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Abstract. Security of cryptographic systems depends sig-
nificantly on security of secret keys. Unpredictability of the
keys is achieved by their generation by True Random Num-
ber Generators (TRNGs). In the paper we analyze behavior
of the Phase-Locked Loop (PLL) based TRNG in changing
working environment. The frequency of signals synthesized
by PLL may be naturally influenced by chip temperature. We
show what impact the temperature has on the quality of gen-
erated random sequence of the PLL-based TRNG. Thank to
analysis of internal signals of the generator we are able to
prove dependencies between the PLL parameters, statisti-
cal parameters of the generated sequence and temperature.
Considering the measured results of experiments we form
a new requirement in order to improve the robustness of the
designed TRNG.

Keywords
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1. Introduction
Random values play a crucial role in several areas of

science, e.g. in simulation methods like Monte Carlo [1], in
generation of spreading sequences in spread spectrum com-
munication systems [2], in generation of primes, in several
cryptographic algorithms [3], or in gambling industry. Natu-
rally, the requirements for generators and generated random
data differ according to the application.

In cryptography, the values produced by randomness
extractors or generators are used as cryptographic keys,
initialization vectors, padding bits, blinding values and/or
masking values in countermeasures against side-channel at-
tacks [4]. Beside good statistical properties, random num-
bers in cryptography (usually random bitstream) must not
be predictable and are often generated using some physical
uncontrollable process. These numbers are called true ran-
dom numbers as the opposite to the pseudo-random numbers

that are generated using some deterministic algorithm and
are thus guessable.

The entropy of True Random Number Generators
(TRNGs) is increased by each generated value. Much at-
tention was paid later to the analysis and mathematical mod-
eling of the randomness extraction process. Several papers
(e.g. [5], [6]) give theoretical bounds for entropy and pro-
vide statistical estimations of the TRNG behavior in order to
characterize its security. However, the difficulty concerning
these models and entropy estimators is related to underlying
physical assumptions that are often difficult or impossible to
validate. Some models and proofs of security like that of
Sunar et al. [5] can be thus questionable [7], [8].

When designing a TRNG for cryptography, a designer
has to take into account that attackers can try to manipulate
the generator in order to be able to guess some patterns in
the generated bitstream or the whole key with a non negli-
gible probability. There are two types of attacks that should
be considered when designing TRNGs: passive attacks and
active attacks. Passive attacks do not modify in any way
the functionality of the security device. In case of TRNGs,
an attacker can try to guess the generated bitstream when
measuring the power consumption or electro-magnetic emis-
sions. Active attacks require some non-invasive or invasive
active intervention of the attacker aimed at modification of
TRNG behavior. Non-invasive active attacks are based on
non-permanent variations of the TRNG environment (e.g.
supply voltage, temperature, surrounding electro-magnetic
field) while trying to achieve some anomalies (e.g. bias
from equiprobable values) at the TRNG output. The authors
of [9] were able to reduce the keyspace from 264 to just 3300
thanks to frequency injection attack on ring oscillator-based
TRNG. Non-invasive attacks are dangerous for two reasons:
1) they are not tamper-evident in most cases; 2) they do not
need expensive equipment.

To obtain results of a real-life attack we have executed
a simple active non-invasive attack on Field Programmable
Gate Arrays (FPGAs) implementation of a TRNG using
Phase-Locked Loops (PLLs) as a source of randomness [10].
Namely, we have tried to introduce some bias detectable
by FIPS 140-2 statistical tests to the output of generator



RADIOENGINEERING, VOL. 20, NO. 1, APRIL 2011 95

by changing its working temperature. Our aim is to find
out what kind of changes in the parameters of generated se-
quences can be observed. Moreover, we will record the in-
ternal signals of the generator and evaluate their dependence
on the temperature.

Similar experiments have been described in [11] where
the PLL-based TRNG (PLL-TRNG) has been evaluated as
problematic, with varying quality of the generated bit se-
quence. Based on obtained results from the attack realization
we will provide additional requirements for the PLL-TRNG
design and explain why the configuration chosen by Santoro
et al. [11] had difficulties in passing statistical tests. Consid-
ering the measured results of experiments and extended anal-
ysis of internal TRNG signals we form a new PLL-TRNG
design requirement in order to improve the robustness of de-
signed TRNG.

The paper is organized as follows: in Section 2 we in-
troduce PLL-TRNG proposed by Fischer and Drutarovsky
in [10] and describe a method of jitter characterization based
on coherent sampling. Section 3 describes experimental
setup used for jitter measurement and detection of environ-
mental manipulations. Results of the experiment are pre-
sented in Section 4. In Section 5 we discuss the obtained
results. Finally, Section 6 concludes the paper.

2. PLL-Based TRNG in FPGA
In this section, we introduce PLL-TRNG principle

based on randomness extraction from the tracking jitter that
is inherent in clock signal generated in analog PLL.

2.1 PLL as a Source of Randomness
The PLL circuitry in FPGAs is aimed at the on-chip

synthesis of clock signals derived from an external clock
generator, e.g. quartz oscillator. It provides a set of sig-
nals with phase and frequency ratio, which can be set by
FPGA static or dynamic configuration. PLLs are embed-
ded in most recent FPGA families. Contrary to other TRNG
principles implemented in FPGAs, the randomness source in
PLL-TRNGs can be well separated from the rest of the de-
vice, because PLLs use physically separated power supply
and ground pins. This is the main advantage of their use in
security aware TRNGs as the power supply separation re-
duces the possibilities of attack.

Typical analog PLL block in Altera [12], [13], Xil-
inx [14], [15] and Actel [16], [17] devices (see Fig. 1) can
provide at least one synthesized clock signal with frequency
FOUT :

FOUT =
FVCO

k
= FREF

m
k
= FIN

m
n× k

(1)

where FIN is the frequency of input clock signal, FREF is
the reference frequency derived from input signal and FVCO
is the frequency of the Voltage Controlled Oscillator (VCO)
that is used to generate the feedback clock FFB. Reference-,

feedback- and post-divider values n, m, and k can vary from
one to several hundreds in FPGAs [18], or to several thou-
sands in ASICs [19]. The set of dividers values, loop filter
bandwidth and VCO parameters determine the range of in-
put and output frequencies, but also the jitter characteristics.
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Fig. 1. Block diagram of analog PLL circuitry for clock signal
synthesis in Altera FPGA [18].

Tab. 1 presents basic parameters of the PLL circuitry
embedded in Altera Cyclone and Stratix FPGA families.

family # of PLLs
dividers range

m n k

Cyclone II [20] 2, 4 1-32 1-4 1-32
Cyclone III [21],

4, 8 1-512 1-512 1-512
Cyclone IV [13]

Stratix [22]
4,8×FPLL* 1-32 1-32 1-32
2,4×EPLL 1-512 1-512 1-1024

Stratix II [23]
4,8×FPLL 1-32 1-4 1-32
2,4×EPLL 1-512 1-512 1-512

Stratix V [12] 22,28×FrPLL**1-512 1-512 1-512
* EPLL and FPLL stand for Enhanced and Fast PLL, respec-

tively.
** FrPLL stands for Fractional PLL with 18 output counters.

Tab. 1. Parameters of PLL embedded in Altera FPGAs.

When considering PLL as a source of randomness,
three parameters have to be taken into account: 1) the size
of generated clock jitter; 2) available ranges of frequency di-
viders n, m and k together with the VCO maximum and min-
imum frequency; 3) bandwidth of the PLL loop filter. Since
the timing jitter is one of factors determining the reliabil-
ity of fast synchronous logic systems, it is permanently de-
creased by FPGA vendors. This fact, which was proved also
by our experiments, makes the PLL-based randomness gen-
eration more difficult. Fortunately, the range of dividers is
increased in high-density FPGA devices for achieving more
precise frequency synthesis. When a small clock jitter is
available, bigger values of dividers can be successfully used.

2.2 Clock Jitter and its Measurements
The clock jitter can be defined as a short-term varia-

tion of an event from its ideal position. In general, it is the
variation in time of the zero crossing (rising or falling edge)
of the clock signal. The most common jitter measurements
used by FPGA vendors are period jitter and cycle-to-cycle
jitter. The period jitter is defined as the difference between
the n-th clock period and the mean clock period. On the
other side, the cycle-to-cycle jitter is defined as the differ-
ence between two successive clock periods. The jitter can
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be considered as a random variable. If it has a normal dis-
tribution, it is characterized usually by a 1-sigma value (σ),
where σ is the standard deviation of a jitter process and σ2 is
its variance. If the jitter is composed of both random and de-
terministic components, its size is usually given in a peak-to-
peak value. Typical values of the clock jitter depend on the
technology and on the configuration of the PLL. They can
range from 3.5 ps to 10 ps for ASICs [19], or up to 100 ps
for FPGAs [23], [18].

FPGA user cannot modify technology-related parame-
ters of the jitter. He can only modify the PLL output clock
jitter by modifying frequency dividers (m,n,k) or, option-
ally, loop filter bandwidth (only in Altera technology). Note,
that the low-bandwidth PLL cannot follow fast changes on
input clock and it thus filters out the jitter, but it needs longer
time for locking.

Oscillators (including VCOs) are dependent on tem-
perature variations by their nature. We can therefore expect
that the behavior of the PLL will change as the temperature
varies. We will evaluate the impact of the temperature on the
PLL-TRNG in our experiments.

2.3 Randomness Extraction
Next, we will explain the principle of randomness ex-

traction in the PLL-TRNG published in [10]. It uses the
tracking jitter as a source of randomness. The tracking jit-
ter can be defined as the difference between input and out-
put clock signals of the PLL. The tracking jitter is related to
the capability of the PLL circuitry to track changes in input
clock signal. The PLL input can be driven by an external
clock generator or internal signal including other PLL or RC
oscillator embedded in the same FPGA device [24].

In PLL-TRNG (see Fig. 2), a clock CLJ influenced by
jitter is sampled using another rationally-related clock signal
CLK that is used as a reference clock. The relation between
the two clocks is fundamental – it guarantees that the gener-
ator will generate random bitstream. This relation is assured
by the PLL frequency synthesizers.

PLL
CLJ

CLK

CIN

D
Flip
Flop

PLL

Decimator
(K  )D

1

2

q(nT   )
CLK x(nT  )Q

Fig. 2. Block structure of the PLL-TRNG having two PLLs,
sampling gate and decimator – corrector of the output
sequence.

The two PLLs assure that the frequencies FCLJ and
FCLK of the synthesized clock signals CLK and CLJ are re-
lated following the form:

FCLJ

FCLK
=

KM

KD
=

MCLJDCLK

MCLKDCLJ
(2)

where KM and KD represent multiplication and division fac-
tors determined by PLL frequency dividers (DCLK , DCLJ)
and multipliers (MCLK , MCLJ). The clock signal CLJ is sam-
pled on the rising edges of the clock signal CLK. The sam-
pling is illustrated in Fig. 3. As it can be seen, the signal
CLJ is sampled in KD discrete positions during the period
TQ, which is given as

TQ = KDTCLK = KMTCLJ . (3)

CLJ

CLK

OUT

QT

critical samples

DT

M
K

D
K

samples

Fig. 3. Sampling of the CLJ clock signal including the tracking
jitter on the raising edge of the CLK signal (illustrated
for KM = 5 and KD = 7).

It was shown in [10] that if KM and KD are relatively
prime, the set of samples creates an equidistant set of values
with the step

d =
TCLK

2KM
GCD(2KM,KD) = (4)

=
TCLJ

2KD
GCD(2KM,KD).

The method offers a possibility to choose the worst-case dis-
tance MAX(∆Tmin) = d/2 between two closest edges of the
CLK and CLJ signal during TQ period:

MAX(∆Tmin) =
TCLK

4KM
GCD(2KM,KD) = (5)

=
TCLJ

4KD
GCD(2KM,KD).

If the parameters KM and KD are chosen so that

MAX(∆Tmin)< σ, (6)

it is guaranteed with a high probability that during the pe-
riod TQ the sampling edge of CLK will fall at least once into
the edge zone of CLJ (here the edge zone means the time
interval around the edge with the total width smaller than σ).
The KD samples represented by the output signal q(nTCLK)
are XOR-ed bit-wise in a decimator [10] for obtaining one
random bit during each period TQ. The generator output bi-
trate R is thus R = 1/TQ.

2.4 Jitter Measurement
The use of coherent sampling method [6] for random-

ness extraction enables simple on-line jitter measurement
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and characterization inside the logic device. This measure-
ment can be used for realization of embedded statistical test
dedicated to the randomness generation principle.

If the clock periods are influenced by a random jitter,
the output bits at the decimator output (notice, that the XOR-
based decimator [25] computes one output bit per each pe-
riod TQ by adding modulo 2 (⊕) of KD samples q(.) at the
sampling frequency FCLK) get the values

x(nTQ) = q(nTQ)⊕q(nTQ−TCLK)⊕ . . . (7)
. . .⊕q(nTQ− (KD−1)TCLK).

The output bitstream thus represents a nondeterministic sig-
nal.

In order to be able to characterize the tracking jitter
in situ, let us provide some more details concerning co-
herent sampling. We assume that during the period TQ
we acquired KD samples qi of the CLJ signal with order
i= 0,1, . . . ,KD−1. Next, we need to reorder the samples ac-
cording to their timing position in the CLJ signal. The idea
behind this reordering is the same as that used in sampling
oscilloscopes, where high-frequency periodic signal (our jit-
tery clock CLJ) is sampled using some low-frequency pe-
riodic signal (our reference clock CLK). The mutual phase
of the two clock signals evolves in discrete steps (defined in
our case by the distance d). The mutual phase repeats pe-
riodically, having a long period (in our case TQ). In order
to reconstruct one period of the signal CLJ from KD sam-
ples indexed by i as defined before, one has to reorder these
samples using new ordering index j defined by [26]:

q̂ j = qi (8)

where
j = iKM mod KD. (9)

The value of the j-th sample q̂ j (0 ≤ j ≤ KD − 1) can be
viewed as a binary random variable X j ∈ {0,1}. Its mean
value E[X j] is equal to the probability p j = p(X j = 1), which
is related to the value of the jitter in the corresponding sam-
pling instant. In order to calculate probability distribution
of all KD samples, we count number of occurrences of each
sample q̂ j during N periods TQ and thus estimate their mean
values. Moreover, as it will be used in next sections, the val-
ues p j in the vicinity of rising and falling edges of CLJ sig-
nal can be interpreted as Cumulative Distribution Functions
(CDFs) of signal edge positions.

As it will be shown in the next sections, this CDF can
be used for evaluation of PLL-TRNG characteristics based
on PLL parameters and/or for implementation of embedded
statistical tests.

3. Jitter Measurement Setup
First, we wanted to observe the impact of temperature

variations on the PLL-TRNG behavior. The temperature

T of the FPGA was decreased by application of a freez-
ing spray and measured using temperature sensor placed
on the FPGA chip. The lowest achieved temperature was
T = −30◦C. As the FPGA chip produces some heat it
warmed up by itself up to T = +30◦C. During the mea-
surements we tried to keep the temperature in the range of
the selected value.

The measurement setup used for the experiments is de-
picted in Fig. 4.

TRNG

Stratix DSP board

control
logic

FIFO
register

Computer

ctrl

data

USB
interface

Stratix FPGA

Fig. 4. Block diagram of the PLL-TRNG measurement setup.

Two similar configurations of the PLL-TRNG were
chosen as objects under attack. We used Altera Stratix
DSP board with EP1S25 device in both cases. The fol-
lowing parameters were chosen or determined by the board:
FCLI = 80 MHz, MCLK = 31,DCLK = 10,MCLJ = 36,DCLJ =
7. Then FCLK = 248 MHz, FCLJ = 411 MHz, and KM/KD =
360/217. The sampling parameters of the generator com-
puted by (3) and (4) are: TQ ≈ 876 ns and d ≈ 5.6 ps.

In order to compare the PLL-TRNG behavior for the
two PLL settings, we chose the following configurations that
differ in bandwidth of the loop filter:

• Configuration A has the filter bandwidth set automati-
cally by the synthesizing tool (Altera Quartus [27]).

• Configuration B has the filter bandwidth set to low.

The lower is the bandwidth the better input jitter rejec-
tion can be achieved at the expense of longer locking time
of the PLL. The synthesizing tool chooses the optimal band-
width for selected signal frequencies, achieving acceptable
locking time and level of input jitter filtering.

4. Measurement Results
For evaluation of the TRNG dependence on the temper-

ature, we collected for each temperature the generator output
random bitstream, as well as the internal values of samples
q̂ j. By reordering the samples using (8) it is possible to re-
construct the waveform of the sampled clock signal CLJ and
track the probabilities p j of the samples influenced by jit-
ter. The waveforms sampled by the generator are depicted
in Fig. 5 and Fig. 6. For each sample the number of ones is
counted during N = 1000 periods TQ. The samples in stable
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regions end up with 0 or 1000 hits, what gives the probabil-
ity pT ( j) = 0 or pT ( j) = 1, where index T represents actu-
ally used temperature. The samples in edge areas (rising and
falling edge), influenced by jitter, reach probability values
pT ( j) between these boundaries.

Fig. 5. Probability chart for samples of a jitter influenced clock
signal CLJ accumulated during N = 1000 of TQ periods
for PLL-TRNG with PLL Configuration A with KD =
217 for temperatures in range T = (−30◦C,+30◦C).

From the charts on Fig. 5 and Fig. 6, we can see
that the position of critical samples (defined as ones with
pT ( j) 6∈ {0,1} ) does not change across the range of temper-
atures in both configurations. The configuration A (Fig. 5)
includes lower number of critical samples than the config-
uration B (Fig. 6) what implies lower variance (σ2) of the
jitter. We can conclude that lower bandwidth of the feed-
back PLL loop in the configuration B causes higher number
of the critical samples. This can be explained by the fact
that lower bandwidth decreases PLL output jitter and thus
increases the tracking jitter. Note that the proposed method
permits to measure the tracking jitter, i.e. the jitter that is
used for randomness generation used by PLL-TRNG. The
main advantage of this measurement is that it can be real-
ized inside the FPGA device.

Fig. 6. Probability chart for samples of a jitter influenced clock
signal CLJ accumulated during N = 1000 of TQ periods
for PLL-TRNG with PLL Configuration B with KD =
217 for temperatures in range T = (−30◦C,+30◦C).

The random sequences produced by the two generator
configurations were tested by simple statistical tests defined
in older version of the FIPS 140-2 standard [28]. This test
suite can reveal a bias or unbalanced distribution of zeros and

ones in generated sequence by application of 4 basic tests
(monobit test, poker test, runs and long runs tests). If at least
one test from the set does not pass, the result is denoted as
FAILED, otherwise we put OK mark.

In Tab. 2 we summarize the results of statistical tests
at different chip temperatures. It can be seen that while
the configuration A has produced by some temperatures the
sequences that did not pass the statistical tests suite FIPS
140-2, the configuration B is reliable in the whole range of
temperatures. The columns with number of critical samples
show the number of samples influenced by jitter. It can be
observed that in the case of the configuration B, (with a low
bandwidth of the loop filter), the number of influenced sam-
ples is significantly higher.

Conf A Conf B
temperature T FIPS critical FIPS critical

in ◦C tests samples # tests samples #
-30 OK 26 OK 66
-20 FAILED 25 OK 64
-10 OK 24 OK 62
0 OK 24 OK 63

+10 OK 24 OK 68
+20 FAILED 22 OK 61
+30 FAILED 25 OK 60

Tab. 2. Results of FIPS 140-2 statistical tests of PLL-TRNG
output and number of random samples influenced by the
jitter at different chip temperatures for configurations A
(default configuration) and B (low filter bandwidth).

We further investigate the number and position of crit-
ical samples for both configurations in dependency on the
chip temperature. From the stochastic model of the PLL-
TRNG [26] we observe that the output bias of the gener-
ated sequence is dominated by the samples with probability
around the value p = 0.5. If we take into account only “sig-
nificant” samples, i.e. samples having more than 0.1N = 100
out of N = 1000 unstable values acquired during N periods
TQ (i.e. samples with probabilities pT > 0.1 and pT < 0.9),
there will be 4–6 and 12–13 highly critical samples per edge
for configuration A and B, respectively.

Fig. 7 and Fig. 8 show in details the region around the
rising edge of the sampled waveform. We can observe how
the probabilities pT of the critical samples changes in rela-
tion to different chip temperature. In configuration A, prob-
abilities of individual samples are spread to bigger extent.
In configuration B the subsequent samples have very simi-
lar probabilities, meaning that the probability values are less
sensible to temperature changes. Note that pT ( j) values in
the vicinity of edge shown on Fig. 7 and Fig. 8 can be in-
terpreted also as CDF of edge position influenced by jitter.
Such interpretation can be used for direct estimation of vari-
ance of edge position from acquired pT ( j) values. Probabil-
ity Density Function (PDF) required for variance computa-
tion can be easily computed form CDF by using numerical
derivation.



RADIOENGINEERING, VOL. 20, NO. 1, APRIL 2011 99

Fig. 7. Probabilities of critical samples in the area of rising
edge of the sampled CLJ signal for PLL-TRNG with
configuration A sampled during N = 1000 periods TQ,
comparison for different temperatures in range T =
(−30◦C,+30◦C) interpreted as CDF of rising edge po-
sition.

Fig. 8. Probabilities of critical samples in the area of rising
edge of the sampled CLJ signal for PLL-TRNG with
configuration B sampled during N = 1000 periods TQ,
comparison for different temperatures in range T =
(−30◦C,+30◦C) interpreted as CDF of rising edge po-
sition.

Fig. 9. Detail of probabilities of critical samples in the area of
rising edge of CLJ signal for PLL-TRNG with configu-
ration A sampled during N = 1000 periods TQ showed for
temperatures from range T = (−30◦C,+30◦C).

In order to better visualize the changes in sampled sig-
nals in dependency on temperature we provide Fig. 9 and
Fig. 10 which show in detail the dynamics of probabilities
for most critical samples.

In configuration A, we can observe significant depen-
dence of probability on the chip temperature. For example at
position number 86 the difference in probability at minimal

and maximal temperature (p−30− p30) is almost 0.5. This
fact, as well as the low number of critical samples causes the
instability of the PLL-TRNG.

Although the jitter is present during the whole range
of the temperatures (the number of critical samples does not
change), the bias of the samples changes visibly and influ-
ences the statistical parameters of the generated sequence. In
a moment when all samples are strongly biased (this is the
case for the temperature between T = 20◦C and T = 30◦C)
the output sequence is also biased and does not pass the FIPS
140-2 statistical tests suite.

The configuration B is more stable in changing chip
temperature and the density of samples with probability
close to 0.5 is much higher when comparing to the case A.
Thanks to that, the statistical parameters of the generated se-
quence stay acceptable and pass all required statistical tests.
The bias of particular samples is compensated by other sam-
ples in the critical area, and the final sequence is kept with
very low bias.

Fig. 10. Detail of probabilities of chosen critical samples in
the area of rising edge of CLJ signal for PLL-TRNG
with configuration B sampled during N = 1000 pe-
riods TQ showed for temperatures from range T =
(−30◦C,+30◦C).

5. Discussion
From the observations depicted above we can conclude

that variance of the jitter in the sampled signal does not
change significantly. The size of deviation can be observed
as number of critical samples which remains almost con-
stant in the whole range of tested temperatures. These re-
sults have been confirmed by computing variance as pre-
sented in Tab. 3. The PDF used for variance computation
was computed from CDFs shown on Fig. 7 and Fig. 8 by us-
ing standard 3-point numerical approximation of derivation.
The presence of jitter represents a fundamental condition for
generator proper function. Therefore, a well suited startup
test for this kind of generators should include a test of num-
ber and position of critical samples.

The on-chip implementation of this test needs to in-
clude a memory block and counters which sum up for each
edge position of the sampling signal the number of sampled
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ones. The critical edge positions with the counter value dif-
ferent from 0 (p 6= 0) or not equal to the number of TQ peri-
ods (p 6= 1) indicate the presence of the jitter. The number
of critical samples must be higher than zero, but low number
of samples cannot be accepted either. From empirical exper-
iments described above we can conclude that configurations
with more than 10 highly critical samples per edge behave
reliably even in changing environment.

temperature T Conf A Conf B
in ◦C σ2 σ2

-30 5.4 24.6
+20 4.9 25.4
+30 4.6 25.0

Tab. 3. Variance of rising edge position for both configurations
at different temperatures obtained from PDF.

Continuous monitoring of the critical samples number
allows to implement an effective online test for the discussed
category of PLL-based generators. Each significant change
either in position or in probability value of critical samples
may have an impact on the parameters of the generated se-
quence and therefore should initiate an alarm signal inside
the PLL-TRNG.

It is possible to estimate basic jitter parameters and
draw the PDF of deviation of sampled signal edge positions
from its ideal one directly from measured data. The PDFs
of rising edge deviation have been obtained by numerical
derivation of CDFs shown in Fig. 7 and Fig. 8 respectively.
In Fig. 11 we compare the PDF histograms of rising edge
deviation for PLL-TRNG working in configuration A and
B with different loop filter bandwidth. Ideal edge position
for analyzed configuration was estimated as the one with the
highest PDF value. In both cases the jitter has a Gaussian-
like distribution. As it can be observed, the configuration
A includes jitter with lower deviation when compared to the
configuration B.

Fig. 11. Estimated PDF of the rising edge shift from its ideal po-
sition obtained by numerical derivation of CDF of the
clock edge position in sampled CLJ signal.

From the obtained results and suggestions for PLL-
TRNG design we can conclude that the design tested in [11]
with parameters KM/KD = 270/203 is not suitable for usage
in environment with changing temperature. The number of

highly critical samples for this configuration has been con-
firmed by measurements to be 3–4 samples per edge. As we
proposed in the suggestions above, the fact that the number
of highly critical samples should be higher than 10 is im-
portant. This condition is not met in configuration published
in [11] and the generator behaves as Configuration A during
our experiments.

6. Conclusions
We analyzed an influence of changeable chip temper-

ature on behavior of PLL-TRNG implemented in Altera
FPGA. We showed what impact has the temperature on the
internal PLL-TRNG signals and the quality of generated ran-
dom sequence. We defined and demonstrated importance
of highly critical samples for the proper operation of PLL-
TRNG. As a result, we propose additional requirement for
the PLL-TRNG design procedure that needs to be met in or-
der to achieve a higher robustness of the design for practi-
cal cryptographic applications. We can conclude that PLL
configurations with more than 10 highly critical samples per
edge behave reliably even in changing environment. Tight
probability values of critical samples assure stability of the
PLL-TRNG internal environment and stable parameters of
generated random values. Our proposed new interpretation
of reordered probabilities of internal generator signals as
a CDF of edge positions can be used as an additional tool for
efficient implementation of on-line statistical test for PLL-
TRNG. We will concentrate on efficient implementation of
the on-line tests in our future research.
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University of Košice. His current research interests include
applied cryptography, digital signal processing, and algo-
rithms for embedded cryptographic architectures.

Viktor FISCHER received his MSc and PhD degrees in
electronics from Technical University of Košice, Slovak Re-
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