Universite Claude Bernard

A new representatlon and projection model for tomography,

based on separable B-splines

Fabien MOMEY®®, Loic DENIS*?, Catherine MENNESSIER"®, Eric THIEBAUT?,
Jean-Marie BECKER®*, Laurent DESBAT®

“Centre de Recherche Astrophysique de Lyon - Observatoire de Lyon, Lyon, France ; b aboratoire Hubert Curien, Saint-Etienne, France :; “CPE, Lyon, France ; ITIMC-IMAG, Grenoble, France

2011 IEEE Medical Imaging Conference, Valencia, Spain

ABSTRACT

Data modelization in tomography is a key point for iterative reconstruction. The design of the projector starts with the representation of the object of interest, decomposed on a discrete
basis of functions.

Standard models of projector such as ray driven [4], or more advanced models such as distance driven [1], use simple cubic voxels, which result in modelization errors due to their
anisotropic behaviour. Moreover approximations made at the projection step increase these errors. Long, Fessler and Balter [2] reduce approximation errors by projecting the cubic
voxels more accurately. However anisotropy errors still hold. Spherically symmetric volume elements (blobs) [6] eradicate them, but at the cost of increased complexity.

We propose a compromise between these two approaches by using B-splines as basis functions. Their quasi-isotropic behaviour allows to avoid projection inconsistencies, while
conserving local influence [3] [8]. Small approximations transtorm the exact footprint (projection of the basis function) into a separable function, which does not depend on the angle of
projection, and 1s easier and faster to integrate on detector pixels. We obtain a more accurate projector, with no additional computation cost.
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We approximate the footprint of a voxel k by a separable B-spline of the same degree, scaled by
magnification and distorsion factors and centered on the projected center of the basis function. cublic B-spline
Therefore our projector consists in projecting the center of each voxel £ on the detector plane, @
calculating 1its scaling factors, and imtegrating the scaled footprint on the impacted detector pixels

response (we assume a uniform response on the pixel support).
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2. B-SPLINE PROJECTOR FOR ITERATIVE RECONSTRUCTION R2. 2D FAN BEAM RECONSTRUCTIONS
: : Hounsfield unit
A. The projector DATA PRO JECTOR Noiseless data B-spline model l
6 9 i | with ic B-splin
g RY. (CD . f) _ . o distance driven cubic B-splines distance driven Y
B-spline coefficients ] i -80.000
conversion to B-spline coeflicients 20 _ Akl o - 60.000
Z R d d ! : O e T Wi 40000
g p— U 1Y 50 e S G - 20.000
q k @ qk f f i “ o F2 4B 0.000
00 — .' iy ~20.000
- \ENA T SRS, ;..' ~40.000
with Py : (u' V)= T , (0 —uy) - TIp , (V=) N
q - ) Au/ q AV/ q ] ' ’ ~80.000
DETECTORPIXELRESPONSE "H‘H“1‘00‘“‘1‘50‘“‘2‘00‘“‘2‘50 H"““‘160““1%0‘“‘2‘00‘“‘2‘50 "“5‘0‘“‘1‘00‘“‘1%6“‘2‘00‘“‘2% -100.000
B Optlmlzatlon scheme Best quality >ame data residuals RECONSTRUCTION PARAMETERS
. : : .. . . Coe . - OBJECT 256x256
Reconstruction with a Quasi-Newton optimization algorithm, minimizing the ™ |- 60 ProJECTIONS ON 360°/
512 DETECTOR PIXELS
following criterion : Hyperparameter Noisy data (SNR ~ 3.10°) Cuts - SAME SAMPLING
100,000 00 — VOXELS/DETECTOR PIXELS
2 - - *80.0.00 - ‘ g | L
) - N I *
2 E - 40.000 E
%*50 -~ 20.000 ° - Truth
v - o B —— B-spline model (noiseless)
™ o - — distance driven (noiseless)
o - ~40.000 - | — B-spli del ( ' )
4(7’) e 0000 100 N Sspline moael (NoIsy
S - 60,000 - distance driven (noisy)
7\\\\\\\\\\\\\\\\\\\\\\\\\ —100.000 _150;‘“‘\““\““\““\““\
o0 100 150 200 250 50 100 150 200 250 N s 3 3 8B B ©
Wz —100.000 50 _ —100.000 T
REGULARIZATION BY SMOOTH TOTAL VARIATION 5 & 80000 80000 -
T 5o - - 60.000 20 -60.000 &
O n - 40.000 - - 40.000 -
CONCLUSION - N 5o - | 20.000 50 120000 3 .
We developed a new type of projector, based on B-splines as quasi-isotropic basis | @ o - 0.000 : 000 -
. . . . = O — ~20.000 00 — -20.000 &
functions. In order to be computationally easy to implement, our projector makes| 5 = - 40,000 - 000
(V)] . . N
approximations which generate less errors than those of the distance driven model. | o < * o 5° P ~
We showed its better accuracy on 2D fan beam reconstructions. =T T e T ke e E
REFERENCES [5] M. Slaney and A. Kak. Principles of computerized tomographic imaging. SIAM, Philadelphia, 1988.
[1] B. DeMan and S. Basu. Distance driven projection and backprojection in three dimensions. Physics in Medicine and Biology, 2004. [6] R.M. Lewitt. Alternatives to voxels for image representation in iterative reconstruction algorithms. Physics in Medicine nad Biology, 1992.
[2] Y. Long, J.A. Fessler and J.M. Balter. 3D Forward and Back-Projection for X-Ray CT Using Separable Footprints. IEEE Transactions on Medical Imaging, 2010. [7] L.I. Rudin, S. Osher and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D : Nonlinear Phenomena, 1992.
[3] S. Horbelt, M. Liebling, M. Unser. Discretization of the Radon transform and of its inverse by spline convolutions. IEEE Transactions on Medical Imaging, 2002. [8] P. Thévenaz, T. Blu and M. Unser. Interpolation Revisited. IEEE Transactions on Medical Imaging, 2000.

[4] P.M. Joseph. An improved algorithm for reprojecting rays through pixel images. IEEE Transactions on Medical Imaging, 1982.



