
HAL Id: ujm-00699624
https://ujm.hal.science/ujm-00699624

Submitted on 21 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computer-assisted machine-to-human protocols for
authentication of a RAM-based embedded system

Abdourhamane Idrissa, Alain Aubert, Thierry Fournel

To cite this version:
Abdourhamane Idrissa, Alain Aubert, Thierry Fournel. Computer-assisted machine-to-human pro-
tocols for authentication of a RAM-based embedded system. Mobile Multimedia/Image Processing,
Security, and Applications, SPIE 2012, Apr 2012, Baltimore, Maryland, United States. pp.Idrissa 7,
�10.1117/12.922364�. �ujm-00699624�

https://ujm.hal.science/ujm-00699624
https://hal.archives-ouvertes.fr


Computer-assisted machine-to-human protocols for authentication of
a RAM-based embedded system

Abdourhamane Idrissa, Alain Aubert and Thierry Fournel

Laboratoire Hubert Curien,CNRS UMR5516
Universite de Saint-Etienne, F-42000, Saint-Etienne, France

Universite de Lyon, F-69003, Lyon, France

ABSTRACT
Mobile readers used for optical identification of manufactured products can be tampered in different ways: with hardware
Trojan or by powering up with fake configuration data. How a human verifier can authenticate the reader to be handled
for goods verification ?

In this paper, two cryptographic protocols are proposed to achieve the verification of a RAM-based system through a
trusted auxiliary machine. Such a system is assumed to be composed of a RAM memory and a secure block (in practice
a FPGA or a configurable microcontroller). The system is connected to an input/output interface and contains a Non
Volatile Memory where the configuration data are stored. Here, except the secure block, all the blocks are exposed to
attacks.

At the registration stage of the first protocol, the MAC of both the secret and the configuration data, denoted M0 is
computed by the mobile device without saving it then transmitted to the user in a secure environment. At the verification
stage, the reader which is challenged with nonces sends MACs / HMACs of both nonces and MAC M0 (to be recomputed),
keyed with the secret. These responses are verified by the user through a trusted auxiliary MAC computer unit. Here the
verifier does not need to tract a (long) list of challenge / response pairs. This makes the protocol tractable for a human
verifier as its participation in the authentication process is increased. In counterpart the secret has to be shared with the
auxiliary unit. This constraint is relaxed in a second protocol directly derived from Fiat-Shamir’s scheme.

Keywords: machine-to-human authentication, machine integrity, challenge-response protocol

1. INTRODUCTION
Nowadays various tasks are automatically ensured off-line once the dedicated machine is verified by the user. A machine-
to-Human authentication scheme is achieved by involving the user active participation in order to be convinced of the
process integrity. In goods authentication, the proper functioning of the optical reader is verified at the opening session by
an authorized person. Even if the operating module is a secure one, the input/output channel is usually still vulnerable to
potential attacks. An attacker could intercept and manipulate the digital image on the way to the secure module then undo
the modifications when the module sends it back. An attacker can also replace the electronic core of the optical reader by
a malicious system able to simulate the behavior of the authentic one.

As in challenged Human-to-machine authentication, verification based on cryptographic key (1–3) or zero-knowledge
protocol4 can then be applied. However in these processes, the human user is passive. The question is how the verifier
can be involved in the off-line procedure for checking the authenticity of the hardware supporting the embedded system
RAM and the content to be downloaded in it. This problem concerns numerous embedded systems as systems based on
Field-Programmable Gate Array (FPGA) or microcontroller. In some FPGAs, the SRAM is configured via an internal
controller according to a bitstream initially stored in an external Non Volatile Memory (NVM). In micro-processors, a
RAM is set up by a controller unit with instructions and data which are stored in an external NVM.

In this paper we suggest an interactive off-line authentication of the embedded system (the prover) by the user (the
verifier) who is helped with a trusted computation tool. The general architecture of RAM-based embedded systems and
associated threats are reported in section 2. In section 3 two authentication protocols are described, security and reliability
are discussed.

Further author information: (Send correspondence to Thierry Fournel)
E-mail: fournel@univ-st-etienne.fr, Telephone: +33 (0)4 77 91 57 80



2. RAM DATA AUTHENTICATION AND THREATS
An embedded system is classically built from a microcontroller or/and a FPGA. A microcontroller executes an application
code which is stored in its embedded RAM memory. A FPGA is architectured according to a binary file called a bitstream
stored in its embedded RAM memory. In these cases, RAM is loaded on power-up by the content of a non volatile
memory (NVM) which contains instructions and data (forming the application code) for a microcontroller, the image of
the FPGA underlying architecture (the bitstream) for a FPGA. Therefore these data define the embedded system and their
authentication is crucial.

The main protection consists in computing a Message Authentication Code (MAC) of the data to be loaded in RAM
memory thanks to a secret key Kmac, in a secure place. The MAC is then stored in the NVM together with the genuine
data. Later the loading controller will compute a MAC of the current data in the NVM and compare the computed MAC
to the stored one. If the MACs are different, the loading controller will not load data into the RAM memory. In FPGAs,
the loading controller corresponds to a specific secure area containing a MAC computation function plus a dedicated
secret key. It allows the data loading from the external NVM (to the embedded RAM): the User Logic (Figure 1 and
2). In microcontrollers, the program bootloader can play the role of the loading controller by computing MACs and
downloading from the NVM.

Concerning FPGAs, the specific area is called Configuration Logic in5 or Secure update mechanism in.6 The latest
Actel devices2 and series 6 Xilinx FPGAs (Spartan6 and Virtex6)1 include cryptographically secure mechanisms to ensure
integrity. Actel implements an AES block for integrity checking (AES-based MAC): a MAC is included in the bitstream
and the configuration (or loading) controller logic checks it before starting the design. Series 6 of Xilinx FPGAs include
an integrity checking engine in the static logic. For example, Virtex-61 devices have an on-chip bistream keyed-Hash
Message Authentication Code (HMAC) using algorithm SHA-1. During the configuration process, the HMAC/SHA256
engine computes the MAC and compares it with the MAC in the bitstream. If the two MACs match, the configuration
goes to completion through the startup cycle. If the two MACs do not match, the controller configuration logic disables
the configuration interface, blocking any access to the FPGA.

Concerning microcontrollers, in Maxim Zatara ZA9L1,3 secure 32-Bit ARM microcontrollers, the authenticity of the
application code is first cryptographically verified by applying SHA256 on power up to ensure that attackers cannot insert
their own application code.

However, the mechanisms mentioned above are not resistant to the replay of an old version of the data having security
faults. It is the reason why the identification number of the version has to be taken into account. Badrigans et al have
proposed in6 a FPGA architecture which prevents replay attacks.

In all the embedded systems previously described, the human verifier remains passive and relies on the self-authentication
of the system on power-up. Unfortunately a user without external communication is not protected against a block substi-
tution i.e. replacing the secure block with another one and simultaneously changing the content of the NVM to control
the embedded system. Without an external communication with a trusted authority or a physical inspection of the embed-
ded system, a human verifier cannot detect a block substitution. We suggest to detect such a tampering and authenticate
embedded systems by making the verifier an active user through a challenge/response protocol then through an adaptated
Fiat-Shamir’s zero-knowledge protocol.

3. AUTHENTICATION PROTOCOL BY A HUMAN VERIFIER
Let us now consider the architecture shown in Figure 1. It is formed with a circuit composed of a secure block defined by
the system configurable RAM and the associated controller. The modules that do not contribute to the configuration of
embedded systems are not represented. The secure block can be a FPGA as shown in Figure 2 or a configurable micro-
controller. In such an architecture, all the keys stored in the configuration controller together with the associated functions
are securely protected. Besides, all the connections with the configuration controller are unsecure as the connections to
the RAM, I/O (Input/Output interface) and NVM.



Figure 1. Architecture of a RAM-based embedded system Figure 2. Configuration of a FPGA chip

3.1 A first challenge-response protocol
Here the embedded system is assumed to have an unique secret key, Kmac in its configuration controller. We propose
to use an additional secret denoted as S, also stored in the configuration controller. This secret is randomly chosen by
the user at the registration phase to be achieved in a safe environment i.e. without any passive or active threat. During
this phase, the MAC value of both the configuration data stored in the NVM and the secret, M0 is computed by the
configuration controller then forwarded to the user.

Value M0 that is used as the fingerprint of the RAM content of the circuit has to be retrieved at the verification phase
by requesting to the configuration controller the computation of the current value of the MAC.

In this way, the user can verify both the presence of the secret and the integrity of the RAM content by comparing
the current MAC, M ′

0 to the original one, M0. Such a protocol makes use of symmetric cryptographic functions already
implemented in some embedded systems that seek to verify configuration contents - e.g. Actel Fusion2 and Virtex61 - by
computing a MAC value of the configuration data (with either a symmetric encryption function or a hash function).

However, MAC value M0 must not be divulged to force its subsequent re-computation by the configuration controller
and to avoid a replay attack. Challenges/responses can therefore be suggested to convince the verifier without divulgation.
Challenges can be composed with nonces and responses with both nonces and MAC values. To be tractable by a human
verifier (in a reasonable time), MAC verifications will be achieved for him by an external, trusted computer.

3.1.1 Registration phase

The enrolment phase is as follows (Figure 3):

1. User: For each registration, the user randomly selects a secret S having the same bit length as Kmac, and sends
secret S to the configuration controller.

2. Embedded System: Upon receiving user’s secret S, the embedded system stores it in its secured area (configuration
controller), reads the configuration data in the NVM and computes MAC value (M0 = MacKmac(S∥”NVM data”))
of both with its MAC key Kmac. Afterwards, the embedded system returns the MAC value M0 to the user.

3.1.2 Verification Phase

Here we neglect the risk of denial of service i.e. any deliberate or accidental modification of data stored in the embedded
system.

The human verifier who knows secret S is helped with an external computer where are embbeded secret S and an
implementation of the same MAC function as that of the embbeded system. This external computer is assumed to be
non-corrupted. In particular, it does not disclose any information about secret S.

Verification phase takes place as follows (schematized on Figure 3).

1. User: The user sends a random nonce Nus to the embedded system through the I/O interface.



Figure 3. Authentication protocol based on MAC calculation

2. Embedded system: After reception, the configuration controller initiates the reading of the NVM and computes
MAC M

′

0 then the MAC value of a new nonce Nc concatenated with M
′

0 and Nus, denoted as M
′

S where secret S
is used as MAC key. The embedded system returns nonce Nc and MAC value M

′

S to the user.

3. User: The user inputs MAC value M0, nonces Nus, Nc and secret S into the trusted tool.

4. Trusted tool: The MAC value of the inputs, MS is computed by the trusted tool then displayed.

5. User: The user checks if MAC values MS and M
′

S are the same (”Yes”) or not (”No”).

The process is iterated a number of times such that the user can detect a tampering of the embedded system by
checking that a ”No” is not so rare.

3.1.3 Discussion about security

The protocol described in this paper like the ones mentioned in literature1, 2, 5, 6 is based on the trust and security of the
configuration controller. We assume that it is safe and always computes a correct value of MAC (without storing the MAC
values in the circuit), i.e. M

′

0 corresponds to the MAC value obtained from the current NVM data. Nonce values Nus are
used such that only the knowledge of S can allow the computation of MAC values M

′

S .

Between two changes of the secret by the user (by performing a new registration), secret S has to be input into the
external tool (for MAC computation). Thus, there is a risk of disclosure of secret S. To avoid sharing user’s secret with
an external device, we propose below to modify accordingly Fiat-Shamir’s zero-knowledge protocol.

3.2 Zero-Knowledge Authentication
The second is to adapt Fiat-Shamir’s authentication protocol, by describing a zero-knowledge protocol between config-
uration controller and the human user. And in this case the zero-knowledge protocol allows the user not to share secrets
with the external trusted calculation tool. The calculator will just be used to perform arithmetic operations needed to
perform the verification.

3.2.1 Fiat-Shamir Authentication Protocol

In,4 Fiat and Shamir propose an interactive zero-knowledge protocol based on the difficulty of extracting modular square
roots when the factorization of n is unknown. Using this property, the protocol allows a Verifier V to check the authenticity
of a Prover P , without the prover divulges a secret to the verifier. The assumptions and parameters of the authentication
scheme is indicated below.

Parameters:



• n = p · q, where p and q are secret prime number.

• A public integer k.

• Secret values (s1, · · · , sk), such that si < n, and gcd(si, n) = 1 for all i.

• Public values (y1, · · · , yk) such that yi = x2
i (mod n)

Assumptions:

• The values n, (y1, · · · , yk) are public, i.e. the verifier knows n and (y1, · · · , yk).

• The integers (s1, · · · , sk) are secret, i.e. only the prover P knows (s1, · · · , sk) values.

The protocol has the following items:

1. Prover: P generates a random integer r, with r < n, and sends to V : c = r2 (mod n).

2. Verifier: V sends to P a binary vector

B = (b1, · · · , bk) ∈ {0, 1}k.

3. Prover: The prover P sends to V :

u =
r

sb11 · · · sbkk
(mod n).

4. Verifier: V verifies that
c = u2 · yb11 · yb22 · · · ybkk (mod n).

The protocol is repeated with different values for r and B until the verifier is convinced that P knows the secret values
(s1, · · · , sk).

The correctness and security of the protocol is proved in.4

We describe below how to adapt this zero-knowledge protocol to the machine-to-human authentication of a RAM-based
embedded system.

In addition to the MAC function, the derived protocol will require arithmetic functions in the configuration controller.
The value of module n must be defined and stored safely in the configuration area of the circuit, however it is not
necessary for either the user or the circuit to know the factorization of n. Similarly parameter k,, the number of secrets to
be calculated must be provided and fixed in advance.

3.2.2 Registration Phase

During the registration phase of the protocol described in the previous section 3.1 the user must provide his secret to the
trusted tool (for MAC computation). Here, the idea is to define secret values from the NVM content and user’s secret S.
Only the public parameters are know by the user.

The registration phase is as follows:

1. User: With the same principle like the protocol described in section 3.1, for each registration process, the user picks
a random secret S (here user’s secret can be any bitstring) and sends S to the circuit.

2. Embedded System: Upon receiving user’s secret S, the configuration controller reads the NVM content and com-
putes si and yi for all i ∈ {1, · · · , k}, yi :

si = MacKmac(S∥”NVM contents”∥i), (1)
yi = s2i (mod n). (2)



While gcd(si, n) ̸= 1, for some i, the process is restarted (the user picks a value for S). The system stores secret S in
its secure area and returns public values (y1, · · · , yk) to the user.

Data S, n and (y1, · · · , yk) constitute the informations that will allow the verification phase of the protocol. The value
of S must be kept secret until a new registration phase in order to authenticate the circuit and to prevent the replay of an
old NVM content. The user must prevent the public (y1, · · · , yk) values from change.

3.2.3 Verification Phase

The verification consists in checking if the imprint of the contents of the NVM corresponds to that computed during the
registration phase, (y1, · · · , yk) (see Equation (1)). Here, the prover P is the configuration controller of the embedded
system and the verifier V is the human user. So the user needs an trusted external tool to calculate modular multiplications.
This trusted tool can be any reliable system to calculate the multiplication modulo n. In contrary to the verification of
above protocol based on the MAC calculation, no secret informations are shared with the calculator. Verification takes
place as follows :

1. Embbeded system: The authentication process starts at RAM configuration, The configuration controller reads the
configuration from the NVM then regenerates the secret (s1, · · · , sk) with secret S and key Kmac

2. User ↔ Embbeded system: With the following exchanges, the user aided by a Trusted tool , checks the computed
values of (s1, · · · , sk) relative to n and (y1, · · · , yk).

(a) Embbeded system: The configuration controller generates a random integer r, with r < n, and sends to the
User c = r2 (mod n).

(b) User: The user choses and sends to Embbeded system a binary vector B = (b1, · · · , bk) ∈ {0, 1}k.
(c) Embbeded system: computes and returns to user u = r

s
b1
1 ···sbkk

(mod n).

(d) User: The user inputs value u, the binary vector B, the module n and the check values (y1, · · · , yk) into the
trusted tool.

(e) Trusted tool: With the inputs data, a number c′ is computed by the trusted tool then displayed to the user.

c′ = u2 · yb11 · yb22 · · · ybkk (mod n).

(f) User: The user checks if MAC values c and c′ are the same (”Yes”) or not (”No”).

The process (2a to 2f) is iterated a number of times such that the user can detect a tampering of the embedded
system by checking that a ”No” is not so rare.

4. CONCLUSION
In this paper we suggest two protocols for an off-line machine-to-human authentication of RAM-based embedded sys-
tems. The user is active even if he is helped with a trusted computing tool. This tool allows MAC computations in the
first protocol, modular multiplications in the second one. The last protocol avoids to share a secret with the tool thanks
to a Fiat-Shamir zero-knowledge scheme. We are working to suppress the trusted computer in order to get an even more
active user participation. Such a scheme will have to be adapted to the human capabilities and offer a certain resistance
to machine cryptanalysis.

ACKNOWLEDGMENT
The present work is funded by Region Rhône-Alpes (France) in the frame of Cluster ISLE (Informatique, Signal et
Logiciel Embarqué). The authors would like to thank Prof. Roland Gillard but also Signoptic Technologies for their
constant encouragement.



REFERENCES
[1] Xilinx Inc., UG360: Virtex-6 FPGA Configuration user guide (November 2010).
[2] Actel Corp., “Fusion and extended temperature fusion fpga fabric user’s guide,” (July 2010).
[3] Maxim Integrated Products, Inc, ZA9L1: Zatara High-Performance, Secure, 32-Bit ARM Microcontroller. maxim-ic

(march 2009).
[4] Fiat, A. and Shamir, A., “How to prove yourself: Practical solutions to identification and signature problems,” in [Ad-

vances in Cryptology - CRYPTO’86], Odlyzko, A., ed., Lecture Notes in Computer Science 263, 186–194, Springer
Berlin / Heidelberg (1987).

[5] Drimer, S. and Kuhn, M., “A protocol for secure remote updates of fpga configurations,” in [Reconfigurable Comput-
ing: Architectures, Tools and Applications ], Becker, J., Woods, R., Athanas, P., and Morgan, F., eds., Lecture Notes
in Computer Science 5453, 50–61, Springer Berlin / Heidelberg (2009).

[6] Benoı̂t, B., Reouven, E., and Lionel, T., “Secure fpga configuration architecture preventing system downgrade,” in
[Field-Programmable Logic and Applications], 317–322 (2008).


