
HAL Id: ujm-00712875
https://ujm.hal.science/ujm-00712875v1

Submitted on 28 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient implementation of a CCA2-secure variant of
McEliece using generalized Srivastava codes
Pierre-Louis Cayrel, Gerhard Hoffmann, Edoardo Persichetti

To cite this version:
Pierre-Louis Cayrel, Gerhard Hoffmann, Edoardo Persichetti. Efficient implementation of a CCA2-
secure variant of McEliece using generalized Srivastava codes. The 15th IACR International Con-
ference on Practice and Theory of Public-Key Cryptography - PKC 2012, May 2012, Darmstadt,
Germany. pp.138-155. �ujm-00712875�

https://ujm.hal.science/ujm-00712875v1
https://hal.archives-ouvertes.fr

Efficient implementation of a CCA2-secure variant of

McEliece using generalized Srivastava codes

Pierre-Louis Cayrel∗ Gerhard Hoffmann† Edoardo Persichetti‡

Abstract

In this paper we present efficient implementations of McEliece variants using quasi-dyadic
codes. We provide secure parameters for a classical McEliece encryption scheme based on
quasi-dyadic generalized Srivastava codes, and successively convert our scheme to a CCA2-
secure protocol in the random oracle model applying the Fujisaki-Okamoto transform. In
contrast with all other CCA2-secure code-based cryptosystems that work in the random
oracle model, our conversion does not require a constant weight encoding function. We
present results for both 128-bit and 80-bit security level, and for the latter we also feature
an implementation for an embedded device.

1 Introduction

The McEliece and Niederreiter public-key encryption schemes are based on error-correcting
codes. One drawback are the large public keys. There have been few implementations reported;
we cite for instance [29] and [30] for 32-bit software implementations. An alternative scheme,
called HyMES (Hybrid McEliece cryptosystem), was implemented by Sendrier and Biswas [11],
combining ideas from both the previous schemes.
Recently, implementations of the McEliece and Niederreiter cryptosystems for embedded devices
have been presented, respectively by Eisenbarth et al. in [13] and by Heyse in [18], with the
disadvantage of an external memory requirement for storing the key. A first proposal to deal
with this issue from an implementational point of view is to make use of the quasi-dyadic variant
of Misoczki and Barreto [25]. This was done by Heyse in [19], along with the extension to a
CCA2-secure protocol. Unfortunately, the fields underlying the Goppa codes chosen are still
too big to fit on the flash memory of the embedded device and this has repercussions in the
speed of the implementation, since the use of tower field arithmetic becomes necessary.
In our paper, we provide an alternative construction based on the more general framework of
generalized Srivastava codes described by Persichetti in [27]. We then convert the encryption
scheme into a CCA2-secure protocol with the help of the Fujisaki-Okamoto transform [17]. To
the best of our knowledge, a scheme based on this family of codes has never been implemented
before; moreover, we use McEliece with a twist, and we don’t require any constant weight
encoding function [32] for our conversion. This is also a novelty, and it allows to simplify the
construction and save computational costs at the same time. The finite fields in use are much
smaller than previous proposals, and fit completely on the flash memory, with the result that
our implementation is much faster.
We note that there exist schemes, such as Dowsley et al. [12] and Freeman et al. [22],

∗Université Jean Monnet, Saint-Etienne, France. Email: pierre.louis.cayrel@univ-st-etienne.fr
†Technische Universität Darmstadt, Germany. Email: hoffmann@mathematik.tu-darmstadt.de
‡University of Auckland, New Zealand. Email: e.persichetti@math.auckland.ac.nz

1

that provide CCA2-secure encryption based on coding theory in the standard model, but these
schemes are completely impractical.
The paper is organized as follows: in Section 2 the McEliece and Niederreiter encryption schemes
are introduced, along with an overview of constructions based on structured matrices. Security
definitions such as IND-CCA2 and their instantiations are discussed in Section 3, and the
technical details about the implementations with the respective timings are provided in Section
4, both for a C++ code, and for implementation on an embedded device. Finally, we conclude
in Section 5.

2 Code-based public-key encryption schemes

2.1 The McEliece cryptosystem

The first cryptosystem based on coding theory was introduced in 1978 by Robert J. McEliece
[23] and, for an appropriate choice of parameters, is still unbroken. In the original proposal,
binary Goppa codes are used as a basis for the construction, and the security comes from the
hardness of the General Decoding Problem (GDP).

Definition 1 (GDP) Let C be an [n, k] linear code over Fq and let y be a vector of F
n
q .

Find the codeword closest to y, i.e. find c ∈ C such that d(c, y) is minimal.

This corresponds to correcting a certain number of errors occurred on the codeword c, repre-
sented by an error vector e, that is y = c+ e. A unique solution exists if the weight of e is less
than or equal to w = ⌊d−1

2 ⌋, where d is the minimum distance of the code C.
This problem is well known and was proved to be NP-complete [7]. Moreover, GDP is believed
to be hard on average, and not just on the worst-case instances.
The general framework proceeds as follows:

Key Generation: Pick a k × n generator matrix G for a w-error correcting linear code with
an efficient decoding algorithm over the finite field Fq, a k× k invertible matrix S and an n×n
permutation matrix P at random, then compute G′ = SGP , which is another valid generator
matrix. The private key consists of G,S, P , and the public key is G′.The system parameters
n, k, w are also public.

Encryption: To encrypt a plaintext x ∈ F
k
q , compute the corresponding codeword xG′ and

add a random error vector e of weight at most w, obtaining the ciphertext y = xG′ + e.

Decryption: Given a ciphertext y, calculate yP−1 = xG′P−1 + eP−1 = xSG + eP−1, and
since the weight of eP−1 is still the same, it is enough to apply the decoding algorithm for the
code to retrieve xS and consequently x.

The other computational assumption underlying the security is that the k × n matrix G′ so
obtained is computationally indistinguishable from a uniform matrix of the same size, hence an
attacker that does not know the private key is faced with solving GDP.

Remark The encryption process is dominated by the cost of computing xG′, which requires
at most k × n field multiplications. Hence this is fast. On the other hand, decryption requires
performing a decoding algorithm and is not usually so fast. Therefore, McEliece is most suitable
for applications where encryption is required to be fast. This is analogous to RSA using small
encryption exponents.

2

2.2 The Niederreiter cryptosystem

A first alternative version of the McEliece cryptosystem has been proposed by Niederreiter [26]
in 1986, and has been proved to be equivalent in terms of security. It is often considered as a
“dual” version, as the trapdoor is given by the parity-check matrix rather than the generator
matrix. The underlying hard problem is the Syndrome Decoding Problem.

Definition 2 (SDP) Let H be an r × n matrix over Fq, s a vector of F
r
q and w > 0.

Find a vector e in F
n
q of weight ≤ w such that HeT = s.

If H is the parity-check matrix for an [n, k] linear code C, then r = n − k and it is immediate
to see that the two problems are equivalent: in fact, for y = c+ e we have HyT = HcT +HeT

but HcT = 0 since c is a codeword so HyT = HeT = s, which means that SDP in this case
corresponds, again, to finding an error vector of weight less or equal to w.
This is a description of Niederreiter’s scheme:

Key Generation: Pick an (n − k) × n parity-check matrix H for a w-error correcting linear
code with an efficient decoding algorithm over the finite field Fq, an (n− k)× (n− k) invertible
matrix S and an n × n permutation matrix P at random, then evaluate H ′ = SHP , which is
another valid parity-check matrix. The private key consists of H,S, P , and the the public key
is H ′.The system parameters n, k, w are also public.

Encryption: A plaintext here is a vector e ∈ F
n
q of weight at most w; to encrypt, compute the

corresponding syndrome, obtaining the ciphertext y = H ′eT .

Decryption: Given a ciphertext y, calculate first S−1y = HPeT , and then apply the decoding
algorithm for the code to retrieve PeT and consequently e.

2.3 Structured matrices

Definition 3 Given a ring R (in our case the finite field Fqm) and a vector h̄ = (h0, . . . , hn−1) ∈
R

n, the dyadicmatrix ∆(h̄) ∈ R
n×n is the symmetric matrix with components ∆ij = hi⊕j , where

⊕ stands for bitwise exclusive-or on the binary representations of the indices. The sequence h̄
is called its signature. Moreover, ∆(t, h̄) denotes the matrix ∆(h̄) truncated to its first t rows.
Finally, we call a matrix quasi-dyadic if it is a block matrix whose component blocks are t× t
dyadic submatrices.

If n is a power of 2, then every 2k × 2k dyadic matrix can be described recursively as

M =

(

A B
B A

)

where each block is a 2k−1 × 2k−1 dyadic matrix (and where any 1 × 1 matrix is dyadic).

Definition 4 Given two sequences x̄ = (x1, . . . , xn), ȳ = (y1, . . . , yn) ∈ F
n
q , a Generalized Reed-

Solomon (GRS) code of order ℓ is defined by a parity-check matrix related to the Vandermonde
form, i.e. the matrix with components Hij = yjx

i−1
j :

H =

y1 . . . yn

y1x1 . . . ynxn

...
...

...

y1x
ℓ−1
1 . . . ynx

ℓ−1
n

.

3

If the resulting code is then restricted to Fq it is called an Alternant code.

Definition 5 For m,n, s, t ∈ N and a prime power q, let ᾱ = (α1, . . . , αn), w̄ = (w1, . . . , ws) be
n + s distinct elements of Fqm , and (z1, . . . , zn) be nonzero elements of Fqm . The Generalized
Srivastava (GS) code of order st and length n is defined by a parity-check matrix of the form:

H =

H1

H2
...
Hs

where each block is

Hi =

z1
α1 − wi

. . .
zn

αn − wi

z1
(α1 − wi)2

. . .
zn

(αn − wi)2
...

...
...

z1
(α1 − wi)t

. . .
zn

(αn − wi)t

.

The parameters for such a code are the length n ≤ qm−s, dimension k ≥ n−mst and minimum
distance d ≥ st+ 1.
GS codes are part of the family of Alternant codes, and therefore benefit of an efficient decoding
algorithm. More information about this class of codes can be found in [21, Ch. 12, §6].

2.4 Secure parameters

Both the previous schemes share some common traits: a very fast and efficient encryption pro-
cedure, and very big public keys. Our proposal to deal with these issues is to use structured
codes, and in particular, quasi-dyadic codes. See Appendix B for a summary of the key gener-
ation process.
Misoczki and Barreto in [25] give an assessment of the hardness of decoding quasi-dyadic codes,
providing a reduction to the Syndrome Decoding Problem.
Keeping in mind the scope of the paper, the parameters proposed in [27, Table 3] seem to fit
our proposal best; we report the table here for completeness.

Table 1: Quasi-dyadic GS codes [27, Table 3]. The column “Size” indicates the size of the public key,
while in the column “Security level” are reported the approximate cost of general decoding attacks
(log

2
of binary operations).

Base Field m n k s t Errors Size (bytes) Security level1

F25 2 992 416 25 9 144 4680 128
F24 3 768 432 24 7 56 4536 80
F25 2 512 256 24 23 64 2560 80

1http://www2.mat.dtu.dk/people/C.Peters/isdfq.html

4

3 CCA-secure schemes

Until now, we have been considering only the weakest notion of security for a public-key en-
cryption scheme, that is, One-Way Encryption (OWE). The following are formal definitions of
public-key encryption and one-way security.

Definition 6 A Public-Key Encryption (PKE) scheme consists of a 6-tuple (K,P, C,G, E ,D)
defined as follows:

• K = Kpubl ×Kpriv is the key space.

• P is the set of messages to be encrypted, or plaintext space.

• C is the set of the messages transmitted over the channel, or ciphertext space.

• G is a probabilistic key generation algorithm that takes as input a security parameter 1δ

and outputs a public key pk ∈ Kpubl and a private key sk ∈ Kpriv.

• E is a (possibly probabilistic) encryption algorithm that receives as input a public key
pk ∈ Kpubl and a plaintext x ∈ P and returns a ciphertext ψ ∈ C.

• D is a deterministic decryption algorithm that receives as input a private key sk ∈ Kpriv

and a ciphertext ψ ∈ C and outputs either a plaintext x ∈ P or the failure symbol ⊥.

Definition 7 (One-Way) A One-Way adversary is a polynomial-time algorithm A that takes
as input a public key pk ∈ Kpubl and a ciphertext ψ ∈ C. We say that a PKE is One-Way Secure
if the probability of success of any adversary A is negligible in the security parameter, i.e.

Pr[pk ←− Kpubl, x←− P : A(pk, Epk(x)) = x] ∈ negl(δ)

The standard definitions for Indistinguishability, and the attack models CPA and CCA2 are
given in Appendix D.

3.1 CCA2 security conversions

There are standard ways to obtain an IND-CCA2 secure encryption scheme from one that only
has OW-CPA, for example the Fujisaki-Okamoto transform [17]. The construction achieves
CCA2-security by integrating an asymmetric encryption scheme with a symmetric scheme.

Definition 8 A Symmetric Encryption (SE) scheme consists of a 5-tuple (K,P, C, E ,D) defined
as follows:

• K is the key space.

• P is the set of messages to be encrypted, or plaintext space.

• C is the set of the messages transmitted over the channel, or ciphertext space.

• E is a deterministic encryption algorithm that receives as input a key χ ∈ K and a plaintext
x ∈ P and returns a ciphertext ψ ∈ C.

• D is a deterministic decryption algorithm that receives as input a key χ ∈ K and a
ciphertext ψ ∈ C and outputs a plaintext x ∈ P.

The symmetric encryption equivalent of the indistiguishability property is called Find-Guess;
see again Appendix D for the definition.

The Fujisaki-Okamoto conversion requires an additional property of the encryption scheme
called γ-uniformity. We define it here.

5

Definition 9 Let Π be a PKE defined as above and let’s call R the set where the randomness
to be used in the (probabilistic) encryption is chosen. For given (pk, sk) ∈ K, x ∈ P and a
string y, we define

γ(x, y) = Pr[r
$
←− R : y = Epk(x, r)]

where the notation Epk(x, r) makes explicit the role of the randomness r. We say that Π is
γ-uniform if, for any (pk, sk) ∈ K, any x ∈ P and any y, γ(x, y) ≤ γ for a certain γ ∈ R.

Table 2: The Fujisaki-Okamoto conversion. H1 and H2 are hash functions.

Encryption of x Decryption of ψ

σ
$
←− PPKE ψ := (ψ1||ψ2)

r := H1(σ, x) σ̂ := DPKE
sk (ψ1) (return ⊥ if decryption fails)

ψ1 := EPKE
pk (σ, r) x̂ := DSE

H2(σ̂)(ψ2) (return ⊥ if decryption fails)

ψ2 := ESE
H2(σ)(x) r̂ := H1(σ̂, x̂)

if EPKE
pk (σ̂, r̂) == ψ1 return x := x̂

return ψ := (ψ1||ψ2) else return ⊥

In a successive paper [20], Kobara and Imai proposed three alternative constructions in a similar
fashion, tailored specifically for the McEliece cryptosystem rather than a general OWE encryp-
tion scheme. The biggest contribution of the new constructions is that the amount of overhead
data (i.e. difference between the bit-length of the ciphertext and the bit-length of the plaintext)
is considerably reduced.
While this is certainly an important issue for some applications, in the common cryptographic
practice it will never constitute a serious concern. In fact, the aim of public key cryptography is
not to encrypt a whole, large plaintext, but rather to encrypt just a small (e.g. 128 or 256 bits)
key for a more efficient symmetric scheme, that will be then used to encrypt the message. From
a computational point of view the Kobara-Imai encryption process seems to be more expensive;
in fact, the whole construction is rather complex.

Table 3: The Kobara-Imai hybrid conversion γ for the McEliece (McE) public-key encryption scheme.
H is a hash function, Gen a random number generator, Conv a constant weight encoding function and
Const a (predetermined) public constant.

Encryption of x Decryption of ψ

r
$
←− {0, 1}∗ ψ := (y5||y

′)
y1 := Gen(r)⊕ (x||Const) y3 := DMcE

sk (y′)
y2 := r ⊕H(y1) y3G

′ ⊕ y′

(y5||y4||y3) := (y2||y1) y4 := Conv−1(z)
z := Conv(y4) (y2||y1) := (y5||y4||y3)

r := y2 ⊕H(y1)
(x̂||Const′) := y1 ⊕Gen(r)
if Const′ == Const return x := x̂

return ψ := (y5||E
McE
pk (y3, z)) else return ⊥

6

Note that the Fujisaki-Okamoto decryption process includes an encoding operation in the
final check. This makes decryption slower. The cost of the process, though, is still dominated by
the decoding operation rather than the matrix-vector multiplication. Moreover, as we already
remarked, we argue that the distinctive feature of the McEliece scheme is the fast encryption
process, and the Fujisaki-Okamoto conversion preserves fast encryption better than the Kobara-
Imai approach.

3.2 Applying Fujisaki-Okamoto to McEliece

We give here a new way to use McEliece together with the Fujisaki-Okamoto transform. Previous
approaches always needed a constant weight encoding function to convert H1(σ, x) into an error
vector. Our idea is to swap the message and the error in the McEliece scheme, with a technique
similar to the one used by Micciancio in [24]. This means that we interpret EMcE

G′ (x, r) = rG′+x,
encoding the message in the error vector rather than in the codeword. This is possible because,
unlike other PKE’s, the decryption process of McEliece, consisting mainly of decoding, returns
both x and r, allowing to recover, in addition to the plaintext, also the randomness used. With
this simple trick, we avoid having to use a (costly) constant weight encoding function and we
simplify the encryption process considerably.
For simplicity we take the symmetric encryption scheme to be the one-time pad with an
ephemeral key generated as H2(σ) where H2 is a random oracle with arbitrary length out-
put. This symmetric encryption scheme satisfies the Find-Guess security property. In practice,
one might use a block cipher in CBC mode.

Table 4: The Fujisaki-Okamoto transform applied to McEliece. Wn,w is the set of words of length n
and weight w, i.e. the usual space R for the McEliece PKE.

Encryption of x Decryption of ψ

σ
$
←−Wn,w ψ := (ψ1||ψ2)

r := H1(σ||x) σ̂ := DMcE
G (ψ1) (return ⊥ if decoding fails)

ψ1 := rG′ + σ x̂ = H2(σ̂)⊕ ψ2

ψ2 := H2(σ)⊕ x r̂ := H1(σ̂||x̂)
if r̂G′ + σ̂ == ψ1 return x := x̂

return ψ := (ψ1||ψ2) else return ⊥

The following lemma is fundamental to prove that our scheme enjoys the γ-uniformity
required by the conversion.

Lemma 1 The McEliece encryption scheme described above is γ-uniform for γ =
1

qk
.

Proof Let G′ be a public key that is a generator matrix for the code C; in our setting, y is a
generic string in F

n
q . Then clearly:

γ(σ, y) = Pr[r
$
←− F

k
q : y = rG′ + σ] =

0 if y − σ /∈ C

1

qk
if y − σ ∈ C

and that concludes the proof. △

7

Theorem 1 If the assumptions of indistinguishability and decoding hardness of the McEliece
PKE hold, the encryption scheme described in Table 4 is IND-CCA2 secure.

Proof The scheme enjoys one-way security because of the computational assumptions in the
hypothesis. Moreover, Lemma 1 provides the γ-uniformity as required. Finally, the symmetric
scheme used (one-time pad) satisfies the required security property (Find-Guess). It is then
possible to apply [17, Th. 12]. △

4 Efficient implementation

The implementation was done in C++ and is based on the library SBCrypt (Syndrome-Based
Cryptography Library) by Barreto, Misoczki and Villas Boas [3].
We subsequently converted our code to run on an embedded device, namely the microcontroller
ATxmega256A3 from the AVR XMEGA family. It has 264 Kbytes of Flash memory, 16 Kbytes
of SRAM memory and is running at a clock frequency of 32 MHz.
To represent the finite fields we used exponential/antilog tables [21, Ch. 4, §5], which is possible
as our extension fields are small enough to fit completely in the available memory (apart from
the first code, for which the private trapdoor would be too big). This is a key feature of our
scheme and one of the main reasons to choose GS codes over Goppa codes. In fact, when using
GS codes, it is possible to choose secure parameters even for codes defined over relatively small
extension fields. See Appendix C for a summary of the security discussion. More information
can be found in [27].
As for the hash functions H1 and H2, we opted for the Keccak family [10], one of the five
remaining SHA-3 finalists, with assigned output length equal to k, in the first instance, or equal
to the plaintext length (128 bits in our case), in the second. Its flexibility also allows for using
it as stream cipher, and we deployed it for randomly choosing error vectors of weight w.
The procedure to generate error vectors for encryption is as follows: at first, the error vector
is initialized to zero. Next, we ask Keccak for β = ⌈log2 n⌉ bits and interpret the result as an
index into the error vector. If the interval is greater than n then we reject and re-sample. Now,
in case this index is still a zero entry, we ask Keccak for additional bits to be read as a field
element. Otherwise, we ask Keccak for the next bits to be interpreted as the next index to be
examined. This simple procedure is iterated until the error vector has the desired weight.
It is clear that this process samples uniformly from Wn,w.

4.1 Results

The test results for the C++ code have been executed on an Intel(R) Core(TM) 2 Duo CPU
E8400@3.00GHz running Ubuntu/Linux 2.6.32, where the source has been compiled with gcc
4.4.3. Similar results have been obtained using the Intel compiler icpc/icc.
As for the embedded microcontroller, the code has been simulated on AVR Studio 5.0 [1].

4.1.1 McEliece based on GS codes

We have measured two different operations: the encoding step xG + e for x ∈ F
k
q and the

decoding of a ciphertext y ∈ F
n
q . Results are presented in Table 5.

8

Table 5: Profiling results for McEliece using GS codes. The timings are expressed in milliseconds (ms).

Code Name Base Field m n k s t Errors Encoding Decoding

A F25 2 992 416 25 9 144 0.287 5.486
B F24 3 768 432 24 7 56 0.179 1.578
C F25 2 512 256 24 23 64 0.093 1.234

It is easy to see that the decoding process dominates the runtime.

The following tables report the results obtained when running the same operations on the
microcontroller, for the last two codes. The costs displayed are in clock cycles; for a conversion
to the standard time units, it is enough to keep in mind that the device runs at 32MHz, hence
we have 32 million cycles per second.

Table 6: Details of the costs of the encryption and decryption steps for codes B and C.

Operation Code B Code C

Generate error vector e 313,114 316,568
Load the plaintext x 4,313 2,553
Encode xG 3,418,292 1,603,854
Add e 8,818 5,944

Encoding total 3,744,537 1,928,919

Operation Code B Code C

Compute syndrome HyT 6,910,742 5,440,245
Solve key equation 955,597 1,192,400
Compute error positions 2,061,066 1,571,689
Compute error values 611,898 794,463
Correct the errors 8,641 5,121

Decoding total 10,547,944 9,003,918

Note on decoding In our scheme, we have implemented a standard alternant decoder (see
for example [21, Ch. 12, §9]). That consists of extrapolating the key equation from the syn-
drome and then solve it and compute the error positions as the roots of the error locator
polynomial. To find the roots, we use the Horner scheme in the sense that we directly evaluate
the polynomial on the support. More sophisticated root-finding algorithms are available, for
instance Berlekamp’s trace algorithm [6]. However, our codes are punctured codes, and, as also
stated in [19], Berlekamp’s trace algorithm is not designed for such a case. Moreover, although
Berlekamp’s algorithm does find the roots of the polynomial, there is an additional step neces-
sary to find them in the support sequence, which is not the case when using the Horner scheme
and direct evaluation. Finally, one can see from the timings of the decoding operation, that the
by far dominating part is the syndrome computation. For the time being, we therefore refrained
from implementing Berlekamp’s algorithm, opting for the much simpler Horner scheme instead.

9

4.1.2 CCA2-McEliece based on GS codes

The performances of the scheme are given in Table 7 and Table 8, respectively for the C++
code and for the microcontroller.

Table 7: Profiling results for CCA2-McEliece using GS codes.

Code Name Base Field m n k s t Errors Encryption Decryption

A F25 2 992 416 25 9 144 0.323 5.914
B F24 3 768 432 24 7 56 0.213 1.814
C F25 2 512 256 24 23 64 0.114 1.382

Table 8: Details of the costs of the encryption and decryption steps of CCA2-McEliece.

Operation Code B Code C

Generate error vector σ 322,109 321,812
Load the plaintext x 1,019 1,019
Hash r = H(σ, x) 282,285 281,497
Encode rG 3,426,700 1,591,031
Add σ 1,103 1,314
Hash K(σ) 137,704 137,720
Pad K(σ)⊕ x 1,814 1,811

Encryption total 4,171,734 2,336,204

Operation Code B Code C

Compute syndrome HψT
1 7,029,985 5,425,696

Solve key equation 954,522 1,202,032
Compute error positions 2,031,514 1,561,946
Compute error values 611,944 794,524
Correct the errors 1,108 5,112
Hash K(σ̂) 147,822 144,768
Pad K(σ̂)⊕ ψ2 1,585 1,586
Hash r̂ = H(σ̂, x̂) 282,066 282,278
Encode r̂G 3,426,721 1,591,049
Add σ̂ 1,113 1,273
Check equality 9,207 6,135

Decryption total 14,497,587 11,016,399

Comparing the results in Table 5 and Table 7 (as well as Table 6 and Table 8), we see that
indeed the computational overhead is quite low.

For simplicity, the comparison of the total timings is reported in Tables 9 and 10.

10

Table 9: Summary of the timings (ms) for the C++ code.

Code Encoding CCA2 Encryption Decoding CCA2 Decryption

A 0.287 0.323 5.486 5.914
B 0.179 0.213 1.578 1.814
C 0.093 0.114 1.234 1.382

Table 10: Summary of the timings (clock cycles) for the embedded device.

Code Encoding CCA2 Encryption Decoding CCA2 Decryption

B 3,744,537 4,171,734 10,547,944 14,497,587
C 1,928,919 2,336,204 9,003,918 11,016,399

5 Conclusions

In this paper we propose the implementation of a construction based on quasi-dyadic generalized
Srivastava codes. We first implement a plain McEliece encryption scheme, and then convert it
to a CCA2-secure scheme using the Fujisaki-Okamoto transform. The results are initially given
for a C++ implementation, and successively for an embedded device.
An independent work proposing a CCA2-secure scheme based on quasi-dyadic Goppa codes has
been recently presented at PQCrypto 2011 by Stefan Heyse [19]. The performance indicated for
encryption and decryption on the embedded device are slower than our results (the simulator
program is the same, AVR Studio, although in a slightly older version). Part of the reason is due
to the use a constant weight encoding function (more than three times as costly as hashing) that
we avoid thanks to the particular configuration of our scheme. However, the major difference
comes from the fact that our vector-matrix multiplication, despite performing operations over
non-binary fields, is at least two times faster, and this is the dominating part in the encryption
process and is also a very high cost in the decryption process. This is a direct consequence of
the structure of the scheme. In fact, the construction in [19] makes use of binary Goppa codes,
which for security reasons [14] need to be defined over the extension field F216 : this is too big to
fit the corresponding log/antilog tables on the flash memory of the device. The result is that,
in order to avoid using additional, external memory, the tables for F28 are represented instead,
and operations are performed using tower field arithmetic, which is much slower. For example,
a multiplication over a tower F(28)2 is equivalent to performing 5 multiplications over F28 .
Another disadvantage is constituted by the fact that the public key G′ is computed as SG like
in the original McEliece (P is supposed to be implicit into the support of the code), and the
scramble matrix S occupies a great amount of memory (131,072 bytes, see [19, Table 3]). This is
completely redundant, as the reduction to the systematic form is enough to mask the trapdoor
and provide one-way security [11].
On the other hand, the length of the encrypted plaintext is about 10 times the length of our
plaintext (1288 bits, as opposed to 128 bits); however, we stress again that, in a “real-world”
scenario, public-key encryption would only be used for encrypting a small amount of data, for
obvious reasons. So if a large number of bits needs to be encrypted, with every probability a
PKE would be used to exchange a small key (usually 128 or 256 bits) and then the plaintext
would be encrypted with a symmetric encryption scheme.
If we follow this approach in our case, the timings that we obtain strongly support our claim.

11

The latest benchmark speed indicated for AES-128 is about 16 cycles per byte2. Hence, if we
want to encrypt, for a comparison, a plaintext of length 1288 bits = 161 bytes, it would take
only 2,576 clock cycles; even on an embedded device, this number is very small compared to
the rest of the encryption process. In total, our encryption process ranges from around 1.5 to
2.7 times faster than [19].

Table 11: Cost of encrypting a plaintext of length 1288 bits

Code Cost (clock cycles)

Goppa + Kobara-Imai 6,358,952
Code B 4,174,310
Code C 2,338,780

A similar argument holds for decryption.

Finally, we would like to highlight that we are using Keccak to represent both our hash func-
tions and a random number generator; the flexibility that it provides is evident. Other SHA-3
competitors like the function Blue Midnight Wish (BMW) used in [19] have been proved to
be faster [16], but do not reach the same level of security, and for this have been discarded:
although, as noted in the announcement of the finalists, “none of these candidates was clearly
broken”, several attacks have been presented3.
Further investigation is certainly still required, but for a totally detailed analysis probably even
a comparison at source code level would become necessary, and that falls beyond the scope of
this paper.

6 Acknowledgments

We would like to thank Steven Galbraith for many fruitful discussions and his constant support
throughout the development of the paper.

References

[1] Atmel Corporation, “AVR Studio 5.0”. www.atmel.com/avrstudio.

[2] P. S. L. M. Barreto, P.-L. Cayrel, R. Misoczki, and R. Niebuhr, “Quasi-dyadic CFS signa-
tures”, volume 6584 of LNCS, pages 336-349, Springer, October 2010.

[3] P. S. L. M. Barreto and R. Misoczki and L. B. Villas Boas, “SBCRYPT - Syndrome-Based
Cryptography Library”.

[4] T. P. Berger, P. L. Cayrel, P. Gaborit and A. Otmani, “Reducing key length of the McEliece
cryptosystem”. In Bart Preneel, editor, Progress in Cryptology - Second International Con-
ference on Cryptology in Africa (AFRICACRYPT 2009), volume 5580 of LNCS, pages 77-97,
Gammarth, Tunisia, June 21-25, 2009.

[5] T. P. Berger and P. Loidreau, “How to mask the structure of codes for a cryptographic use”.
In Design, Codes and Cryptography, volume 35, pages 63-79, 2005.

2http://www.cryptopp.com/benchmarks.html
3http://ehash.iaik.tugraz.at/wiki/Blue Midnight Wish

12

[6] E. R. Berlekamp, “Factoring polynomials over finite fields”, volume 46 of Bell System Tech-
nical Journal, pages 1853–1859, 1967.

[7] E. R. Berlekamp, R. J. McEliece and H. C. A. van Tilborg, “On the inherent intractability of
certain coding problems”. In IEEE Transactions on Information Theory, volume 24, pages
384-386, 1978.

[8] D. J. Bernstein, T. Lange and C. Peters, “Attacking and defending the McEliece cryptosys-
tem”. In J. Buchman and J. Ding, editors, Post-Quantum Cryptography- Second Interna-
tional Workshop (PQCrypto 2008), volume 5299 of LNCS, pages 31-46, Springer, Berlin,
2008.

[9] D. J. Bernstein, T. Lange, C. Peters and H. C. A. van Tilborg, “Explicit bounds for generic
decoding algorithms for code-based cryptography”. In Pre-proceedings of WCC 2009, pages
168-180, 2009.

[10] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, “The Keccak sponge function
family”. http://keccak.noekeon.org/

[11] B. Biswas and N. Sendrier, “McEliece Cryptosystem Implementation: Theory and Prac-
tice”. In PQCrypto 2008, pages 47-62, 2008.

[12] R. Dowsley, J. Müller-Quade, and A. C. A. Nascimento, “A CCA2 secure public key en-
cryption scheme based on the McEliece assumptions in the standard model”. In Topics in
Cryptology - CT-RSA 2009, LNCS, volume 5473, pages 240-251, 2009.

[13] T. Eisenbarth, T. Güneysu, S. Heyse and C. Paar, “Microeliece: McEliece for embedded
devices”. In CHES ’09: Proceedings of the 11th International Workshop on Cryptographic
Hardware and Embedded Systems, pages 49-64, Berling, Heidelberg, 2009. Springer-Verlag.

[14] J. C. Faugère, A. Otmani, L. Perret and J. P. Tillich, “Algebraic Cryptanalysis of McEliece
Variants with Compact Keys”. In Advances in Cryptology - EUROCRYPT 2010, 29th An-
nual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 279-298, French Riviera, May 30 - June 3, 2010.

[15] J. C. Faugère, A. Otmani, L. Perret and J. P. Tillich, “Algebraic Cryptanalysis of Com-
pact McEliece’s Variants - Toward a Complexity Analysis”. In International Conference on
Symbolic Computation and Cryptography, SCC 2010, pages 45-56, 2010.

[16] E. Fleischmann, C. Forler and M. Gorski, “Classification of the SHA-3 Candidates”.
http://drops.dagstuhl.de/volltexte/2009/1948/pdf/09031.ForlerChristian.Paper.1948.pdf

[17] E.Fujisaki and T. Okamoto, “Secure integration of asymmetric and symmetric encryption
schemes”. In CRYPTO ’99: Proceedings of the 19th Annual International Cryptology Con-
ference on Advances in Cryptology, volume 6110 of LNCS, Springer-Verlag, pages 537-554,
London, 1999.

[18] S. Heyse, “Low-reiter: Niederreiter encryption scheme for embedded microcontrollers”. In
Post-Quantum Cryptography, Third International Workshop, (PQCrypto 2010), Springer,
2010.

[19] S. Heyse, “Implementation of McEliece Based on Quasi-dyadic Goppa Codes for Embed-
ded Devices”. In Post-Quantum Cryptography, Fourth International Workshop, (PQCrypto
2011), Springer, 2011.

13

[20] K. Kobara and H. Imai, “Semantically secure McEliece public-key cryptosystems-
conversions for McEliece PKC”. In PKC ’01: Proceedings of the 4th International Workshop
on Practice and Theory in Public Key Cryptography, Springer-Verlag, pages 19-35, London,
2001.

[21] F. J. MacWilliams and N. J. Sloane, “The theory of error-correcting codes”. North Holland,
Amsterdam, 1977.

[22] D. Mandell Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev, “More constructions
of lossy and correlation-secure trapdoor functions”. In Public Key Cryptography - PKC 2010,
volume 6056 of Lecture Notes in Computer Science, pages 279-295, 2010.

[23] R. J. McEliece, “A Public-Key System Based on Algebraic Coding Theory”. In DSN
Progress Report 44, pages 114-116, Jet Propulsion Lab, 1978.

[24] D. Micciancio, “Improving Lattice Based Cryptosystems Using the Hermite Normal Form”.
In CaLC ’01, pages 126-145, 2001.

[25] R. Misoczki and P. S. L. M. Barreto, “Compact McEliece keys from Goppa codes”. In
Selected Areas in Cryptography (SAC 2009), Calgary, Canada, August 13-14, 2009.

[26] H. Niederreiter, “A public-key cryptosystem based on shift register sequences”. In EURO-
CRYPT, volume 219 of LNCS, pages 35-39, 1985.

[27] E. Persichetti, “Compact McEliece keys based on Quasi-Dyadic Srivastava codes”. In Cryp-
tology ePrint Archive, preprint, 2011.

[28] C. Peters, “Information-set decoding for linear codes over Fq”. In Post-Quantum Cryp-
tography, Third International Workshop, (PQCrypto 2010), volume 6061 of LNCS, pages
81-94, Darmstadt, Germany, May 25-28, 2010.

[29] B. Preneel, A. Bosselaers, R. Govaerts and J. Vandewalle, “A software implementation
of the McEliece public-key cryptosystem”. In Proceedings of the 13th Symposium on Infor-
mation Theory in the Benelux, Werkgemeenschap voor Informatieen Communicatietheorie,
pages 119-126, Springer-Verlag, 1992.

[30] “Prometheus. Implementation of McEliece cryptosystem for 32-bit microprocessors (c-
source)”. http://www.eccpage.com/.

[31] S. Schechter, “On the inversion of certain matrices”. In Mathematical Tables and Other
Aids to Computation, volume 13, issue 66, pages 73-77, 1959.

[32] N. Sendrier, “Encoding information into constant weight words”. In IEEE Conference,
ISIT 2005, pages 435-438, September 2005.

14

A Additional definitions

We present here some additional definitions needed for the key generation process.

Definition 10 Given two disjoint sequences v̄ = (v1, . . . , vℓ) ∈ F
ℓ
q and L̄ = (L1, . . . , Ln) ∈ F

n
q ,

the Cauchy matrix C(v̄, L̄) is the matrix with components Cij =
1

vi − Lj
, i.e.

C(v̄, L̄) =

1

v1 − L1
. . .

1

v1 − Ln
...

...
...

1

vℓ − L1
. . .

1

vℓ − Ln

.

Cauchy matrices have the property that all of their submatrices are invertible [31].

Definition 11 Fix a finite field Fq and an integer m > 1. Choose a polynomial g(z) in Fqm [z] of
degree t < n/m and a sequence of distinct elements α1, . . . , αn ∈ Fqm such that g(αi) 6= 0 for all
i. The polynomial g(z) is called the Goppa polynomial. The set of words c̄ = (c1, . . . , cn) ∈ F

n
qm

with
∑n

i=1
ci

z−αi
≡ 0 (mod g(z)) defines an [n, n − t] linear code over Fqm . The corresponding

Goppa code is the restriction of this code to Fq, i.e. the set of elements c̄ = (c1, . . . , cn) ∈ F
n
q

which satisfy the above condition.

Alternatively (and usually) a Goppa code is defined by means of its parity-check matrix, which
is of the form:

H =

1

g(α1)
. . .

1

g(αn)
...

...
...

αt−1
1

g(α1)
. . .

αt−1
n

g(αn)

It is clear then that a Goppa code has dimension k ≥ n −mt. The minimum distance is
t+ 1, or 2t+ 1 in the special binary case (q = 2).
Goppa codes are a particular instance of Alternant codes, with xi = αi, yi = 1/g(αi).

B Quasi-dyadic key generation

Misoczki and Barreto in [25] first introduced a scheme based on quasi-dyadic Goppa codes,
making use of codes simultaneously in dyadic [25, Th. 2] and Cauchy form [21, Ch. 12, Pr. 5].
Necessary conditions are that the generator polynomial has to be monic and without multiple
zeros, and that the code needs to be defined over a field of characteristic 2, with a dyadic
signature satisfying

1

hi⊕j
=

1

hi
+

1

hj
+

1

h0
. (1)

The scheme was subsequently extended and generalized to the case of GS codes [27], with
multiple benefits including security improvements (described in the next section). Since it can
be easily proved that every generalized Srivastava code with t = 1 is a Goppa code, the two

15

cases are in fact just two instances of the same scheme. For the construction, we follow the
steps presented in [27, Section 4].

Equation (1) is the core of the key generation algorithm. The procedure takes input parameters
n, s, t such that n = n0s, mst < n for s a power of 2 and a finite field Fqm = F2u where q = 2λ,
u = mλ, then assigns distinct values at random to the elements h2j for j = 1, . . . , log2 (n− 1),
in the meantime fixing the elements between h2j and h2j+1 by using (1).
An initial block in dyadic form is formed from the signature h̄ just built; this is equivalent to
a Goppa code. In case t > 1, the other blocks are computed by successive powering, up to the
power of t. The parity-check matrix eventually obtained is projected onto the base field and
finally, we retain the non-trivial part of its systematic form to be used as trapdoor.

We refer to [27] for a fully detailed description of the construction process.

C Resistance to structural attacks

The main threat against quasi-dyadic schemes is represented by the so-called FOPT attack
[14]. It relies on the fundamental property H ·GT = 0 to build an algebraic system, using then
Gröbner bases techniques to solve it. The special properties of codes in quasi-dyadic form are
of key importance, as they contribute to considerably reduce the number of unknowns of the
system. Also, the parameters m and t come into account as they define the dimension of the
solution space.
The aim is to find a valid parity-check matrix for the code, that is, a matrix H in Alternant
form, H = {yjx

i
j}; these elements are represented by two sets of unknowns {Xi} and {Yi}. The

first step of the attack is then generating the following system of equations:

{

gi,0Y0X
j
0 + · · ·+ gi,n−1Yn−1X

j
n−1 = 0 | i = 0, . . . , k − 1, j = 0, . . . , ℓ− 1

}

. (2)

As is easy to see, the case j = 0 produces a set of linear equations involving only the Yi. These
can be further reduced with the help of some properties derived from the dyadicity and the
key-generation algorithm [14, Pr. 5]; in particular, we have that Yis+j = Yis for each block, i.e.
i = 0, . . . , n0 − 1, j = 1, . . . s (a proof is given for the case t = 1; for the adaptation to the case
t > 1 see [27]). This results in having only n0 − 1 unknowns Yi, since we can arbitrarily choose
one of them. Moreover, the linear equations are identical for all the rows of each dyadic block,
hence only n0 −mt distinct equations remain after eliminating the redundant ones.
As in any linear system, the difference between these two numbers gives the number of free
variables of the system: in this case, mt− 1. If it is possible to recover the free variables (if the
number of those is very small, even just by guessing) it is possible to reduce (2) to a simplified
system involving only the Xi. Once the reduction is done, a linearization trick is used to solve
and retrieve the remaining unknowns.
Hence, it is crucial to keep the dimension of the solution space (number of free variables) high
enough to prevent the attack to succeed; the authors in [15] indicate that this number should be
not smaller than 20. In this case in fact, the computational effort required to solve the system
is too high: experimental results indicate a complexity of approximately 2128 bit operations.
Additional security comes from another phenomenon that occurs when the base field is F2. In
this case the Gröbner basis necessary to solve the system is easy to compute, but somehow
“trivial” (reduced to one equation) and doesn’t provide enough information, hence the attack
cannot be completed.

16

D Provable security definitions

Definition 12 (IND) An adversary A for this property is a two-stage polynomial-time algo-
rithm. In the first stage, A takes as input a public key pk ∈ Kpubl, then outputs two arbitrary
plaintexts x0, x1. In the second stage, it receives a ciphertext ψ∗ = Epk(xb), for b ∈ {0, 1}, and
returns a bit. The adversary succeeds if A(pk, ψ∗) = b. We say that a PKE enjoys Indistin-
guishability if the probability of success of any adversary A over all choices of pk, ψ∗ and the
randomness used by A is negligible in the security parameter.

Indistinguishability can be achieved following various attack models. We present here two of
the most famous.

Definition 13 (IND-CPA) The attack game for IND-CPA proceeds as follows:
- Query a key generation oracle to obtain a public key pk.
- Choose x0, x1 ∈ P and submit them to an encryption oracle. The oracle will choose a random
b ∈ {0, 1} and reply with the “challenge” ciphertext ψ∗ = Epk(xb).
- Output b∗ ∈ {0, 1}.

The advantage of A against PKE is defined as

AdvCPA = Pr[b∗ = b]−
1

2
.

where the probability is taken over all choices of pk, ψ∗ and the randomness used by A.
We say that a PKE has Indistinguishability against Chosen Plaintext Attacks (IND-CPA) if the
advantage AdvCPA of any adversary A is negligible.

An even stronger attack model, called CCA2, allows the adversary to make use of a de-
cryption oracle during the game, with the only exception that it is not allowed to ask for the
decryption of the challenge ciphertext.

Definition 14 (IND-CCA2) The attack game for IND-CCA2 proceeds as follows:
- Query a key generation oracle to obtain a public key pk.
- Make a sequence of calls to a decryption oracle, submitting any string ψ of the proper length
(not necessarily an element of C). The oracle will respond with Dsk(ψ).
- Choose x0, x1 ∈ P and submit them to an encryption oracle. The oracle will choose a random
b ∈ {0, 1} and reply with the “challenge” ciphertext ψ∗ = Epk(xb).
- Keep performing decryption queries. If the submitted ciphertext is ψ = ψ∗, return ⊥.
- Output b∗ ∈ {0, 1}.

The advantage of A against PKE is defined as

AdvCCA2 = Pr[b∗ = b]−
1

2
.

where the probability is taken over all choices of pk, ψ∗ and the randomness used by A.
We say that a PKE has Indistinguishability against Adaptive Chosen Ciphertext Attacks (IND-
CCA2) if the advantage AdvCCA2 of any adversary A is negligible.

Definition 15 (FG) An adversary A for this property is a two-stage polynomial-time algo-
rithm. In the first stage, A takes as input a public key χ ∈ K, then outputs two arbitrary
plaintexts x0, x1 along with some extra information ι to be used later. In the second stage, it
receives a ciphertext ψ∗ = Eχ(xb) for b ∈ {0, 1}, and returns a bit. The adversary succeeds if
A(χ, ψ∗, ι) = b. We say that a SE enjoys Find-Guess security if the probability of success of
any adversary A over all choices of pk, ψ∗ and ι is negligible in the security parameter.

17

