter is divided in

two parts: 4 Least Significant Bits (LSB) selecting one of 16

ROs in group A and 4 Most Significant Bits (MSB) selecting

one of 16 ROs in group B. Thus, every oscillator in group

A is compared to all oscillators in group B. This way, we

obtain 16x16=256 different challenges thus 256 responses of

1 bit for each device. For simplicity, we consider that each



IC delivers 256-bit responses. The generated bit-streams are

sent to the PC using a USB interface. For this reason, a

small USB module featuring a Cypress EZ-USB device was

connected to the evaluation board containing FPGA. A 16-bit

communication interface with this module was implemented

inside the FPGA. A Visual C++ application running on the PC

reads the USB peripheral and writes data into a text file. For

both ALTERA and XILINX technology, delay elements of the

ROs are implemented using Look Up Tables (LUTs). Finally,

one NAND2 gate that is necessary to obtain oscillations, closes

the loop and provide the structure with an enable signal.This

configuration allows the use of either an odd or even number of

delay elements. Thus, the ROs used in the design are made of

7 delay elements and one NAND2 gate in order to fit the ring

into one LAB. In ACTEL technology, the oscillators employ 7

AND2 gates as delay elements and a NAND2 gate as a control

gate.

B. Implementation results and tests

As resources in FPGAs have increased in volume and

performances, integrated development environments (IDE) are

charged with automatic placement and routing. This is very

convenient in common applications. The design can be trans-

lated into a significant number of logic elements, thus with

automatic placement and routing, the user gains time and

the surface of the IC is used at its maximum capacity. The

compiler used by these environments calculates the optimal

disposition of logic cells.

The RO PUF presented in [18] exploits, as any other PUF,

the intrinsic characteristics of an IC. By definition, the position

of the PUF on the IC determines the set of challenge-response

pairs. RO placed in LAB A will most probably not oscillate

at the same frequency as RO placed in LAB B. In order to

use this PUF for the authentication process or as a secret key

generator, one must be sure that the response of the PUF will

be the same under any environmental conditions and even

more important, after each reconfiguration of the device.

The first tests were conducted on ALTERA DE1 boards

including Cyclone II EP2C20F484C7N FPGA. We used the

PUF to authenticate the devices available in the laboratory. It

allowed us to identify a given IC between the 13 available.

As expected, we were able to perform this operation on

all the devices: both inter- and intra-chip variations were

in normal ranges. However, authors insisted that the design

needed no further placement and routing constraints in [18],

page 3: “[. . . ] there is no need for careful layout and routing.

For example, the paths from oscillator outputs to counters do

not need to be symmetric”. While it is clear that ROs must be

identically laid-out (which is achieved thanks to a macro in

[18]), it is questionable that extra logic arround the ROs (e.g.

the race arbiter) needs no placement and routing constraints.

We can imagine the next scenario: in order to control royalties,

the IP vendor wants to use a PUF for linking the IP licence to

a concrete FPGA device. However, a while later, he needs to

make an upgrade of his IP function, still related to the same

device and the same PUF response. This means that he needs

that the response of the PUF block will be independent of the

rest of the design.

We evaluated the impact of the changes in surrounding

logic on the PUF response. First, we added a new counter

block module. Since it was independent of the PUF, it should

not change the PUF response. Contrary to all expectations,

instead of obtaining almost the same response of the PUF

(i. e. obtaining small intra-chip variation), the device gave

completely different response so that presumably low intra-

chip variation after addition of the additional logic was almost

as high as an ideal inter-chip variation: 48,8% of the response

bits changed. We have to stress here, that the placement and

routing of ROs was constrained, but not the structure of the

arbiter.

In the next experiment, we kept initial PUF and sent its

output, as before, towards the USB module and addionally

towards a 7-segment display available on ALTERA DE1

board. While we were still maintaning the placement and

routing for ROs, we got another (the third) response of the

PUF for the same device! The responses for three projects

including the same PUF in the same device are depicted in

Tab. I.

Response n
◦ 1 031f031f031f0005573f031f031f471f

(only the PUF) 573f031f011fd73ff7bf431f0117031f

Response n
◦ 2 010000004df20000000045a04de245e0

(PUF and counter) 45a0fff70000000045e0fff745e045e0

Response n
◦ 3 0007600f7eef7eef200fffff724f704f

(only the PUF and 600f0007600f7eef0005000772ef0007

an extra output)

TABLE I
RO PUF RESPONSES FOR THREE PROJECTS IMPLEMENTED IN THE SAME

DEVICE (ROS WERE CONSTRAINED BUT NOT THE RACE ARBITER)

C. Imposing placement & routing solution for response sta-

bilization

The above mentioned results show that the optimization

performed by the compiler implies different placement and

routing for the race arbiter after each recompilation.

As we need to have the minimal intra-chip variation even

for project upgrades, this is of extreme importance. Different

placement of the race arbiter implies different PUF and

different intrinsic characteristics that are explored. In both

targeted processes (authentication and key generation) this is

not acceptable. Therefore, imposing placement and routing

constraints on the whole PUF block is mandatory in order to

obtain a response independent from architecture modifications

in a reconfigurable device.

Once placement and routing constraints were applied on

both ROs and arbiter structure, the PUF provided excellent

and expected responses. Table II presents results of three

projects including the same PUF in the same device. Only

few differences exist (printed in bold).

IV. BIT DEPENDENCY IN THE PUF RESPONSE

In section III-A, we presented the way we selected pairs of

oscillators to obtain a 256-bit response. We have to evaluate



Response n
◦ 1 ea09ebf9ea09ebfbea09eb59ebfbeb79

(only the PUF) ea09ebfbfffffbffeb79ea49ebfb0001

Response n
◦ 2 ea09ebf9ea09ebfbea09ea69ebfbeb79

(PUF and counter) ea09ebfbfffffbffeb79ea49ebfb0001

Response n
◦ 3 ea09ebf9ea09ebfbea09ea59ebfbeb79

(only the PUF and ea09ebfbfffffbffeb79ea19fbfb0001

an extra output)

TABLE II
RO PUF RESPONSES FOR THREE PROJECTS IMPLEMENTED IN THE SAME

DEVICE (ROS AND RACE ARBITER WERE CONSTRAINED)

how many bits are independent in the PUF response. For

example, consider 2 ROs a, b in group 1 and two other ROs

c, d in group 2. The comparisons are (a, c), (a, d), (b, c) and

(b, d), giving 4 possible bits in the response. But if a > c,
c > b, b > d, then we can predict a > d, so there are only 3
bits of information instead of 4 in this example.

In the following, we propose to compute how many bits in the

response are independent. This could help RO-PUF designers

to select pairs of ROs.

A. Generalization

Let (a1, . . . , an) be the first group of ROs and (b1, . . . , bn)
be the second group of ROs. We use the relation x > y
when RO x is faster than RO y. In most of cases, ROs

in group 1 (resp. in group 2) are not sorted thanks to the

relation >. However it exists a permutation σ ∈ Sn (resp.

σ′ ∈ Sn) such as aσ(1) > aσ(2) > · · · > aσ(n) (resp.

bσ′(1) > bσ′(2) > · · · > bσ′(n)).

We define the matrix of all comparison results between one

RO in group 1 and one RO in group 2. Matrix rows are

indexed by (aσ(1), . . . , aσ(n)) and matrix columns are indexed

by (bσ′(1), . . . , bσ′(n)).

Compn =











c1,1 c1,2 . . . c1,n
c2,1 c2,2 . . . c2,n

...
...

. . .
...

cn,1 cn,2 . . . cn,n











where ci,j =

{

0 when aσ(i) ≤ bσ′(j)

1 when aσ(i) > bσ′(j)

(3)

Because (aσ(i))i and (bσ′(j))j are sorted, if aσ(i) ≤ bσ′(j),

then for all k ≥ i, aσ(k) ≤ bσ′(j) because aσ(i) > aσ(k). In

other words if ci,j = 0 then for all k ≥ i, ck,j = 0.

Similarly, if aσ(i) > bσ′(j), then for all l ≥ j, aσ(i) > bσ′(l)

because bσ(j) > bσ(l). In other words, if ci,j = 1 then for each

l ≥ j, ci,l = 1.

Among the 2n
2

possible matrices, only matrices with general

term ci,j following the two rules:

1) if ci,j = 0 then for all k ≥ i, ck,j = 0
2) if ci,j = 1 then for each l ≥ j, ci,l = 1

can be obtained when comparing pairs of ROs. The others

denote antagonist comparisons that cannot appear (e.g. a > c,
c > b, b > d and a < d which is impossible).

B. Number of possible matrices

Let Mm,n be the number of possible matrices Mm,n with

m rows and n columns. By symmetry of the role played by

(ai)i and (bj)j it is obvious that Mm,n = Mn,m.

By convention, we set ∀n ∈ N, M0,n = 1 = Mn,0, thus we

have the following recursive relation giving Mm,n (m ≤ n):

Mm,n =

m
∑

i=0

Mi,n−i ×Mm−i,i (4)

To prove this relation, we write the matrix with four blocks

for i from 0 to m:

Mm,n =

(

Ai,n−i Bi,i

Cm−i,n−i Dm−i,i

)

with block Bi,i necessarily filled with 1s and block Cm−i,n−i

necessarily filled with 0s. This can be explained by building

first matrices.

For example, for i = 0 we have:

Mm,n = (Cm,n) =







0 . . . 0
...

. . .
...

0 . . . 0







Then the only location to set a one in the matrix is the upper

right corner. Indeed, if we set a 0 instead then the last column

will be filled with 0s according to rule 1). In this case, it is

impossible to set a 1 elsewhere in a line of the matrix because

according to rule 2), it would force a 1 in the last column in

the same line which is impossible. For i = 1 we have:

Mm,n =











A1,n−1 1
0 . . . 0
...

. . .
...

0 . . . 0

Dm−1,1











with M1,n−1 matrices for A1,n−1 and Mm−1,1 for Dm−1,1

for a total of M1,n−1 × Mm−1,1 possible matrices in this

configuration. The next configuration is obtained with a 1 in

the upper right corner of block Cm−1,n−1 and following rules

1) and 2) the 2×2 block B2,2 is necessarily filled with 1s. So

the next configuration will be the study of all possible matrices

of the shape

Mm,n =















A2,n−2
1 1
1 1

0 . . . 0
...

. . .
...

0 . . . 0

Dm−2,2















then for i = 3 possible matrices with a 1 in the upper right

corner of block Cm−2,n−2, and so on until i = m where the

last possible matrice has the form:

Mm,n =







1 . . . 1
...

. . .
...

1 . . . 1









Thus for i from 0 to m we count all the possible matrices

Ai,n−i and Dm−i,i following the two previously mentionned

rules. For each i, there are Mi,n−i possible matrices for Ai,n−i

and Mm−i,i matrices for Dm−i,i. Thus, there are Mi,n−i ×
Mm−i,i possible matrices for a given i. The sum over i gives

the formula in Eq. 4.

Using this formula in our context (two groups with the same

number n of ROs), there are Mn,n possible matrices. Then

log2(Mn,n) gives the number of independent comparisons we

can perform to get independent bits in the response.

For n = 16 ROs in each group, we got (only) M16,16 =
601080390 authorized matrices among the 2256 possible. Then

only a mean of log2(M16,16) ≈ 29 comparisons lead to 29

independent bits in the PUF response (instead of 256). We

can deduce that we should have n = 135 ROs in each group

to get a PUF response with 256 independent bits.

C. Example

In the next example, we use the response in Tab. II. Due

to intra-chip variation, some bits change in the response. To

have only one representation of the response, we use a mean

over 64 PUF responses with the same challenge and we obtain

ea09ebf9ea09ebfbea09eb59ebfbeb79ea09ebfbfffffb

ffeb79ea49ebfb0001. If we analyze the response, we can

see repetitive patterns (e.g. ea09, ebf9, . . . ) meaning that

there are dependent bits in the response.

We can be more precise and give, in this configuration, the

number of bits that are independent in the PUF response.

We rewrite the PUF response column by column in a
16 × 16 matrix, with rows from top to bottom a1, . . . , a16
and columns from left to right b1, . . . , b16.





















































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0
0 1 0 1 0 0 1 0 0 1 1 1 0 0 1 0
0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 0
0 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0
0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 1 0 0 1 1 1 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1





















































Then we have to transform this matrix with respect to the
two previous rules. We count the Hamming weight of each
line. Then we permute lines to obtain the Hamming weight
of line aσ(i) greater or equal than the one of line aσ(i+1) for
each i.

Old line index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of 1 15 15 15 2 15 1 15 10 7 11 9 10 15 2 6 16

New index 2 3 4 14 5 16 6 9 12 8 11 10 7 15 13 1

We obtain:





















































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 0
0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0
0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0
0 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0
0 1 0 1 0 0 1 0 0 1 1 1 0 0 1 0
0 0 0 1 0 0 1 0 0 1 1 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0





















































The same work is done with columns (Hamming weight of
column bσ′(j) is less or equal than the one of column bσ′(j+1)):

Column index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of 1 7 12 7 13 7 10 13 11 7 13 16 15 11 8 13 1

New index 2 10 3 11 4 7 12 8 5 13 16 15 9 6 14 1

Finally, we obtain the following matrix:

















































































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

















































































with σ =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16 1 2 3 5 7 13 10 8 12 11 9 15 4 14 6

)

which

is the permutation of rows and

σ′ =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16 1 3 5 9 14 6 8 13 2 4 7 10 15 12 11

)

which is

the permutation of columns. Thus, aσ(1) = a16 > bσ′(1) = b16
(upper left corner in the matrix) gives a one. Then other com-

parisons between aσ(1) and bσ′(j) for j > 1 give no additional

information because we know that they will give a 1. The next

comparison is between aσ(2) = a1 and bσ′(1) = b16 which

is a zero, menaning that a1 < b16. Then other comparison

between bσ′(1) and aσ(i) for i > 1 are useless because we

know that they will give a 0. In this way, we can identify

which comparisons are giving information (they are boxed in

the matrix). This also gives indexes of ROs that have to be

compared. In this special case, they are (aσ(1) = a16 and

bσ′(1) = b16, aσ(2) = a1 and bσ′(1) = b16, aσ(2) = a1 and

bσ′(2) = b1, . . . ). In our case, we have 31 suitable comparisons

and so 31 bits in the response that are independent (close to

the theoretical mean of 29 computed).



D. Comments on this method

This method is usefull to know how many bits are indepen-

dent in the PUF response. In particular, when the PUF is used

for cryptographic key generation, it indicates how many bits

of entropy you can expect in the response.

However the response has still 256 bits (including depen-

dencies) and can be used to compute inter-chip variation

between many devices of the same family. Due to intrinsic

parameters of each device, permutations of ring oscillators

will be different from one device to another, giving different

response and contributing to inter-chip variation.

For intra-chip variation, it is different. Permutations of ring

oscillators is related to the device and will obviously change

from one device to another. The number of independent bits

in the response and their positions will depend on each

device and our method permits to know precisely how many

independent bits are there and what are their positions. The

intra-chip variation must be computed on these bits.

The proposed method is used to analyze the PUF response

and not to change it. It has been implemented in software

in order to estimate the entropy of the generated sequence.

A hardware implementation could be possible and useful for

improving PUF response. This aspect was not studied in this

paper.

V. OBSERVATION OF THE PUF IN VARIOUS TECHNOLOGIES

AND ENVIRONMENTAL CONDITIONS

A. Observing the PUF in ALTERA, XILINX and ACTEL

technologies

In order to compare different FPGA technologies, we would

need a huge number of devices for all of tested families.

Unfortunately, we had only cards with thirteen Altera Cyclone

II and four Cyclone III devices, five Xilinx Spartan 3, three

Xilinx Virtex 5 chips and five Actel Fusion FPGAs at our

disposal. For this reason, we used the biggest group of thirteen

Cyclone II FPGAs to verify the inter-chip variation. We used

results obtained in Sec. IV (i.e. a PUF response of 31 bits

in this case). The obtained value computed using Eq. 1 was

48.57% in average, which is close to the ideal value of 50%.

The intra-chip variation of the PUF was tested on four AL-

TERA Cyclone III EP3C25F256C8N ICs. These experiments

were conducted under variable temperature and voltage con-

ditions. Results have been prevailed for a temperature range

from 30 to 80◦ Celsius (see Fig. 3) and a voltage range from

0.9 to 1.3V for the nominal voltage of 1.2V (see Fig. 4).

In these two figures, the distribution of the number of bits (x-

axis) that changed between two different responses from the

same PUF is shown as a histogram. The doted line presents

the binomial distribution B(n, p), where n = 31 is the number

of bits of the response using the methodology presented in

Sec. IV and p = Intra− dHD(64, i) is the average intra-die

Hamming distance over 64 samples for the board tested.

Experiments show that intra-chip variation increases when

temperature increases. Furthermore, the behavior of the PUF

drifts from the binomial distribution. This is probably caused
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Fig. 3. Intra-chip variation on the same Cyclone III EP3C25F256C8N FPGA
for various temperatures
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Fig. 4. Intra-chip variation on the same Cyclone III EP3C25F256C8N FPGA
for various voltages

by the influence of thermal noise which is more important as

temperature increases and superposes a normal distribution on

the binomial distribution.

The lowest intra-chip variation is obtained in the normal

operating conditions, both in voltage (1.2V ) and temperature

(30◦ Celsius).

In comparison to our previous results in [4], intra-chip vari-

ations was underestimated because the mean was computed

on a 256 bits response ignoring dependency between bits.

According to our method, we identify 31 bits of infor-

mation in the response. Thus the intra-chip variation must

be computed on these bits. This explains why the ratio
intra-chip variation in [4]

intra-chip variation in this paper
≈ 256

31 .

The PUF was also tested on XILINX Spartan 3

XC3S700ANn, on XILINX Virtex 5 XC5VLX30T and on

ACTEL Fusion M7AFS600 FPGA devices. Experimental re-

sults confirm the fact that placement constraints are mandatory.

Intra-chip variation for these devices are presented in Tab. III

For ACTEL technology, the tests were performed on

ACTEL Fusion M7AFS600 FPGA. The intra-chip variation



Device Cyclone III Spartan 3 Virtex 5 Fusion

Intra-chip variation 0.92% 0.81% 3.38% 13.5%

TABLE III
INTRA-CHIP VARIATION FOR DIFFERENT DEVICES IN NOMINAL

CONDITIONS

Fig. 5. Locked ring oscillators. Trigger on top signal.

reaches 13.5%! This technology presents the highest intra-chip

variation which is unexploitable for IC authentication. One

of the reasons for which we think the intra-chip variation is

higher for these boards is the fact that they present more noise

than the other ones. We observed a peak at 20MHz in the core

voltage spectrum, caused probably by some internal oscillator

embedded in ACTEL FPGA. Similar peak was not detected

in other technologies. These results show that the quality of

this PUF is strongly related to the quality of the device and

the board. In this precise case, the intrinsic characteristics of

the IC are overwhelmed by the noise and the results are far

from being ideal.

B. PUF and mutual relationship between rings

While studying properties of ROs, we observed that ROs

influence one another sometimes to an unexpected extent. If

the ROs are identically laid-out, their oscillating frequencies

are almost the same. The differences are caused by the intrinsic

characteristics of the IC as well as by the noise. If the

frequencies are so close that the current peaks caused by rising

and falling edges overlap, the ROs can lock and oscillate at

the same frequency, either in phase or with a phase shift.

Figure 5 shows output waveforms of two ROs that are

locked (both waveforms are visible) and Fig. 6 shows ROs that

are not locked (the second waveform is not observable). Note

that the oscilloscope was synchronized on the first waveform.

One can argue that the mutual dependence of rings could be

caused by the FPGA input/output circuitry. In order to avoid

influencing the results by outputting the signals from FPGA,

we used simple circuitry permitting to detect the locking. The

signals delivered by the two ROs were fed into the D flip-flop:

one of them to the data input and the other to the clock input.

If the output of the flip-flop is constant (’1’ or ’0’) then the

oscillators are locked.

The observation of numerous rings confirmed the fact that

Fig. 6. Unlocked ring oscillators. Trigger on top signal.

the mutual dependence of oscillators is big enough for them

to lock and oscillate at the same frequency. We could also

observe that independent oscillators at moment t0 can become

locked at moment t1 if external conditions (temperature,

voltage) present even slight changes.

If the challenge sent to the PUF selects a pair of oscillators

that are locked, then the response is no longer based on

intrinsic characteristics of the IC. Frequencies are identical,

therefore the bit should not be valid. This depends however

on the method employed for frequency measurement. In our

design, if the ROs are locked with a phase shift, the rising

edge of the RO with an advance will always be counted

before the rising edge of the second RO. Thus, the result of

the evaluation will always show that this RO has a greater

oscillating frequency. If the oscillators are locked without a

phase shift, the two counters will finish at the same time and

the bit will be declared not valid.

This rises an important question on the quality of the

response delivered by the PUF. If the oscillators are locked

at the moment we compare their frequencies the response is

deterministic and no longer based on intrinsic characteristics

of the device.

Identically laid-out oscillators request manual placement of

the delay elements, as argued earlier. This means that the user

will impose the position of the ROs on the device. Experimen-

tal results on the PUF showed that in certain configurations

the distribution of ’1’s and ’0’s in the response was not

uniform at all. In other configurations, the response presented

a better distribution of values. Thus, we studied the locking

phenomenon for ROs in certain configurations occupying

the smallest area possible. These configurations were chosen

because the surface of the PUF should be relatively small

comparing to the rest of the logic implemented in the device.

Moreover, the PUF needs to be implemented in an isolated

zone so that additional logic has only minimum influence on

the response.

We tested two particular configurations, ROs grouped in

a compact block, as presented in Fig. 7 and ROs placed on

two columns as presented in Fig. 8. In this case one column

represents one group of ROs.

Experimental results show that in the first configuration,



Fig. 7. Configuration of ROs in a compact block.

Fig. 8. Configuration of ROs in 2 columns

there are more chances to have locked ROs. The most probable

Voltage (V) Number of RO locked (over 16 ROs)

0.95-1.15 0
1.20-1.25 2

1.30 4
1.35-1.40 8

TABLE IV
LOCKING OF ROS DEPENDING ON VOLTAGE

explanation for this phenomenon is that ROs placed close to

each others are powered by the same wires. This fact has a

great influence on the behavior of the oscillators. In Tab. IV we

present the influence of the voltage on the locking of the ROs

on Cyclone III IC. Considering these experimental results, we

cannot determine with precision the conditions under which

ROs lock. We only observed that pairs of ROs can lock or

unlock if environmental conditions change. Thus, questions

rise on the reliability of the PUF and as manual placement is

required, the configuration of the oscillators and the placement

and routing of both ROs and arbiter must be carefully studied.

In a recent publication by Maiti and Schaumont [13], the

“Compensation method” used to select pairs of ROs in order

to have good PUF properties, indicate to chose ROs as close

as possible from one to each others. Even if more investigation

should be done on the locking of RO, such a method seems

to be exposed to this phenomenon.

VI. FURTHER ENHANCEMENTS OF THE PUF

Next, we propose some modifications of the PUF in order

to enhance its characteristics.

A. Reduction of intra-chip variations

As we observed in Session V, changing environmental

conditions (namely voltage and temperature) increase the intra-

chip variation. This is due to the fact that identically laid-out

ROs have very close oscillation frequencies. Since all ROs

do not have exactly the same dependence on environmental

conditions, some ROs can be more affected than others, and

differences in frequencies can invert. While for laboratory

temperatures the intra-chip variation did not exceeded 4 bits,

for temperature ranges from 30 to 80◦ Celsius, up to 15 bits

out of 256 were unstable. For device authentication this is not

a problem if the inter-chip variation remains high. For key

generation this fact is not acceptable. We must guarantee the

uniqueness of the key generated by the device. Therefore, as

proposed by Suh and Devadas, an error correcting code can

be used to correct errors due to the intra-chip variation. As

usual, the response should not be used directly as a key even

after correcting the errors. On one hand, there are weak and

periodic patterns in the response. On the other hand, after this

error correcting process, the entropy of the “key” will probably

be reduced. A hash function (e.g. Whirlpool [3] based on

a modified AES) can be used to remove weak patterns but

unfortunately it cannot solve the problem of entropy reduction.



B. Reduction of the power consumption

When dealing with the power consumption of the PUF,

we used small dedicated modules made in our laboratory

featuring ALTERA Cyclone III EP3C25F256C8N FPGA. We

measured the static current consumption of the module and

obtained 4 mA. Then we measured the consumption of the

PUF using the 32 ROs and a PLL delivering the clock signal.

The module consumed 24.7 mA, which is indeed considerable

for a background function such as PUF. However, the PUF

employs each time only two out of N ROs in order to obtain

one bit of the response. Thus, we propose to stop all the N−2
oscillators (30 in our case) that are currently not used for

the response bit. The ROs are enabled and stopped using the

enable input of the structure (Fig. 1). When only two ROs

were running, we measured a 13.4 mA current consumption.

This is a reduction of consumption by approximately 51%.

In the next paragraph, we estimate the approximate power

reduction that can be obtained in the design proposed in

[18]. The total power consumption represents the sum of the

static consumption (S), the consumption of the logic which

is independent of the number of ROs (i.e. PLL, counters,

comparators, . . . ) (L) and the consumption of the logic which

depends almost linearly on the number of ROs (multiplexers

and ROs) denoted by R(N) = λ×N where N is the number

of ROs and λ a constant float. We can make a simple calculus

and show that the improved model would probably reduce

considerably the consumption of the board.

In [18], Suh and Devadas used 1024 ROs in their design.

Then, if we shutdown unused ROs for each comparison, we

should obtain a consumption of approximately S+L+λ×2 =
13.4 mA instead of S + L + λ × 1024 = 397.6 mA. With

our improved PUF control, we obtain a current consumption

reduction of 1 − 13.4/397.6 = 96.6%. The PUF’s power

consumption thus becomes much more suitable for practical

implementations.

Such an idea for reducing self-heating has been proposed in

[16] but was not considered by Suh and Devadas in their

design. However, in this article only one ring is selected at

a time. This idea cannot be used in our proposal to save more

power consumption. If we want to use only one RO, we have

to count its number of raising edges during one enable time,

record this number and repeat this measurement by selecting

another RO during the same enable time. The main problem

in such a case is the influence of the global deterministic

part of the jitter on the frequency of one ring oscillator [6].

This influence will not be the same from one measurement to

another. Thus the comparison between the number of raising

edges of two ROs will be suitable only if they are influenced

by the same global deterministic part of the jitter in the same

time.

VII. CONCLUSIONS

The concept introduced in [18] is very simple, with a

differential structure that presents an excellent behavior as

long as the IC is not reconfigured. As this structure (the PUF)

is useless if implemented alone in an IC, we analyze the

influence of additional logic upon the response of the PUF.

Our work proves that placement and routing constraints are

required in order to maintain the quality of the PUF in FPGAs.

Without any constraints, additional logic creates a completely

different PUF and implicitly a completely different response.

Instead of a small and acceptable intra-chip variation after the

IC reconfiguration, we obtained the variation 48.8% that was

comparable in size to an ideal inter-chip variation (50%).

We also showed that bits in the response are dependent and

propose a method to select pairs of ROs to have independent

bits. Unfortunately this shorten the PUF response. The huge

current consumption obtained by Suh et al was also of our

concern. We improved the design in order to considerably

reduce the consumption. For a small PUF, (e.g. the one

described in our experimental conditions with 32 ROs) the

consumption was reduced by 51%. For a greater PUF, our

improvement leads to an even more important reduction: we

reduced the consumption of the PUF described in [18] by

96.6%.

Moreover, we showed that there are other phenomena that

influence and jeopardize the integrity of the PUF. We argued

why the “locking” phenomenon is affecting the response

of the PUF and it is very important to notice that not all

challenges can be used at any moment. Apart from the locking,

our experimental results show that noisy mother-boards can

increase the intra-chip variation for the PUF.
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