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A new representation and projection model for

tomography, based on separable B-splines

Fabien Momey, Loı̈c Denis, Catherine Mennessier, Éric Thiébaut, Jean-Marie Becker, Laurent Desbat

Abstract—Data modelization in tomography is a key point
for iterative reconstruction. The design of the projector, i.e.
the numerical model of projection, is mostly influenced by the
representation of the object of interest, decomposed on a discrete
basis of functions.

Standard projector models are voxel or ray driven; more
advanced models such as distance driven, use simple staircase
voxels, giving rise to modelization errors due to their anisotropic
behaviour. Moreover approximations made at the projection step
amplify these errors. Though a more accurate projection could
reduce approximation errors, characteristic functions of staircase
voxels constitute a too coarse basis for representing a contin-
uous function. As a result, pure modelization errors still hold.
Spherically symmetric volume elements (blobs) have already been
studied to eradicate such errors, but at the cost of increased
complexity, because they require some tuning parameters for
adapting them to this use.

We propose to use 3D B-splines, which are piecewise polyno-
mials, as basis functions. When the degree of these polynomials is
sufficiently high, they are very close from being with a spherical
symmetry, i.e. blobs, avoiding projection inconsistencies, while
keeping local influence and separability property. B-splines are
considered, in sampling theory, as the almost optimal functions
for the discretization of a continuous signal, not necessarily band-
limited, potentially allowing to reduce the angular sampling of
the data without any loss of quality.

We show that the projection of B-splines can be approximated
rather accurately by a separable function, independent from the
angle of projection, easier to integrate on detector pixels. The
higher the degree of the used B-splines, the better the quality of
the approximation, but also the larger the number of required
operations. Thanks to these approximations, a convenient trade-
off between the need of accuracy and a fast calculation can be
obtained. This has resulted in the implementation of a more
accurate numerical projector, which can deal with a reduced
angular sampling without loss of performance. The additional
computation cost is also efficiently reduced. We have studied
the quality of enhancement involved by this projector on 2D
iterative reconstructions of a Shepp-Logan phantom, from a
small number of fan beam projections. Reconstructions have been
performed by optimization methods, minimizing the squared data

Manuscript received November 22, 2011. This work was supported by the
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residuals with a regularization term, using an efficient Quasi-
Newton optimization algorithm.

I. INTRODUCTION

ITERATIVE reconstruction methods for tomography have

long proven their potential to enhance reconstruction qual-

ity, compared to the filtered backprojection (FBP) [2]. The

drawback of iterative methods is their expensive computation

time. Due to very low signal-to-noise ratio in PET/SPECT

imaging, iterative methods are preferred because they allow

a better modelization of the underlying physics and counting

statistic of positron annihilations. However FBP is still the

method of choice in X-ray computed tomography. Ongoing

researches on algorithms and recent enhancements in compu-

tational power, such as multi-core processor units or GPU-

based implementation facilities, call for a re-evaluation of the

potential of iterative reconstruction in this domain.

Such methods require a numerical modelization of the

data acquisition process: the so-called projector. It is used

for the reprojection of the current estimate of the image to

be reconstructed, and compared with the true data at each

iteration step. A backprojection operator is also needed, which

is the transpose of this projector. This numerical model has to

reproduce as accurately as possible the physical process of

data acquisition, based on the mathematical principle of the

X-ray transform (Radon transform in 2D), while not increasing

the computational burden.

The representation of the object of interest (image) is the

starting point of the projector. The real nature of this image

is a continuous signal, discretized for numerical purposes.

Mathematically, it is assimilated to a continuous function

decomposed on a discrete basis of functions. The choice of

this basis is essential for an accurate representation of the

true function. Standard models such as voxel driven or ray

driven [5] are based on raw samples, linearly interpolated at

the projection step, either in the image space or in the data

space, yielding strong modelization errors and artifacts on the

reconstructed image. Hence the quality of the modelization

strongly depends on the sampling rate. More advanced models,

such as the recent distance driven [1] projector, take a better

account of the continuity of the image by using staircase

voxels. These functions, uniform on their cubic support, are

entirely projected on the detector plane. Their projection is

calculated as the length of overlap of the projected support

with the impinged detector pixels. Each voxel impinges at least

one detector pixel for a given projection, and vice versa for

the related backprojection. However such a basis of functions



provides a coarse representation of the image. This kind of

basis has an anisotropic behaviour, causing large modelization

errors in the projector, and thus in the reconstruction step.

Moreover, for implementation purposes, the projection of the

staircase voxel, in the distance driven model, is approximated,

increasing its modelization errors. In [3], a more accurate

projection of the staircase voxel reduces these approximation

errors, but errors due to this unadequate basis still hold. Such

issues can be dealt with another type of basis functions, al-

ready considered: the spherically symmetric volume elements,

mostly known as blobs [7] [8] [9] [10] [11]. Thanks to their

sphericity property, the projection of such functions is totally

isotropic (at least in parallel beam geometry), yielding a better

modelization of the projection process. The most usual blobs

are the Kaiser-Bessel functions. However, they require the

tuning of many parameters to be used as a suitable basis for

the representation of a continuous function. An apodization is

necessary because their support is not compact, and optimal

parameters have to be found to satisfy the partition of unity.

A projector based on these blob representations is complex to

handle.

We propose the use of B-splines as an alternative to both

staircase voxel and blob approaches. B-splines are well known

piecewise polynomial functions, and are characterized by the

degree of their constituting polynomials. Recent works in

sampling theory [17] [18] [14] have shown a large interest

when such functions are used as a basis of representation of a

continuous signal as a discrete sequence of coefficients, with

a good recovering accuracy. Thus B-splines involve some of

the best approximation order as their degree increases. The

staircase voxel being in fact a B-spline of degree 0, we turn to

B-splines of higher degree. Increasing their degree makes them

more and more similar to the 3D Gaussian functions, with

a quasi-isotropic behaviour, approximating quite well blobs

main feature, while keeping local influence and separability

property. All these properties indicate that B-splines would

constitute a smart basis for image representation and projection

modelization in tomography. This has already been done in [4]

for 2D FBP reconstruction in parallel beam geometry, giving

us clues to develop a new efficient numerical projector for

iterative reconstruction. Moreover [4] shows that it is possible

to reduce the angular sampling of projections without any loss

of quality. We claim that it is also one of the most important

improvements we might get with our B-spline-based projector

approach.

The core of our projector lies in the way a tridimensional

separable B-spline is projected on the detector plane. The exact

projection, called footprint in the following, is approximated

by a separable function on the detector, independently of the

angle of projection, yielding an easier and faster integration

on detector pixels. In section II, we detail some features of

the basis of B-splines, then we present the principle of our

projector, explaining our approximations and comparing them

with the distance driven projector. In section III we present

our iterative reconstruction scheme and show some results

of 2D reconstructions, in fan beam geometry, of a Shepp-

Logan phantom, with noiseless and noisy data, and from a

few number of projections.

II. MATERIALS AND METHODS

A. General formalism of image representation

Let f : x 7→ f(x), with x = (x1, x2, . . . , xn) ∈ R
n, be the

n-dimensional continuous function modelizing the true image

to be reconstructed. Let f̃ : x 7→ f̃(x) be its approximate

decomposition on a discrete basis of functions:

f̃(x) =
∑

k∈Zn

ckϕk(x) =
∑

k∈Zn

ckϕ(x− xk) (1)

where this discrete shift-invariant basis is assumed to be com-

posed of the compact atom function ϕ(x), regularly spaced on

a n-dimensional grid of N samples. k = (k1, k2, . . . , kn)
T ∈

Z
n corresponds to indexes of the N samples of the discrete

grid in the n-dimensional space, xk = (xk1
, xk2

, . . . , xkn
)T ∈

R
n are the coordinates of this discrete grid.

The function f̃ is an approximation of f , where the ck
coefficients must be determined so that the approximation

error is minimal. Thus f̃ defines a continuous function from a

discrete sequence of coefficients ck. For numerical purposes,

f̃ is described as a vector of its N coefficients:

c = (c1, c2, . . . , cN )T ∈ R
n (2)

Even though the basis functions ϕk have a compact support,

they can spread over the neighboring samples (this is the case

for B-splines of degree higher than 1). Thus, because ϕk(x) ≥
0, the coefficients ck do not correspond to the samples values

fk = f̃(xk):

f = (f1, f2, . . . , fN )T , with fk =
∑

k′∈Zn

ck′ϕk′(xk) (3)

Eq.(3) can be expressed as a matrix operator:

f = Φ · c (4)

where Φ is, for the case of B-splines, the spline interpolation

operator. Instead of solving a system of linear equations, there

exists a very fast way to apply and to invert it, based on digital

filtering [15] [16] [17]. Hence it is very easy to deal with either

c or f in the reconstruction process, since the transformation

from one space to another is simple to handle.

The choice of the atom function ϕ of the basis is essential

for warranting consistency with the image intrinsic continuity.

It will be a key point for the design of the projector which

has to modelize accurately the data. Desired properties are:

1. A good modelization of the continuity of the function, while

preserving sharp edges: this property can be related to the

approximation order of the basis;

2. A compact support, leading to a sparse projector;

3. Separability, allowing factorization of involved expressions,

thus lowering the computational burden;

4. Robustness of the basis of functions with respect to artifacts

generated by geometric transformations (rotation, registration,

resampling);

5. Spherical symmetry for isotropic projection.



B. B-splines as basis functions

Splines with degree d are piecewise polynomial functions

with degree at most d, continuously differentiable up to order

d−1. Any spline can be written as a unique linear combination

of regularly shifted atom piecewise polynomial functions.

These atom functions are called B-splines [17].

Let

β0(x) =







1, − 1
2 < x < 1

2
1
2 , |x| = 1

2
0, otherwise

be the rectangular pulse. Let us now denote by βd a B-

spline of degree d, constructed by d + 1 convolutions of

β0, corresponding to the generic member of this family of

functions.

βd(x) = β0 ∗ · · · ∗ β0

︸ ︷︷ ︸

d+1 terms

(x) (5)

This is the atom we are going to consider. With this notation,

a spline of degree d can be written as follows:

s(x) =

(
∑

k∈Z

ck δ(x− xk)

)

∗ βd(x) =
∑

k∈Z

ck βd(x− xk)

(6)

where δ is the Dirac distribution. Hence going back to the

formulation of the image representation in (1), we choose B-

splines as our basis of functions ϕ, leading to:

f̃(x) =
∑

k∈Zn

ckβ
d
k
(x) =

∑

k∈Zn

ckβ
d(x− xk) (7)

where βd is a n-dimensional B-spline of degree d, separable

on each component of Rn:

βd(x) =

n∏

l=1

βd(xl).

f̃ is thus a n-dimensional spline approximating the true

function f . In spline sampling theory [17], the ck coefficients

are chosen so that the approximation error ||f − f̃ ||L2
is

minimal, in the sense of L2 norm. That is to say that f̃ is the

orthogonal projection of f on the space of splines of degree

d, the functions βd
k

being a basis of this space. As a result the

ck are deduced from the L2 inner product of f with the dual

of each shifted basis function βd
k

, denoted β̊
d

k
:

ck = 〈f(x), β̊
d

k
(x)〉

Stated otherwise, the ck are the components of f̃ in the space

defined by the basis of functions βd
k

.

For a 1-dimensional function, the error of approximation

is O(∆L), where L = d + 1 is the order of approximation

and ∆ is the sampling step [17] [18] [14]. Hence using B-

splines of higher degree decreases the approximation error,

and potentially induces a reduction of the sampling step for a

given tolerance.

As already mentioned in section I, classical basis functions

used by some existing projectors are the simple staircase

voxels, in other words B-splines of degree 0. This is the

case for the distance driven projector [1]. These functions are

advantageous for being the most compact B-splines, easy to

manipulate, with no spreading over the neighboring samples of

the grid (as for the B-splines of degree 1). As a result we have

f = c in this case. Besides, staircase voxels suffer from a high

anisotropic behaviour. In addition to their low approximation

order, they constitute a too coarse basis of representation of

a continuous object, leading to large modelization errors. A

finer sampling rate lowers these errors, but at the cost of an

increased computational burden.

The main goal of this paper is to show that the accuracy

of the model can be improved using B-splines of higher

degree. Indeed, B-splines being d + 1-fold convolutions of

a rectangular pulse, they are close to a Gaussian function

when their degree d is large, according to the central limit

theorem. Thus they tend to spherically symmetric function,

while preserving a local support. As a result we can deal

with quasi-isotropic functions, at the expense of only a slight

spreading of the support of these functions. We also get a

better approximation order. These two properties are related

by the fact that B-splines are the shortest and smoothest scaling

functions for a given order of approximation [18]. Moreover,

the cubic (degree 3) B-splines are members of the family of

Moms functions (Maximum order minimum support), giving

them a kind of optimality in this context [18].

The use of blobs, for instance the Kaiser-Bessel functions,

has also improved the quality of image modelization, due to

their isotropic behaviour [7] [8] [9] [10] [11], giving a more

accurate projection on the detector. However, as stated in sec-

tion I, they have to be tuned to comply with sampling theory,

for example the partition of unity. Thus many parameters need

to be adjusted to approach optimal performances. Moreover,

because these functions are not separable, the computation of

a blob-based projector is more expensive, or needs approxi-

mations to accelerate the calculation. These observations have

convinced us that this basis is too complex and therefore is not

adapted enough to our problem, unlike B-splines. However the

comparison of our approach with blobs is not in the scope of

this paper, and we are aware that a thorough study is necessary

before concluding this subject.

C. Projector

We consider a general tridimensional system (see Fig.1)

where the object of interest is included in a 3D cartesian frame,

with coordinates x = (x, y, z). The regular sampling grid

of the object is therefore identified by the samples positions

xk, corresponding also to the center of each basis function

βd
k

. Then we consider a flat detector, linked with another 2D

cartesian frame, with coordinates u = (u, v). The detector

acquires the projection with a given orientation denoted θ. The

direction of a ray, starting from the X-ray source S, orthogonal

to the detector plane is identified by the vector ~w. The position

of S and the vector ~w are directly related to the orientation

θ. Let f be the vector of samples values of the image. The

numerical data modelization at orientation θ is:



Fig. 1. Cone beam projection scheme of a basis function βd
k

on the detector.
θ denotes the orientation of the detector. The direction of the ray, starting
from the source S(θ), orthogonal to the detector plane is identified by the
vector ~w(θ). The direction of the ray passing through the central position

xk = (x, y, z) of βd
k

is identified by the vector ~r. The footprint of βd
k

is

named F θ
k

.

gθ = Rθ · c = Rθ ·
(
Φ

−1 · f
)

(8)

where Rθ is the projector and gθ is the resulting projection.

Coefficient Rθ
qk of the matrix Rθ is the contribution of the

voxel function k on the detector pixel q. Thus the value gθq of

the qth data element is:

gθq =
∑

k∈Ωθ
q

Rθ
qk · ck (9)

where Ωθ
q is the set of voxels k impinging the θ-oriented

detector pixel q. Let Pq : u 7→ Pq(u) = β0(u − uq) be the

qth detector pixel response, assumed to be a 2D rectangular

pulse, centered at position uq . This response is shift-invariant

over each detector pixel. Thus:

Rθ
qk =

∫ ∫

F θ
k
(u) · Pq(u) du (10)

F θ
k

is the footprint of the basis function βd
k

. It is nothing else

than the X-ray transform of this function on the θ-oriented

detector, along each ray trajectory {S(θ), ~r(θ,u)} crossing it,

and impacting the detector plane at the position u (see Fig.1).

F θ
k
(u) =

∫

x∈{S(θ),~r(θ,u)}

βd
k
(x) dx (11)

A given projector Rθ determines the expression of this

footprint F θ
k

. Obviously, F θ
k

depends on the chosen basis of

functions. Moreover some approximations are often made in

the calculation of this footprint and its contribution to detector

pixels, in order to lower the computation cost.

Based on staircase voxels, the distance driven projector

[1] first considers a plane on which both detector pixels

bounds, and the central section of the voxel mostly parallel to

this plane, are projected. Then it approximates the footprints

with rectangles covering at best the real footprints. Thirdly it

determines the overlapping areas of the voxel footprint on the

impinged detector pixels footprints. Finally these footprints are

used to weight the voxel value, and calculate the contribution

of the voxel to each impinged detector pixel.
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Fig. 2. Comparison of approximation errors for footprints, in parallel beam
geometry, for our projector using cubic B-spline, and for the distance driven

projector. The detector is in simple rotation around the ~z-axis. The worst case
orientation of the detector is considered (here it is tilted with an angle of
45◦ from the horizontal plane). On (a), (b) and (c), the absolute value of the
difference between the true footprint and the model-approximated footprints
is represented. Footprints are convolved by the detector pixel response. (a)
Illustration of footprints on the detector. (b) B-spline projector with cubic
B-splines. (c) Distance driven projector (staircase voxels). (d) shows the
evolution of the mean square error as a function of the B-spline degree.

Our approach uses the quasi-isotropy property of B-splines

of higher degree, stated in section II-A, to suppose that the

footprint is identical whatever the orientation θ. As a result, we

first state that the footprint of βd
k

, in parallel beam geometry

(~r(θ,u) = ~w(θ), ∀u), is a n − 1-dimensional B-spline of

degree d, separable over the detector axis. For the 3D case,

this gives:

F θ
k
(u) = βd(u− uk) · β

d(v − vk) (12)

where (uk, vk) = uk is the position, on the detector, of the

projection of the center xk of βd
k

. The expression (12) is exact

when the direction of parallel beam projection ~w(θ) is equal

to one of the axis directions ~x, ~y or ~z; it is the reason why we

extend it to all other directions. It also justifies the use of the

same spline degree d for the projection (before convolution by

the detector pixel response).

Fig.2 displays a quantification of the worst case errors

caused by our approximations using cubic B-splines, compared

with the distance driven projector’s errors, in parallel beam

geometry. Our projector proves its better accuracy, while dis-

tance driven’s approximations look coarser. It also evidences

the large decrease of approximation errors, as the B-spline

degree increases, as said before. Because a higher degree also

means a wider support, the curve Fig.2(d) shows that the use

of cubic B-splines is a very good tradeoff between accuracy

and compacity.



Fig. 3. Scaling parameters in cone beam geometry. lfoc is the focal length
of the system (distance between the source point S and and its orthogonal
projection S⊥ on the detector). M(xk) is the center of the basis function

βd
k

. Its cone beam projection on the detector is the point M ′(uk). M
⊥(wk)

is the orthogonal projection of M on the straight line {S, ~w}. Its position wk

is used to determine the magnification factor Γθ
S . αk and γk are the cone

beam deviation angles related respectively to directions ~u and ~v.

In the case of cone beam geometry, the magnification effect

has to be taken into account, as well as the distorsion effect

depending on the position of the voxel in the field of view

(see Fig.3). In order to keep the separability property of the

footprint on the detector, these effects are compensated with

adapted scaling factors applied to the footprint in (12). For the

3D case, this gives:

F θ
k
(u) = βd

(
u

Γθ
S · δuk

− uk

)

· βd

(
v

Γθ
S · δvk

− vk

)

(13)

with (see Fig.3):

Γθ
S =

lfoc

wk

, δuk
=

1

cosαk

, δvk =
1

cos γk
(14)

Γθ
S is the magnification factor; δuk

et δvk are the distorsion

factors.

Fig.4 shows a quantification of the worst case errors due

to our approximations using cubic B-splines, compared with

the distance driven projector’s errors, in cone beam geometry.

Errors are enhanced due to approximations made to deal with

the geometric effects. However, it brings a confirmation that

our projector is more accurate than distance driven.

Therefore our projector involves much less modelization

and approximation errors than the distance driven projector.

Its only drawback is the increased number of operations

necessary to calculate the data values gθq (9), due to the larger

footprint of a given voxel. However, cubic B-splines yield

sufficient accuracy, inducing a support only 4 times larger

than that of the staircase voxel. Let us give the example of

a system where the voxels and detector pixels sampling rates

are approximately equal. Then let us consider a B-spline of

degree d. Its support is s = d + 1 in each direction; thus its

footprint impinges approximately (s+1)2 = (d+2)2 detector

pixels. Thus if we compare a cubic voxel (d = 0) with a cubic

B-spline (d = 3), the number of impinged detector pixels for

a given voxel, is now multiplied by 6.25 with respect to a

cubic voxel based projector such as distance driven. Thus the

amount of accuracy is at reasonable increasing computation
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Fig. 4. Comparison of approximation errors of the footprints, in cone beam
geometry, for our projector with cubic B-spline, and for the distance driven

projector. The detector is in simple rotation around the ~z-axis. The worst case
orientation of the detector is considered (here it is tilted with an angle of
0◦ from the horizontal plane). On (a), (c) and (d), the absolute value of the
difference between the true footprint and the model-approximated footprints
is visualized. Footprints are convolved by the detector pixel response. (a)
Illustration of footprints on the detector. (b) shows, for each projector, the
true footprint and the model-approximated footprint. (c) B-spline projector
with cubic B-splines. (d) Distance driven projector (staircase voxels).

cost. Moreover our projection scheme, as well as the staircase

voxel based approaches, is highly parallelizable, making the

computational burden issue possible to address.

The next section will study the gain of our B-spline based

projector, when applied to an iterative reconstruction process

where only a small number of projections is available.

III. RESULTS ON 2D FAN BEAM RECONSTRUCTIONS

A linear detector, linked to the source in the same frame,

is considered. The set source-detector rotates around the 2-

dimensional object of interest, acquiring the projections in a

fan beam geometry. The B-spline coefficients of the image c,

is reconstructed from the set of projections g = {gθ|θ ∈ Θ},

where Θ is the set of projection angles, by minimization of:

c = argmin
ĉ

∑

θ∈Θ

||gθ − Rθ · ĉ||2
W

︸ ︷︷ ︸

data residuals

+ µ ·Ψ(Φ · ĉ)
︸ ︷︷ ︸

regularization term

(15)

(16)

= argmin
ĉ

∑

θ∈Θ

(
gθ − Rθ · ĉ

)T
W
(
gθ − Rθ · ĉ

)
+ µ ·Ψ(Φ · ĉ)

(17)

where || · ||2
W

corresponds to the weighted least squares term.

The weighting matrix W is the inverse of the noise covariance.

This matrix is diagonal because we assume the noise to be

uncorrelated. Ψ : f 7→ Ψ(f) is a regularization operator

applied to the image in the samples space. As stated in (4),



the interpolation operator Φ, which transforms the B-spline

coefficients in samples values, can be applied using fast digital

filtering operations [15] [16] [17], as well as its inverse. Thus

the additional computational burden is negligible.

Here we use a relaxed total variation prior [13]:

Ψ(f) =

√
(
∂fk
∂x

)2

+

(
∂fk
∂y

)2

+ ǫ2 (18)

The minimization of (15) is performed with a quasi-Newton

optimization algorithm: the limited memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) method [12]. From the recon-

structed B-spline coefficients c, we obtain the reconstructed

image f by simply applying the operator Φ, to get back in the

samples space.

We have reconstructed a 256× 256 Shepp-Logan phantom,

from a set of 60 projections with 512 detector pixels, cal-

culated analytically. The sampling rate is the same for both

voxels and detector pixels. The reconstructions are performed

with both our B-spline based projector, using cubic B-splines,

and the distance driven projector, for comparison. The pre-

sented reconstructions are obtained from noiseless data first,

then from data corrupted by a non-stationary Gaussian noise,

with a signal to noise ratio approximately 3000. Different

values of the hyperparameter µ have been taken in order to

look at the effect of the regularization.

Fig.5 displays some reconstructed images. It first illustrates,

for reconstructions from noiseless data Fig.5(a), the evolution

of the tradeoff between the smoothness of the image and the

recovering of details, as a function of the hyperparameter

µ. The lower its value, the less smooth the reconstructed

image, but at the cost of increasing artifacts, due the lack of

projections (ill-posedness of the inverse problem). However

our B-spline based projector looks more robust, at decreasing

hyperparameter, than distance driven. Then, still for noiseless

data Fig.5(b), the best value of the hyperparameter µ is

found, which gives the best qualitative visual quality of the

reconstructed image. The criterion is that the image recovers

at best the most details, while being sufficiently smooth to

avoid noticeable artifacts. Once again, our B-spline based

projector leads to a much better image quality than distance

driven. The same conclusion can be made in Fig.5(c) with best

reconstructions obtained from noisy data, even though a loss

of quality is visible with both projectors.

For the noiseless case, the value of the hyperparameter

is lower for the B-spline based projector than for the dis-

tance driven projector. Hence, the regularization weight being

smaller with our method, the data residuals term (15) of

the reconstructed image has converged to a lower value.

Indeed the convergence of the reconstruction algorithm is

a tradeoff between data residuals and prior (regularization).

Thus less regularizing allows the solution to converge closer

to accordance with the data. The same data residuals can be

obtained with distance driven; the corresponding reconstructed

image is visualized in (a) for µ = 0.00001. Two conclusions

can be made from this analysis:

• A lower regularization is needed by the B-spline based

projector, to obtain the best image quality, than the distance
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(a) Noiseless data: varying hyperparameter
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(c) Noisy data (SNR ~ 3.103): best hyperparameter

Fig. 5. Reconstructions of a Shepp-Logan phantom 256×256, from a set of
60 projections with 512 detector pixels, with both the B-spline projector using
cubic B-splines and the distance driven projector. Visualization in Hounsfield
units. (a) Reconstructions from noiseless data, and for several values of the
hyperparameter µ. (b) Reconstructions from noiseless data, obtained with the
value of µ giving the best visual image quality. (c) Reconstructions from noisy
data (additional non-stationary Gaussian noise with a signal to noise ratio of
about 3000), obtained with the value of µ giving the best visual image quality.



driven projector.

• For the same accordance with the noiseless data, the B-

spline based projector generates a much better image quality

than the distance driven projector.
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Fig. 6. Profiles of the best reconstructions in Fig.5, from noiseless and noisy
data. The cut lines are indicated on the image. In black: the true image. In red:
B-spline model from noiseless data. In blue: distance driven from noiseless
data. In orange: B-spline model from noisy data. In purple: distance driven

from noisy data.

Fig.6 confirms the analysis of Fig.5 for the best recon-

structed images, from noiseless and noisy data, showing some

cut lines of the image. It illustrates the recovering of details,

compared with the true image, and proves the better accuracy

of our B-spline based projector, with and without noise. We

can see, for instance, on the horizontal profile, that the less

contrasted of the three small ellipses cut by the line is not

recovered when using the distance driven projector, while the

use of the B-spline based projector allows to detect it.

Fig.7 shows quantitative results on the reconstructions. The

root mean square error (RMSE) has been calculated on 2
regions of interest (ROI) taken on the image. RMSE has

then been normalized by the average of the ROI in the true

image. The curves Fig.7(a) and Fig.7(b) present the evolution

of the RMSE in the 2 ROIs (a given color corresponds to a

given ROI), as a function of the hyperparameter µ, for images

reconstructed from noiseless (Fig.7(a)) and noisy (Fig.7(b))

data, using both the B-spline based projector using cubic B-

splines (solid curves) and the distance driven projector (dashed

curves).

First, the convex shape of each curve illustrates the necessity

of precisely tuning µ to get a good reconstruction which suits

the truth and does not increase errors. From these curves,

it is possible to approximately find the best hyperparameter

determined in Fig.5, taking their minimum. It shows that

the RMSE, calculated on well chosen ROIs, seems to be an

appropriate metric to evaluate the quality of a reconstructed

image.

Secondly, the curves show that, for each ROI, the B-spline

based projector’s RMSE is always lower than the distance
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Fig. 7. Root mean square error in 2 regions of interest (ROI) of the
reconstructed image, normalized by the average of the ROI, for various
values of the hyperparameter µ (logarithmic scale). The ROIs are indicated
on the image, with the corresponding color on the graphs. (a) Noiseless
data. (b) Noisy data with SNR ≈ 3000. The solid curves correspond to
reconstructions with the B-spline projector, and the dashed curves correspond
to reconstructions with the distance driven projector.

driven projector’s RMSE. Thus for this given evaluation

metric, our projector shows again the best performances.

IV. CONCLUSION

In this paper, we have presented a new type of numerical

projector for iterative reconstruction in tomography. The pro-



jector is the numerical modelization of data acquisition; it is

based on the mathematical principle of the X-ray transform.

We have shown that its accuracy depends on the modelization

of the continuous image to be reconstructed; it can allow the

reduction of the angular sampling of the data without any loss

in the quality of reconstruction. The basis of functions used to

discretize the related continuous function on a grid of samples,

while keeping an underlying continuous behaviour, is then an

essential issue.

We have determined that the use of separable 3D B-splines

(compactly supported piecewise polynomials), is the ideal

tradeoff between the accuracy of the model and the computa-

tion cost, conditioned by the degree of the polynomials. Such

a basis of functions is much more adapted to the modelization

than the staircase voxels, and easier to manipulate than the

blobs.

We have developed a projector, based on the calculation

of the footprint of these functions on the detector, and its

integration on the impinged pixels. The property of B-splines

of tending to the Gaussian curve, with increasing degree

(3 or more), has been used to approximate the footprint

by a separable B-spline of identical degree on the detector.

This makes the calculation of the projections values fast and

relatively easy to implement. It also yields less approximation

errors than the distance driven projector, which uses staircase

voxels.

We have demonstrated, both in a qualitative and quantitative

way, the accuracy of our projector based on cubic B-splines,

on 2-dimensional regularized iterative reconstructions, from

noiseless and noisy simulated data, and from a small number

of projections. Reconstructions have shown a substantial gain

in image quality compared with reconstructions using the

distance driven projector.

Future work will focus on the evaluation of our projector in

the 3-dimensional reconstruction case, from real data acquisi-

tions.
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