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ON THE PIERCE-BIRKHOFF CONJECTURE

. In the present paper we introduce a new conjecture, called the Strong Connectedness conjecture, and prove that the strong connectedness conjecture in dimension n -1 implies the connectedness conjecture in dimension n in the case when ht(< α, β >) ≤ n -1. We prove the Strong Connectedness conjecture in dimension 2, which gives the Connectedness and the Pierce-Birkhoff conjectures in any dimension in the case when ht(< α, β >) ≤ 2. Finally, we prove the Connectedness (and hence also the Pierce-Birkhoff) conjecture in the case when dim A = ht(< α, β >) = 3, the pair (α, β) is of complexity 1 and A is excellent with residue field R.

Introduction

All the rings in this paper will be commutative with 1. Let R be a real closed field. Let B = R[x 1 , . . . , x n ]. If A is a ring and p a prime ideal of A, κ(p) will denote the residue field of p.

The Pierce-Birkhoff conjecture asserts that any piecewise-polynomial function f : R n → R can be expressed as a maximum of minima of a finite family of polynomials in n variables. We start by giving the precise statement of the conjecture as it was first stated by M. Henriksen and J. Isbell in the early nineteen sixties. Definition 1.1 A function f : R n → R is said to be piecewise polynomial if R n can be covered by a finite collection of closed semi-algebraic sets P i such that for each i there exists a polynomial

f i ∈ B satisfying f | Pi = f i | Pi .
1 Clearly, any piecewise polynomial function is continuous. Piecewise polynomial functions form a ring, containing B, which is denoted by P W (B).

On the other hand, one can consider the (lattice-ordered) ring of all the functions obtained from B by iterating the operations of sup and inf. Since applying the operations of sup and inf to polynomials produces functions which are piecewise polynomial, this ring is contained in P W (B) (the latter ring is closed under sup and inf). It is natural to ask whether the two rings coincide. The precise statement of the conjecture is:

Conjecture 1 (Pierce-Birkhoff ) If f : R n → R is in P W (B), then there exists a finite family of polynomials g ij ∈ B such that f = sup i inf j (g ij ) (in other words, for all x ∈ R n ,

f (x) = sup i inf j (g ij (x))).
This paper is a step in a program for proving the Pierce-Birkhoff conjecture. The starting point of this program is the abstract formulation of the conjecture in terms of the real spectrum of B and separating ideals proposed by J. Madden in 1989 [START_REF] Madden | Pierce-Birkhoff rings[END_REF].

For more information about the real spectrum, see [START_REF] Bochnak | Géométrie algébrique réelle[END_REF]; there is also a brief introduction to the real spectrum and its relevance to the Pierce-Birkhoff conjecture in the Introduction to [START_REF] Lucas | On connectedness of sets in the real spectra of polynomial rings[END_REF].

Terminology: If A is an integral domain, the phrase "valuation of A" will mean "a valuation of the field of fractions of A, non-negative on A". Also, we will sometimes commit the following abuse of notation. Given a ring A, a prime ideal p ⊂ A, a valuation ν of A p and an element x ∈ A, we will write ν(x) instead of ν(x mod p), with the usual convention that ν(0) = ∞, which is taken to be greater than any element of the value group.

Recall some notation : For a point α ∈ Sper A we denote by p α the support of α, by A[α] = A pα and by A(α) the field of fractions of A [α]. We also let ν α denote the valuation associated to α, Γ α the value group, R να the valuation ring, k α its residue field and gr α (A) the graded ring associated to the valuation ν α . For f ∈ A with γ = ν α (f ), let in α f denote the natural image of f in Pγ Pγ + . Finally, if k is any field, we denote by k its real closure.

Definition 1.2 Let f : Sper A → α∈Sper A A(α)
be a map such that, for each α ∈ Sper A, f (α) ∈ A(α). We say that f is piecewise polynomial (denoted f ∈ P W (A)) if there exits a covering of Sper A by a finite family (S i ) i∈I of constructible sets, closed in the spectral topology and a family (f i ) i∈I , f i ∈ A such that, for each α ∈ S i , f (α) = f i (α).

We call f i a local representative of f at α and denote it by f α (f α is not, in general, uniquely determined by f and α; this notation means that one such local representative has been chosen once and for all).

Definition 1.3 A ring A is a Pierce-Birkhoff ring if, for each f ∈ P W (A), there exists a finite collection {f ij } i,j ⊂ A such that f = sup i inf j f ij .
The generalized Pierce-Birkhoff Conjecture says: Conjecture 2 (Pierce-Birkhoff Conjecture for regular rings) Let A be a regular ring. Then A is a Pierce-Birkhoff ring.

Madden reduced the Pierce-Birkhoff conjecture to a purely local statement about separating ideals and the real spectrum. Namely, he introduced Definition 1.4 Let A be a ring. For α, β ∈ Sper A, the separating ideal of α and β, denoted by < α, β >, is the ideal of A generated by all the elements f ∈ A which change sign between α and β, that is, all the f such that f (α) ≥ 0 and f (β) ≤ 0. Definition 1.5 A ring A is locally Pierce-Birkhoff at α, β if the following condition holds : let f be a piecewise polynomial function, let f α ∈ A be a local representative of f at α and

f β ∈ A a local representative of f at β. Then f α -f β ∈< α, β >.
Theorem 1.6 (Madden) A ring A is Pierce-Birkhoff if and only if it is locally Pierce-Birkhoff for all α, β ∈ Sper A.

Remark 1.7 Assume that β is a specialization of α. Then (1) < α, β >= p β .

(2) f αf β ∈ p β . Indeed, we may assume that f α = f β , otherwise there is nothing to prove. Since

β ∈ {α}, f α is also a local representative of f at β. Hence f α (β) -f β (β) = 0, so f α -f β ∈ p β .
Therefore, to prove that a ring A is Pierce-Birkhoff, it is sufficient to verify the Definition 1.5 for all α, β such that neither of α, β is a specialization of the other.

In [START_REF] Lucas | On connectedness of sets in the real spectra of polynomial rings[END_REF], we introduced Conjecture 3 (the Connectedness conjecture) Let A be a regular ring. Let α, β ∈ Sper A and let g 1 , . . . , g s be a finite collection of elements of A\ < α, β >. Then there exists a connected set C ⊂ Sper A such that α, β ∈ C and C ∩{g i = 0} = ∅ for i ∈ {1, . . . , s} (in other words, α and β belong to the same connected component of the set Sper A \ {g 1 . . . g s = 0}).

In the paper [START_REF] Lucas | On connectedness of sets in the real spectra of polynomial rings[END_REF], we stated the Connectedness conjecture (in the special case when A is a polynomial ring) and proved that it implies the Pierce-Birkhoff conjecture. The same proof shows that the Connectedness Conjecture implies the Pierce-Birkhoff Conjecture for an arbitrary ring. Definition 1.8 A subset C of Sper A is said to be definably connected if it is not a union of two non-empty disjoint constructible subsets, relatively closed for the spectral topology. Definition 1.9 Definable Connectedness Property Let A be a ring. Let α, β ∈ Sper A. We say that A has the Definable Connectedness Property at α, β if, for any finite collection g 1 , . . . , g s of elements of A\ < α, β >, there exists a definably connected set C ⊂ Sper A such that α, β ∈ C and C ∩ {g i = 0} = ∅ for i ∈ {1, . . . , s} (in other words, α and β belong to the same definably connected component of the set Sper A \ {g 1 . . . g s = 0}).

Conjecture 4 (Definable Connectedness Conjecture) Let A be a regular ring. Then A satisfies the Definable Connectedness Property at any α, β ∈ Sper A.

Exactly the same proof which shows that the Connectedness Property implies the Pierce-Birkhoff Conjecture applies verbatim to show that the Definable Connectedness Property implies the Pierce-Birkhoff conjecture for any ring A.

One advantage of the Connectedness conjecture is that it is a statement about A (resp. about polynomials if A = B) which makes no mention of piecewise polynomial functions.

The Connectedness Conjecture is local in α and β. The purpose of this paper is to associate to each pair (α, β) with ht(< α, β >) = dim A a natural number, called the complexity of (α, β), and prove the Connectedness Conjecture in the simplest case, according to this hierarchy, which is open : that of dimension 3 and complexity 1. Definition 1.10 Let k be an ordered field. A k-curvette on Sper A is a morphism of the form α :

A → k t Γ ,
where Γ is an ordered group. A k-semi-curvette is a k-curvette α together with a choice of the sign data sgn x 1 ,..., sgn x r , where x 1 , ..., x r are elements of A whose t-adic values induce an F 2 -basis of Γ/2Γ. We explained in [START_REF] Lucas | Approximate roots of a valuation and the Pierce-Birkhoff Conjecture[END_REF] how to associate to a point α of Sper A a kα -semi-curvette. Conversely, given an ordered field k, a k-semi-curvette α determines a prime ideal p α (the ideal of all the elements of A which vanish identically on α) and a total ordering on A/p α induced by the ordering of the ring k t Γ of formal power series.

Below, we will often describe points in the real spectrum by specifying the corresponding semi-curvettes.

Let (A, m, R) be a regular local ring of dimension n and ν a valuation centered in A; let Φ = ν(A \ {0}); Φ is a well-ordered set. For an ordinal λ, let γ λ be the element of Φ corresponding to λ. Definition 1.11 A system of approximate roots of ν is a countable well-ordered set

Q = {Q i } i∈Λ , Q i ∈ A,
minimal in the sense of inclusion, satisfying the following condition : for every ν-ideal I in A, we have

I =    j Q γj j j γ j ν(Q j ) ≥ ν(I)    A. (1) 
By definition, each Q ∈ Q comes equipped with additional data, called the expression of Q and denoted by Ex(Q). The expression is a sum of generalized monomials involving approximate roots which precede Q in the given order.

A system of approximate roots of ν up to γ λ is a well-ordered set of elements of A satisfying (1) only for ν-ideals I such that ν(I) < γ λ .

A finite product of the form Q η = j Q ηj j with η j ∈ N is called a generalized monomial. We order the set of generalized monomials by the lexicographical order of the pairs (ν(Q η ), η) (cf. [START_REF] Lucas | Approximate roots of a valuation and the Pierce-Birkhoff Conjecture[END_REF], below Definition 1.4).

In paragraph 1.2, Theorem 1.7 of [START_REF] Lucas | Approximate roots of a valuation and the Pierce-Birkhoff Conjecture[END_REF], we constructed a system of approximate roots up to some γ, Q i , recursively in i. From now on, we fix this system of approximate roots once and for all.

Let u 1 , . . . , u n be a regular system of parameters of A. Definition 1.12 Let i ∈ N be a natural number, consider an approximate root (Q, Ex(Q)). The notion of Q being of complexity i is defined as follows. We say that Q is an approximate root of complexity 0 if Q ∈ {u 1 , . . . , u n }. For i > 0, we say that Q is of complexity i if all the approximate roots appearing in Ex(Q) are of complexity at most i -1 and at least one approximate root appearing in Ex(Q) is of complexity precisely i -1.

Fix α, β ∈ Sper A and consider the Connectedness conjecture for this pair (α, β). Assume √ < α, β > = m. We now define a natural number, called the complexity of (α, β).

Definition 1. [START_REF] Herrera Govantes | Extending a valuation centered in a local domain to the formal completion[END_REF] The complexity of (α, β) is the smallest natural number i such that every ν α -ideal containing < α, β > is generated by generalized monomials involving approximate roots of complexity at most i.

In [START_REF] Lucas | On connectedness of sets in the real spectra of polynomial rings[END_REF], we proved the Connectedness conjecture for polynomial rings of arbitrary dimension over a real closed field and pairs (α, β) of complexity 0. Using Corollary 5.2 below, based on [START_REF] Andradas | Constructible Sets in Real Geometry[END_REF], Chapter VII, 8.6, we can extend this result to the case of excellent regular local rings A of arbitrary dimension and pairs (α, β) of complexity 0.

In this paper, we will assume that R = R. In this case, Ex(Q) is a binomial in the approximate roots preceding Q as we show below. The main result of this paper is : Theorem 1.14 Let (A, m, R) be an excellent 3-dimensional regular local ring such that R ֒→ A. Let α, β ∈ Sper A. Assume that one of the following holds :

(

1) ht(< α, β >) ≤ 2 (2) ht(< α, β >) = 3 and either {u 1 , u 2 , u 3 }∩ < α, β > = ∅ or (α, β) is of complexity at most 1.
Then the Connectedness Conjecture (and hence the Local Pierce-Birkhoff Conjecture) holds for (α, β).

Fix α, β ∈ Sper A and let p = √ < α, β >. The case when ht(p) = 1 is easy. The proof given in [START_REF] Lucas | Approximate roots of a valuation and the Pierce-Birkhoff Conjecture[END_REF] works verbatim in any dimension.

The present paper is organized as follows.

In §2 we state a new conjecture, called the Strong Connectedness Conjecture. We show that the Strong connectedness conjecture in dimension n -1 implies the Connectedness conjecture in dimension n whenever ht(p) < dim A.

In §3 we prove the Strong Connectedness Conjecture for arbitrary regular local rings of dimension 2. We deduce the Connectedness Property and the local Pierce-Birkhoff Conjecture for any ring A (of any dimension) and α, β ∈ Sper A such that ht(< α, β >) = 2 and A √ <α,β> is regular.

§4 is devoted to the study of graded algebras associated to points of real spectra in the case when the residue field of our local ring is R.

In §5 we prove a comparison theorem between connected components of a constructible subset C ⊂ Sper A and those of the set C ⊂ Sper R[u 1 , . . . , u n ] (u1,...,un) defined by the same formulae as C.

Finally, we describe some subsets of Sper A, containing α and β, which will be later proved to be connected, thus verifying the Connectedness Conjecture.

In §6 we prove the Connectedness conjecture in the Case 2 of the Theorem 1.14.

The Strong Connectedness Conjecture

Let dim A = 3 and ht p = 2. A natural idea would be to apply the already known 2dimensional connectedness conjecture to the regular 2-dimensional local ring A p . Then one would construct a sequence of point blowings up π : Xl → Sper A p and a connected set in Xl satisfying the conclusion of the conjecture. Finally, we would construct a sequence π : X l → Sper A of blowings up of points and smooth curves whose restriction to the generic point of V (p) is π. The difficulty with this approach is that the 2-dimensional connectedness conjecture cannot be applied directly. Indeed, let g 1 , . . . , g s be as in the connectedness conjecture and let ∆ α ⊂ Γ α denote the greatest isolated subgroup not containing ν α (p). The hypothesis g i ∈ / < α, β > does not imply that g i ∈ / < α, β > A p : it may happen that ν α (g i ) < ν α (< α, β >), ν α (g)ν α (p) ∈ ∆ α and so g i ∈< α, β > A p , as we show by the example below. Example. Let α, β be given by the curvettes

x(t) = t (0,3) (2) 
y(t) = t (0,4) + bt (1,0) (3) z(t) = t (0,5) + ct (1,1) , ( 4 
)
where b ∈ {b α , b β } ⊂ R and c ∈ {c α , c β } ⊂ R and t (0,1) > 0, t (1,0) > 0. The constants b α , b β , c α , c β will be specified later. Let f 1 = xz -y 2 , f 2 = x 3 -yz, f 3 = x 2 y -z 2 ; consider the ideal (f 1 , f 2 , f 3 ).
The most general common specialization of α, β is given by the curvette

x(t) = t 3 (5) y(t) = t 4 (6) 
z(t) = t 5 , (7) 
t > 0. The corresponding point of Sper A has support (f 1 , f 2 , f 3 ), so p = √ < α, β > = (f 1 , f 2 , f 3 ). Let (x α (t), y α (t), z α (t)
) and (x β (t), y β (t), z β (t)) be the curvettes defining α and β as in ( 2)-( 4). Let us calculate f 1 (x α (t), y α (t), z α (t)) and f 1 (x β (t), y β (t), z β (t)). In the notation of ( 2)-( 4) we have

f 1 (x(t), y(t), z(t)) = (c -2b)t (1,4) + f1 (8) f 2 (x(t), y(t), z(t)) = -(c + b)t (1,5) + f2 (9) f 3 (x(t), y(t), z(t)) = (b -2c)t (1,6) + f3 , (10) 
where fi stands for higher order terms with respect to the t-adic valuation. Choose b α , b β , c α , c β so that none of f 1 , f 2 , f 3 change sign between α and β. The smallest ν α value of an element which changes sign between α and β is (1, 4) + (0, 4) = (1, 5) + (0, 3) = (1, 8), so

ν α (< α, β >) = (1, 8). Thus we have f i ∈ / < α, β >, but f i ∈< α, β > A p , as desired.
Thus we are naturally led to formulate a stronger version of the Connectedness Conjecture, one which has exactly the same conclusion but with somewhat weakened hypotheses. This phenomenon occurs in all dimensions, as we now explain. Definition 2.1 Strong Connectedness Property Let Σ be a ring, α, β ∈ Sper Σ, having a common specialization ξ. We say that Σ has the Strong Connectedness Property at α, β if given any g 1 , . . . , g s ∈ Σ \ (p α ∪ p β ) such that for all j ∈ {1, . . . , s},

ν α (g i ) ≤ ν α (< α, β >), ν β (g i ) ≤ ν β (< α, β >) (11) 
and such that no g i changes sign between α and β, the points α and β belong to the same connected component of Sper Proof : Let g 1 , . . . , g s ∈ A be the elements appearing in the statement of the Connectedness Conjecture. Renumbering the g i , if necessary, we may assume that g 1 , . . . , g l ∈ / < α 0 , β 0 > and g l+1 , . . . , g s ∈< α 0 , β 0 >. The condition g l+1 , . . . , g s ∈< α 0 , β 0 > implies that, for i ∈ {l + 1, . . . , s}, ν α0 (g i ) = ν α0 (< α 0 , β 0 >).

Σ \ {g 1 • • • g s = 0}.
By hypothesis, there exists a connected set

C 0 ⊂ Sper A p , α 0 , β 0 ∈ C 0 such that C 0 ⊂ {g 1 • • • g s = 0}
. Then σ(C 0 ) satisfies the conclusion of the Connectedness Conjecture for A, α, β, g 1 , . . . , g s .

In the next section we will use Zariski's theory of complete ideals to prove the Strong Connectedness Conjecture in dimension 2, and hence also the Connectedness conjecture in dimension 3, when ht(p) = 2.

3 The case when the height of p is 2 Theorem 3.1 Conjecture 5 is true when Σ is of dimension 2.

Proof : If one of α, β is a specialization of the other, the result is trivially true, because the connected component of Sper Σ \ {g 1 • • • g s = 0} containing the more general point among α and β satisfies the conclusion of the conjecture. From now on we shall assume that none of α and β is a specialization of the other.

Let z be a new variable. We will say that a point η

∈ Sper k[z] is closed if {η} = {η}.
Consider a point α ∈ Sper Σ, dim Σ = 2. Let ξ be the most special specialization of α. Assume that ht(p ξ ) = 2 and α = ξ. Let (x, y) be a regular system of parameters of Σ p ξ and let k be the residue field k = Σ p ξ . Let ρ : X → Sper Σ be the blowing up of Sper Σ along (x, y). Let α ′ be the strict transform of α in X (see [START_REF] Lucas | Approximate roots of a valuation and the Pierce-Birkhoff Conjecture[END_REF], Definitions 3.19 and 3.20

). If ν α (y) ≥ ν α (x) then α ′ ∈ Sper Σ[ y x ]. Consider the homomorphism Σ[ y x ] → k[z] which maps y
x to z and elements of Σ to their image in k. In this way, we identify Sper k[z] with Sper Σ[ y x ] ∩ ρ -1 (ξ). Definition 3.2 The slope of α, denoted by sl(α), is the following element of Sper k

[z]∪{∞} -if ν α (x) > ν α (y), sl(α) := ∞; -if ν α (x) ≤ ν α (y), sl(α) is the most special specialization of α ′ in Sper Σ[ y x ]
. Let α, β ∈ Sper Σ be the two points centered at ξ and having the same slope. We say that α and β point in the same direction if sgn(x(α)) = sgn(x(β)) when sl(α) = ∞ (resp. sgn(y(α)) = sgn(y(β)) when sl(α) = ∞). Otherwise we say that α and β point in different direction.

Examples : Let Σ = Q[x, y].
1. Let α be the point of Sper Σ given by the following semi-curvette

Q[x, y] ֒→ Q(π)[[t]
] such that x → t, y → πt. Then ξ is the closed point with support (x, y) and the slope of α is the point of Sper Q[z] such that for any rational number p/q we have z > p/q ⇐⇒ π > p/q.

2. Let α be a point of Sper Σ such that ν α (x) = ν α (y) > 0, ν α (y 2 -2x 2 ) > 2ν α (x). Then ξ is the closed point with support (x, y) and the slope of α is the point of Sper Q[z] with support (z 2 -2). First assume that α and β have the same tangent, and that they are facing in different directions along that tangent. Then < α, β >= p ξ . We want to show that, for all i, g i ∈ /p ξ . Assume that g i ∈ p ξ . Write g i = ax + by + gi where a, b ∈ Σ and gi ∈ (x, y) 2 . We may assume that the common slope to α and β is not ∞. Then

ν α (g i ) = ν α (p ξ ) = ν α (x) ≤ ν α (y) (12) ν β (g i ) = ν β (p ξ ) = ν β (x) ≤ ν β (y). ( 13 
)
Hence either a∈ /p ξ or (ν α (x) = ν α (y)) and b∈ /p ξ . In particular, sgn α (g i ) = sgn α (ax + by) and similarly for sgn β .

Let k[z](sl(α)) be as in the previous remark. By [START_REF] Herrera Govantes | Valuations in algebraic field extensions[END_REF] and ( 13), the natural image of a+b y x in k[z](sl(α))is non zero. Since α and β have the same slope, they induce the same order on k[z](sl(α)). Hence a + b y x does not change sign between α and β, so x(a + b y x ) changes sign between α and β, which is a contradiction. Hence g i ∈ /p ξ . Then a small connected neighbourhood U (small enough so that {g 1 • • • g s = 0} ∩ U = ∅) of ξ satisfies the conclusion of Conjecture 5. This proves the Theorem in the special case when α and β have the same slope but point in different directions.

From now on assume that if α and β have the same slope, they point in the same direction.

Let π : X ′ → X = Sper A the shortest sequence of blowings up such that the strict transforms α ′ and β ′ of α and β have the same specialization ξ ′ with ht(p ξ ′ ) = 2 and distinct slopes (see [START_REF] Lucas | Approximate roots of a valuation and the Pierce-Birkhoff Conjecture[END_REF], by iterating Proposition 3.31). Note that, if g ′ i denotes the strict transform of g i , then the g ′ i such that g ′ i (ξ) = 0 play no role and if g ′ i (ξ) = 0, by [START_REF] Goldin | Resolving singularities of plane analytic branches with one toric morphism[END_REF], {g ′ i = 0} cannot be tangent to α ′ or β ′ or to the last exceptional divisor if it exists. Let O X ′ ,ξ ′ be the local ring of X ′ at ξ ′ and let x ′ , y ′ be a regular system of parameters such that {x ′ = 0} is the last exceptional divisor if it exists and {y ′ = 0} the second one if any. In the case we had not to blow up, we take an x ′ such that {x ′ = 0} is not tangent to α ′ , β ′ or any of {g ′ i = 0} and such that x ′ (α ′ ) > 0 and x ′ (β ′ ) > 0. Note that x ′ does not change sign between α and β (otherwise the blowing up sequence π would have stopped at an earlier stage). Replacing x ′ by -x ′ if necessary, we may assume that x ′ (α ′ ) > 0, x ′ (β ′ ) > 0.

Let us introduce the following total ordering on the set {g ′ 1 , . . . , g ′ s }. Write each g ′ j as a formal power series in the formal completion

O X ′ ,ξ ′ → k ′ [[x ′ , y ′ ]] as g ′ j = y ′ + ∞ i=1 c ij x ′ i with c ij ∈ k ′ .
This is possible because of the choice of x ′ , y ′ , the non tangency of {g ′ j = 0} with α ′ , β ′ and the last exceptional divisor. We compare g ′ j and g ′ ℓ by comparing the monomials in lexicographic ordering. Namely, we take the smallest i such that c ij = c iℓ and we say that j ≺ ℓ if c ij < c iℓ . Without loss of generality, we may assume that g ′ 1 (α ′ ) > 0, . . . , g ′ ℓ (α ′ ) > 0, g ′ ℓ+1 (α ′ ) < 0, . . . , g ′ s (α ′ ) < 0 and also that 1 ≺ . . . ≺ ℓ, ℓ + 1 ≺ . . . ≺ s. Lemma 3.5 Let j, q ∈ {1, . . . , ℓ}, j ≺ q. Then {g ′ j > 0, x ′ > 0} ⊂ {g ′ q > 0, x ′ > 0}. Let j, q ∈ {ℓ + 1, . . . , s}, j ≺ q. Then {g ′ q > 0, x ′ > 0} ⊂ {g ′ j > 0, x ′ > 0}. Proof : In the first case, we have to prove that g

′ q (δ) > 0 ⇒ g ′ j (δ) > 0. Write g ′ j = y ′ + c 1j x ′ + • • • + c ij x ′ i + x ′ i+1 (• • • ) and g ′ q = y ′ + c 1q x ′ + • • • + c iq x ′ i + x ′ i+1 (• • • ) with c kj = c kq for k = 1, . . . , i -1 and c ij < c iq . We have g ′ q -g ′ j = (c iq -c ij )x ′ i u where u is a positive unit of k ′ [[x ′ , y ′ ]]. So g ′ q -g ′ j = dx ′ i in O X ′ ,ξ ′ with d ∈ O X ′ ,ξ ′ \ m X ′ ,ξ ′ such that d = c iq -c ij mod m X ′ ,ξ ′ , in particular d(δ) > 0.
And the same with the second inclusion.

Lemma 3.6

We have c 11 > c 1s .

Proof : Note that we have

g ′ 1 (α ′ ) = y ′ (α ′ ) + c 11 x ′ (α ′ ) + x ′ (α ′ ) 2 h 1 > 0 (14) g ′ 1 (β ′ ) = y ′ (β ′ ) + c 11 x ′ (β ′ ) + x ′ (β ′ ) 2 h 1 > 0 (15) g ′ s (α ′ ) = y ′ (α ′ ) + c 1s x ′ (α ′ ) + x ′ (α ′ ) 2 h s < 0 (16) g ′ s (β ′ ) = y ′ (β ′ ) + c 1s x ′ (β ′ ) + x ′ (β ′ ) 2 h s < 0 ( 17 
)
where

h 1 , h s ∈ k ′ [[x ′ , y ′ ]].
Write α ′ as curvette : 

x ′ (t) = t να(x ′ ) + • • • y ′ (t) = b α t να(x ′ ) + • • • where b α is the natural image of y ′ x ′ in k α . Then g ′ 1 (α ′ ) > 0 ⇔ y ′ + c 11 x ′ + x ′ 2 h 1 > 0 ⇔ y ′ (t) + c 11 x ′ (t) + x ′ (t) 2 h 1 (t) = (b α + c 11 )t να(x ′ ) + • • • > 0 in k α [[t Γα ]], so b α + c 11 ≥ 0 in k α .
β = -c 11 ∈ k ′ . Hence k[z](sl(α ′ )) = k[z](sl(β ′ ))
, which contradicts the fact that α ′ and β ′ have different slopes. Thus, at least one of the inequalities ( 14) and ( 15) is strict, say b α + c 11 > 0 for instance. Together with the inequality [START_REF] Kaplansky | Maximal fields with valuations II[END_REF], this implies that c 11 > c 1s .

Let

C ′ = {g ′ 1 > 0, g ′ s < 0}. By definition C ′ contains α ′ and β ′ , so is non empty. 

(δ) > 0, . . . , g ′ ℓ (δ) > 0, g ′ ℓ+1 (δ) < 0, . . . , g ′ s (δ) < 0. So, finally, being a quadrant in Sper O X ′ ,ξ ′ , if O X ′ ,ξ ′ is
C. Let U = {δ ∈ Sper A | δ is centered at m} Ũ = {δ ∈ Sper R[u 1 , . . . , u n ] (u1,...,un) | δ is centered at (u 1 , . . . , u n )}.
Then the natural map Sper A → Sper R[u 1 , . . . , u n ] (u1,...,un) induces a bijection between the set of connected components of C ∩ U and the set of connected components of C ∩ Ũ .

Proof : Consider the following natural ring homomorphisms

R[u 1 , . . . , u n ] (u1,...,un) σ0 / / A σ / / R[[u 1 , . . . , u n ]] .
The theorem follows from ([3], chap. VII, Proposition 8.6) applied to the rings A and R[u 1 , . . . , u n ] (u1,...,un) .

Corollary 5.2 Let (A, m, R) be an excellent regular local ring such that R ⊂ A. Let (u 1 , . . . , u n ) be a regular system of parameters of A. Fix a subset J ⊂ {1, . . . , n} and the point ξ ∈ Sper A such that p ξ = m. Let U denote the subset of Sper A consisting of generizations of ξ. Let C denote the subset of U defined by specifying sgn u q (which can be either strictly positive on all of C or strictly negative on all of C) for q ∈ J and by imposing, in addition, finitely many monomial inequalities of the form

d i u λi ≥ u θi , 1 ≤ i ≤ M ( 18 
)
where d i ∈ R \ {0}, λ i , θ i ∈ N n and u q may appear only on the right hand side of the inequalities [START_REF] Kuo | Generalized Newton-Puiseux theory and Hensel's lemma in C[[x, y][END_REF] for q∈ /J. Then C is connected.

Proof : Write λ i = (λ 1i , . . . , λ ni ) and similarly for θ i . It is sufficient to prove that any two elements of C belong to the same connected component of C.

Consider the natural homomorphism

A → Â = R[[u 1 , . . . , u n ]]. (19) 
Let ξ denote the point of Sper  with support m Â.

Following ( [START_REF] Andradas | Constructible Sets in Real Geometry[END_REF], chap. VII, proposition 8.6), C is connected if and only if

Ĉ = {δ ∈ Sper R[[u 1 , . . . , u n ]] | u j (δ) > 0, j ∈ J, d i u λi ≥ u θi , 1 ≤ i ≤ M, ξ ∈ {δ}}
is connected (this is where we are using the fact that A is excellent). So it suffices to prove that Ĉ is connected. By the preceding Theorem, Ĉ is connected if and only if the set

C † = {δ ∈ Sper R[u 1 , . . . , u n ] (u1,...,un) | u j (δ) > 0, j ∈ J, d i u λi ≥ u θi , 1 ≤ i ≤ M, δ is centered at (u 1 , . . . , u n )} is connected. Define C 0 = {δ ∈ Sper R[u 1 , . . . , u n ] | u j (δ) > 0, j ∈ J, d i u λi ≥ u θi , 1 ≤ i ≤ M, δ is centered at (u 1 , . . . , u n )}
and

C loc = {δ ∈ Sper R[u 1 , . . . , u n ] j∈J uj | u j (δ) > 0, j ∈ J, d i u λi ≥ u θi , 1 ≤ i ≤ M, δ is centered at (u 1 , . . . , u n )}
The natural maps φ : R[u 1 , . . . , u n ] → R[u 1 , . . . , u n ] (u1,...,un) and ψ : R[u 1 , . . . , u n ] → R[u 1 , . . . , u n ] j∈J uj induce homeomorphisms φ| C0 : C 0 ∼ = C loc and ψ| C0 :

C 0 ∼ = C † . So it suffices to prove that C loc is connected. But C loc = N ∈N C N 10 where C N = {δ ∈ Sper R[u 1 , . . . , u n ] j∈J uj | 1 N ≥ u j (δ) ≥ 0, j ∈ J, d i u λi ≥ u θi , 1 ≤ i ≤ M }.
By Lemma 4.1 of [START_REF] Lucas | On connectedness of sets in the real spectra of polynomial rings[END_REF], each C N is a non empty closed connected subset of Sper R[u 1 , . . . , u n ] j∈J uj , hence C loc is connected by ([21], lemma 7.1).

Remark 5.3 Keep the hypothesis of Corollary 5.2. Consider a set C defined by inequalities

di u λi ≥ u θi , 1 ≤ i ≤ M, di ∈ A \ m (20) 
and the same sign conditions as C. For each i,

1 ≤ i ≤ M , take d ′ i ∈ R such that di (ξ) > |d ′ i |. Let C ⊂ U be defined by d ′ i u λi ≥ u θi , 1 ≤ i ≤ M
and the same sign conditions as before. Then C is connected and C ⊂ C.

Assume that A is of dimension 3 and has residue field R. Let α, β ∈ Sper A and suppose ht(< α, β >) = 3.

Let ν α0 be the monomial valuation defined by

ν α0 (u 1 ) = ν α (u 1 ) (21) 
ν α0 (u 2 ) = ν α (u 2 ) (22) ν α0 (u 3 ) = ν α (u 3 ). (23) 
In other words, for a polynomial f = γ∈N 3 c γ u γ , we have ν α0 (f ) = min γ {ν α (u γ ) | c γ = 0}.

Definition 5.4 An approximate root Q for α, of complexity at most one, is said to be relevant for (α,

β) if either Q ∈ {u 1 , u 2 , u 3 } or ν α0 (Q) < ν α (< α, β >).
Note that if Q is relevant for (α, β), then Q is an approximate root for β. If, in addition

Q∈ /{u 1 , u 2 , u 3 }, then ν β0 (Q) < ν β (< α, β >).
Let {Q i } 4≤i≤ℓ where ℓ ∈ {3, 4, . . . , r} denote the set of relevant approximate roots of complexity 1 (the case ℓ = 3 means that the (α, β) has complexity 0). Let g 1 , . . . , g s ∈ A be as in the statement of the Connectedness Conjecture. Let

g i = Q δi + Ni j=1 c ji Q δji , i ∈ {1, . . . , s} (24) 
be the standard form of g i common to α and β of level ν α (< α, β >) (see [START_REF] Lucas | Approximate roots of a valuation and the Pierce-Birkhoff Conjecture[END_REF], §1.3); by definition then Q δi , Q δji are generalized monomials in the relevant approximate roots and

ν α (Q δi ) < ν α (Q δji ) , j ∈ {1, . . . , N i }.
The fact that there is only one dominant monomial Q δi is due to Theorem 4.1.

1. Let C =    δ ∈ SperA δ is centered at (x, y, z) ν δ (Q δi ) < ν δ (Q δji ) ∀i ∈ {1, . . . , s}, ∀j ∈ {1, . . . , N i } sgn δ (Q q ) = sgn α (Q q ) for all Q q appearing in Q δi    . (25) 
2. Let C ′ defined by the set of all δ, centered at (x, y, z), satisfying the inequalities

Q δi (δ) > N i |Q δji (δ)| ∀i ∈ {1, . . . , s}, ∀j ∈ {1, . . . , N i } (26) 
and the sign conditions appearing in [START_REF] Maclane | Zero-dimensional branches of rank one on algebraic varieties[END_REF].

So that the vectors v

i = α i -β i , v j = α j -β j , v k = α k -β k belong to the plane a 1 x + a 2 y + a 3 z = 0 in Q 3 . So there is a rational relation of the form µ i v i + µ j v j + µ k v k = 0.
Multiplying by some integer, we may choose the µ i , µ j , µ k ∈ Z.

This gives 3 relations between the coordinates :

µ i (α i1 -β i1 ) + µ j (α j1 -β j1 ) + µ k (α k1 -β k1 ) = 0 (30) µ i (α i2 -β i2 ) + µ j (α j2 -β j2 ) + µ k (α k2 -β k2 ) = 0 ( 31 
)
µ i (α i3 -β i3 ) + µ j (α j3 -β j3 ) + µ k (α k3 -β k3 ) = 0 (32) 
From which we deduce that

(u αi ) µi (u βi ) µi × (u αj ) µj (u βj ) µj × (u α k ) µ k (u β k ) µ k = 1 (33) 
and consequently

(u αi ) µi (u αj ) µj (u α k ) µ k = (u βi ) µi (u βj ) µj (u β k ) µ k
Which we can rewrite as

(u αi ) µi (u αj ) µj (u α k ) µ k -(u βi ) µi (u βj ) µj (u β k ) µ k = 0.
This last expression can be put under the following form, whatever the sign of the µ i , µ j , µ k :

(u αi ) µi -(u βi ) µi (u αj ) µj (u α k ) µ k + (u αj ) µj -(u βj ) µj (u βi ) µi (u α k ) µ k + (u α k ) µ k -(u β k ) µ k (u βi ) µi (u αj ) µj = 0. Now the relation a k -b k = (a -b)(a k-1 + a k-2 b + • • • + b k-1
) applied to the first bracket shows that (u αi ) µi -(u βi ) µi = Q i × φ i where φ i is a quasi-homogeneous polynomial which is clearly not in ker(σ). And the same with the two other brackets. This ends the proof.

Notation : If Q = u ηλu θ is an approximate root, we denote by Q ′ the expression

Q ′ = u η u θ -λ. (34) 
Let G = ⊕ γ∈Γ G γ be a graded algebra without zero divisors. The saturation of G, denoted by G * , is the graded algebra

G * = { g h | g, h ∈ G, h homogeneous, h = 0}.
Assume that G γ ∼ = R for all γ ∈ Γ. Given γ ∈ Γ and f, g ∈ G γ , g = 0, the notation f g will mean the unique real number λ such that λg = f . The real number f g is independent of the choice of the isomorphism

G γ ∼ = R. (35) 
Note that the number λ can be interpreted as an element of G * 0 ∼ = R. Now let α, β ∈ Sper A. Let < α, β > be the separating ideal. Let µ α = ν α (< α, β >) and µ β = ν β (< α, β >). Let Q i , Q j be two common approximate roots of α, β such that Q i , Q j ∈ / < α, β >. Note that, since A m ∼ = R and α, β are centered at m, the graded algebras gr α (A) and gr β (A) satisfy the condition [START_REF] Priess-Crampe | Angeordnete strukturen: gruppen, körper, projektive Ebenen[END_REF].

Consider the natural homomorphism of graded algebras gr α0 A * σα / / gr α A * .

Let B α = σ α (gr α0 A * ) and similarly for β.

Since there are three approximate roots of complexity 1, common to α and β, there are at least two Q-linearly independent Q-linear dependence relations among ν α (x), ν α (y), ν α (z), valid also for ν β (x), ν β (y), ν β (z). Thus there is a natural graded isomorphism gr να0 A ι / / gr ν β0 A .

Since ι(ker σ α ) = ker(σ β ), the map ι induces an isomorphism B α → B β . We obtain the following diagram :

gr α0 A * σα / / # # G G G G G G G G ι gr α A * B α - ; ; x x x x x x x x ιB B β q " " E E E E E E E E E gr β0 A * σα / / ; ; x x x x x x x x x gr β A * . If ω i = M i 1 + • • • + M i
si is quasi-homogeneous and not in ker(σ), we have, for all j ∈ {1, . . . , s i }, ι(in α0 (M i j )) = in β0 (M i j ) and in α0

(ω i ) = in α0 (M i 1 ) + • • • + in α0 (M i si )
and similarly for β. From which we deduce that ι(in α0 (ω 4 )) = in β0 (ω 4 ). On the other hand, we have ι(in α0 (u α4 )) = in β0 (u α4 ) and the same with u α4 replaced by u α5 . Now we have ι in α0 (u α4 ω 4 ) in α0 (u α5 ω 5 ) = in β0 (u α4 ω 4 ) in β0 (u α5 ω 5 ) .

Passing to the images in B α and B β and taking into account that in α0 (u α4 ω 4 )∈ / ker(σ α ), we obtain the equality of non-zero real numbers

in α (u α4 ω 4 ) in α (u α5 ω 5 ) = in β (u α4 ω 4 ) in β (u α5 ω 5 ) . (39) 
Multiplying the equations ( 38) and (39), we obtain

in α (ω 4 )in α (u α4 )in α (Q ′ 4 ) in α (ω 5 )in α (u α5 )in α (Q ′ 5 ) = in β (ω 4 )in β (u α4 )in β (Q ′ 4 ) in β (ω 5 )in β (u α5 )in β (Q ′ 5 ) . (40) 
In other words, in

α (ω 4 Q 4 ) in α (ω 5 Q 5 ) = in β (ω 4 Q 4 ) in β (ω 5 Q 5 ) . 3a. in α ω 4 Q 4 + in α ω 5 Q 5 = 0. Then in β ω 4 Q 4 + in β ω 5 Q 5 = 0. Then ν α (Q ′ 6 ) > ν α (Q ′ 4 ) and ν β (Q ′ 6 ) > ν β (Q ′ 4 ), so Q 6 is comparable to Q 4 . 3b. in α ω 4 Q 4 + in α ω 5 Q 5 = 0. Then in β ω 4 Q 4 + in β ω 5 Q 5 = 0. Then, using (37), ν α (Q ′ 6 ) = ν α (Q ′ 4 ) and ν β (Q ′ 6 ) = ν β (Q ′ 4 ). Write the syzygy in the form ω ′ 4 Q ′ 4 + ω ′ 5 Q ′ 5 + ω ′ 6 Q ′ 6 = 0 where ν α (ω ′ 4 ) = ν α (ω ′ 5 ) = ν α (ω ′ 6 ) where, for i = 4, 5, 6, ω ′ i = ω i u αi . Now, in α Q ′ 6 in α Q ′ 4 = -in α ω ′ 4 ω ′ 6 Q ′ 4 -in α ω ′ 5 ω ′ 6 Q ′ 5 in α Q ′ 4 = -in α ω ′ 4 ω ′ 6 -in α ω ′ 5 ω ′ 6 in α Q ′ 5 in α Q ′ 4 = -in β ω ′ 4 ω ′ 6 -in β ω ′ 5 ω ′ 6 in β Q ′ 5 in β Q ′ 4 = in β Q ′ 6 in β Q ′ 4 and so again Q 6 is comparable to Q 4 .
From now on, assume that A is excellent.

6.1 Some of u 1 , u 2 , u 3 belong to the separating ideal

Assume that {u 1 , u 2 , u 3 }∩ < α, β > = ∅. The case u 1 , u 2 , u 3 ∈< α, β > is trivial since then < α, β >= m.
If u 1 ∈ / < α, β > and u 2 , u 3 ∈< α, β >, then the only relevant approximate roots appearing in [START_REF] Maclane | A construction for absolute values in polynomial rings[END_REF] and ( 26) are u 1 , u 2 , u 3 . Then all the inequalities defining C ′ are monomial in u 1 , u 2 , u 3 . So C ′ is connected by Corollary 5.2.

Finally, suppose that u 1 , u 2 ∈ / < α, β >, u 3 ∈< α, β >. Then all the approximate roots belong to {u

3 } ∪ R[u 1 , u 2 ].
After a suitable sequence of affine monomial blowings up A → A ′ such that Sper A ′ contains the common center m ′ of α ′ and β ′ , m ′ has a regular system of parameters u ′ 1 , u ′ 2 , u ′ 3 such that all the approximate roots are monomials in u ′ 1 , u ′ 2 , u ′ 3 up to multiplication by units of A ′ . Let ξ ′ be the unique point of Sper A ′ with support m ′ .

Let π : Sper A ′ → Sper A the induced map of real spectra. Write

Q δi = u ′δ ′ i v i , Q δji = u ′δ ′ ji v ji with v i , v ji ∈ A ′ \ m ′ . If C is as in (25), the set π -1 (C) contains the set C =    δ is centered at m ′ ν δ (u ′δ ′ i ) < ν δ (u ′δ ′ ji ), i ∈ {1, . . . , s}, j ∈ {1, . . . , N i } sgn δ u ′ ℓ = sgn α u ′ ℓ for all u ′ ℓ appearing in u ′δ ′ i for some i    . Take d ∈ R such that d > max 1≤i≤s N i × max 1 ≤ i ≤ s 1 ≤ j ≤ N i |v ji (ξ ′ )| |v i (ξ ′ )| . Let C =    δ is centered at m ′ |u ′δ ′ i (δ)| > d|u ′δ ′ ji (δ)| i ∈ {1, . . . , s}, j ∈ {1, . . . , N i } sgn δ u ′ ℓ = sgn α u ′ ℓ for all u ′ ℓ appearing in u ′δ ′ i for some i    .
C is connected by Corollary 5.2.

Then α ′ , β ′ ∈ C, hence α, β ∈ π( C), π( C) is connected and contained in {g 1 • • • g s = 0}. This completes the proof in the case when {u 1 , u 2 , u 3 }∩ < α, β > = ∅.

From now on, we assume {u 1 , u 2 , u 3 }∩ < α, β >= ∅ and that, unless otherwise specified, there are 3 relevant approximate roots Q 4 , Q 5 , Q 6 .

All the approximate roots are pairwise comparable

Without loss of generality, assume that ν α (Q ′ 6 ) ≤ ν α (Q ′ 4 ), ν α (Q ′ 6 ) ≤ ν α (Q ′ 5 ) and u 1 (α) > 0, u 2 (α) > 0, u 3 (α) > 0, Q 6 (α) > 0.

Write

Q 6 = - ω 4 ω 6 Q 4 - ω 5 ω 6 Q 5 . (41) 
Assume that ω5 ω6 Q 5 > α,β 0 (if the opposite holds, a similar reasoning applies). Then

Q 6 > α,β 0 ⇒ | ω4 ω6 Q 4 | > α,β | ω5 ω6 Q 5 |. There exists ǫ > 0 in R such that (1 -ǫ)| ω 4 ω 6 Q 4 | > α,β | ω 5 ω 6 Q 5 |. (42) 
Then

|Q 6 | > α,β ǫ| ω 4 ω 6 Q 4 |. ( 43 
)
We now describe the connected set required in the Connectedness Conjecture which we will define by inequalities among certain generalized monomials and sign conditions on the Q i . Let g 1 , . . . , g s ∈ A be as in the statement of the conjecture. Let

g i = Q δi + Ni j=1 c ji Q δji , i ∈ {1, . . . , s} (44) 
be the standard form of g i .

For each i ∈ {1, . . . , s}, in the sum Ni j=1 c ji Q δji replace Q 6 by the right hand side of (41) and write the result as a sum of generalized monomials (with possibly negative exponents) in u 1 , u 2 , u 3 , Q 4 , Q 5 :

N ′ i j=1 c ′ ji Q δ ′ ji .
In each generalized monomial Q δi , replace Q 6 by ǫ ω4 ω6 Q 4 and let c ′ i Q δ ′ i be the resulting generalized monomial.

Let D be the subset of Sper A consisting of points δ such that 

|c ′ i Q δ ′ i (δ)| > 1 N ′ i |c ′ ji Q δ ′ ji ( 
By definition of standard form, ν α (Q δi ) < ν α (Q δji ) for all i, j and similarly for ν β . By [START_REF] Vaquié | Famille admissible de valuations et défaut d'une extension[END_REF], this implies that ν α (Q δ ′ i ) < ν α (Q δ ′ ji ) for all i, j and the same for ν β . Thus inequalities (45) hold for δ = α and δ = β. This proves that α, β ∈ D. The polynomials g i have constant sign on D for all i because the inequalities ensure that the sign of g i is determined by the sign of its dominant monomial Q δi . With these conditions, using [START_REF] Vaquié | Extension d'une valuation[END_REF], we see that the signs of both Q 6 and Q δi are constant on D.

It remains to prove that α and β belong to the same connected component of D Let A → A ′ be a finite sequence of affine monomial blowings up such that Sper A ′ contains the common center m ′ of α ′ and β ′ and there is a regular system of parameters (x ′ , y ′ , z ′ ) at m ′ such that x ′ is a monomial in u 1 , u 2 , u 3 , y ′ = Q ′ 4 and z ′ = Q ′ 5 . For each inequality |cQ ǫ (δ)| < |dQ γ (δ)| (52) appearing in the definition of D, there exist ǫ ′ x , ǫ ′ y , ǫ ′ z , γ ′ x , γ ′ y , γ ′ z ∈ Z and elements u, v ∈ A ′ m ′ \ m ′ A ′ m ′ such that cQ ǫ = ux ′ǫ ′ x y ′ǫ ′ y z ′ǫ ′ z and dQ γ = vx ′γ ′ x y ′γ ′ y z ′γ ′ z . Take positive constants ũ, ṽ ∈ R such that |u| < ũ and |v| > ṽ. Then, for any δ ′ ∈ Sper A ′ m ′ , the inequality

|ũx ′ǫ ′ x (δ ′ )y ′ǫ ′ y (δ ′ )z ′ǫ ′ z (δ ′ )| < |ṽx ′γ ′ x (δ ′ )y ′γ ′ y (δ ′ )z ′γ ′ z (δ ′ )| ( 53 
)
implies the inequality (52) where δ is the image of δ ′ in Sper A. Since ν α (x ′ǫ ′ x y ′ǫ ′ y z ′ǫ ′ z ) > ν α (x ′γ ′ x y ′γ ′ y z ′γ ′ z ) (54) and similarly for β, the inequalities (53) hold for both δ ′ = α ′ and δ ′ = β ′ .

Let D ′ be the subset of Sper A ′ m ′ defined by all the resulting inequalities of the form (53) and the sign conditions sgn(x ′ (δ ′ )) = sgn(x ′ (α ′ )) (55) sgn(y ′ (δ ′ )) = sgn(y ′ (α ′ )) (56) sgn(z ′ (δ ′ )) = sgn(z ′ (α ′ )).

(57)

Conjecture 5

 5 Strong Connectedness Conjecture Let Σ be a regular ring. Then Σ has the Strong Connectedness Property at any pair of points α, β ∈ Sper Σ having a common specialization. Let A be a ring and α, β ∈ Sper A. Let p = √ < α, β >, let α 0 be the pre-image of α under the natural inclusion σ : Sper A p ֒→ Sper A and similarly for β 0 . Theorem 2.2 If Sper A p has the Strong Connectedness property at α 0 , β 0 , then A satisfies the Connectedness Conjecture at α, β.

Remark 3 . 3 Definition 3 . 4

 3334 In the situation of Definition 3.2, assume that sl(α) = ∞. Let k[z](sl(α)) be the field of fractions of k[z]p sl(α) . We can naturally identify k[z](sl(α)) with the ordered sub-field of k α generated over k by the image of yx . The field k[z](sl(α)) is a simple extension of k which can be algebraic as in the Example 2 above, or transcendental as in the Example 1. Let f ∈ Sper Σ. We say that f = 0 is tangent to α if ν α (f ) > ν α (p ξ ).

  By the same arguments, we have : b α + c 1s ≤ 0 in k α , b β + c 11 ≥ 0 and b β + c 1s ≤ 0 in k β . If we had b α + c 11 = 0 and b β + c 11 = 0, then b α = b

Corollary 3 . 7

 37 For any δ ∈ C ′ , x ′ (δ) > 0.Proof : It's a straightforward consequence of the preceding Lemma and proof. Of course,g ′ 1 (δ) > 0 ⇒ x ′ (δ)(b δ + c 11 ) ≥ 0 and g ′ s (δ) < 0 ⇒ x ′ (δ)(b δ + c 1s ) ≤0 where b δ is defined in a similar way as b α or b β . So x ′ (δ)(c 11c 1s ) ≥ 0, which proves the result. By Lemma 3.5, for any δ ∈ C, we have g ′ 1

4

  Graded algebras in the case of residue field R Theorem 4.1 Let (Σ, m) be a local ring with residue field R. Let α ∈ Sper Σ such that ν α is centered at m. For every γ ∈ Γ α , we have Pγ Pγ + ∼ = R. Proof : We have non-canonical inclusions R ⊂ P γ P γ+ ⊂ k α . Thus it is sufficient to prove that R ≡ k α . Take an element b ∈ k α and let b be a representative of b in R α . By definitions, there exists a ∈ Σ[α] such that |b| ≤ a. Since ν α is centered at m, we may take a to be a unit of Σ[α]. Let a be the image of a in Σ[α] mΣ[α] ∼ = R. Then |b| ≤ a. Hence b ∈ R as desired.

  δ)| i ∈ {1, . . . , s}, j ∈ {1, . . . , N i } sgn(u 1 (δ)) = sgn(u 1 (α)) (47) sgn(u 2 (δ)) = sgn(u 2 (α)) (48) sgn(u 3 (δ)) = sgn(u 3 (α)) (49) sgn(Q 4 (δ)) = sgn(Q 4 (α)) (50) sgn(Q 5 (δ)) = sgn(Q 5 (α))

  an excellent ring, C ′ is connected by([22],Theorem 3.35). So the image C of C ′ in X satisfies the conclusion of the Strong Connectedness Conjecture. Corollary 3.8 Let A be a ring, α, β ∈ Sper A, p = √ < α, β. Assume that the local ring A p is excellent regular of dimension at most 2. Then A has the Connectedness Property at α, β and hence satisfies the local Pierce-Birkhoff conjecture at α, β. This follows immediately from Theorem 2.2 and Theorem 3.1. All the results of this section remain true, with the same proofs if we drop the excellence hypothesis on A, but replace the Strong Definable Connectedness Conjecture by Definable Strong Connectedness Conjecture.

	Remark 3.9

  Proof : By the construction of approximate roots ([START_REF] Lucas | Approximate roots of a valuation and the Pierce-Birkhoff Conjecture[END_REF], section 1.2), Ex(Q) comes from a certain R-linear dependence relation among generalized monomials in approximate roots, preceding Q, of the same value. According to Theorem 4.1, any two such monomials are Rmultiples of each other. Now the result follows from the construction of approximate roots. Let (A, m, R) be an excellent regular local ring such that R ⊂ A. Let (u 1 , . . .

	5 Connectedness properties
	Theorem 5.1

Corollary 4.2 Assume in addition that Σ is regular and R ⊂ Σ. Let Q be an approximate root for α, then Ex(Q) is a difference of two generalized monomials in the approximate roots preceding Q. , u n ) be a regular system of parameters of A. Let C ⊂ Sper A be a constructible set such that all the elements of A appearing in formulae defining C belong to R[u 1 , . . . , u n ] (u1,...,un) . Let C ⊂ Sper R[u 1 , . . . , u n ] (u1,...,un) denote the constructible set defined by the same formulae as

Remark 5.5 1. We have α, β ∈ C.

2. C ∩ {g 1 • • • g s = 0} = ∅. Indeed, inequalities [START_REF] Maclane | Zero-dimensional branches of rank one on algebraic varieties[END_REF] imply that, for every δ ∈ C, g i (δ) has the same sign as Q δi (δ); in particular, none of the g i vanish on C.

3. To prove the Connectedness Conjecture it is sufficient to prove that α and β lie in the same connected component of C.

All the preceding remarks apply to C ′ . [START_REF] Birkhoff | Lattice-ordered rings[END_REF] The case when ht(p) = 3

Let (A, m) be an regular local ring of dimension 3 with residue field R contained in A. Let u 1 , u 2 , u 3 be a regular system of parameters of A such that ν α (u 1 ) ≤ ν α (u 2 ) ≤ ν α (u 3 ). Let α, β ∈ Sper A centered at m. In this case, the approximate roots of complexity 1 are binomials in u 1 , u 2 , u 3 (Corollary 4.2). Lemma 6.1 Every valuation ν admits at most three approximate roots of complexity one.

Proof : An approximate root of complexity 1 is an irreducible binomial ω 1ω 2 having the property that ν(ω 1ω 2 ) > ν(ω 1 ) = ν(ω 2 ). We now prove that there are only three possible types of approximate roots of complexity 1 (up to exchanging the 2 monomials in order to respect the monomial ordering defined in [START_REF] Lucas | Approximate roots of a valuation and the Pierce-Birkhoff Conjecture[END_REF], §1.2, after Definition 1.4), that means :

λ 1 , λ 2 , λ 3 ∈ R, with α 1 , β 2 , γ 3 the smallest exponents possible. By definition of approximate roots, the initial monomial of one approximate root cannot be divisible by the initial monomial of another. Therefore, there is at most one approximate root of each of the forms u β2 2λ 2 u α2 1 u γ2 3 and u γ3 3λ 3 u α3 1 u β3 2 . We claim that there is also at most one of the form u β1 2 u γ1 3λ 1 u α1 1 . Indeed suppose there were another one u

Without loss of generality we may assume that α 1 ≤ α ′ 1 . Then λ 1 (u

. Factoring out the greatest possible monomial, we obtain an approximate root of one of the forms [START_REF] Mahé | On the Pierce-Birkhoff conjecture[END_REF] or [START_REF] Mahé | On the Pierce-Birkhoff conjecture in three variables[END_REF], but with exponent of u 3 strictly less than γ 3 (respectively, exponent of u 2 strictly less than β 2 ), a contradiction. Remark 6.2 Note that, multiplying each of u 1 , u 2 , u 3 by a suitable non-zero element of R, we may assume λ i = 1 for all i = 1, 2, 3.

Consider a triple of binomials

and the same for β i , so that α i , β i belong to the plane a 1 x + a 2 y + a 3 z = ν 0 (u αi ).

In the same way, α j , β j belong to the plane a 1 x + a 2 y + a 3 z = ν 0 (u αj ) and α k , β k belong to the plane a 1 x + a 2 y + a 3 z = ν 0 (u α k ). Definition 6. [START_REF] Alvis | Local structure of the real spectrum of a surface, infinitely near points and separating ideals[END_REF] We say that the two approximate roots Q i , Q j are (α, β)-comparable if one of the following conditions holds :

We say that they are strongly comparable if, up to interchanging i and j, we have

where ν α0 is the monomial valuation such that ν α0 (x) = ν α (x), ν α0 (y) = ν α (y), ν α0 (z) = ν α (z) (which implies that (36) also holds with α replaced by β).

Remark 6.5 Note that "strongly comparable" implies "comparable". Indeed, write

Without loss of generality, we may write

We saw that there were at most 3 approximate roots of complexity 1 for ν α (and ν β ). Suppose there are three such approximate roots common to α and β, not in < α, β >, and denote them by Q 4 , Q 5 , Q 6 . Lemma 6.6 Q 4 , Q 5 , Q 6 are either all pairwise comparable or all pairwise incomparable.

Proof : Assume that 2 of those roots, say Q 4 and Q 5 , are comparable. Consider the syzygy ω 4 Q 4 +ω 5 Q 5 +ω 6 Q 6 = 0 where ω 4 , ω 5 , ω 6 are quasi-homogeneous polynomials, not belonging to ker(σ). Note that this syzygy implies that

We will prove that Q 6 is comparable to Q 4 and so, by symmetry, the same will hold for Q 6 and Q 5 . The following cases are possible :

). Now using the syzygy and (37), we obtain that ν α (ω

). Now, the value of ω 4 Q 4 + ω 6 Q 6 must be greater than the value of each summand because of the syzygy; in other words, the initial forms of the summands must cancel each other in the graded algebras of both ν α and ν β . Hence inαQ ′

), so by symmetry with the previous case

The set D ′ is connected by Corollary 5.2. Its image in Sper A is connected, contains α and β and is contained in the set {g 1 • • • g s = 0}. This completes the proof of the Connectedness Conjecture in the case when Q 4 , Q 5 , Q 6 are pairwise comparable. Remark 6.7 The same method works to prove the Connectedness conjecture also in the case when

6.3 The case when there are only one or two relevant approximate roots

Assume that there are exactly 2 approximate roots Q 4 , Q 5 ∈ / < α, β >, common to α and β. We proceed as in the case of 3 comparable approximate roots. This means that, after a suitable sequence of affine monomials blowings up

(remember the notation (34)). Then as above, we replace the inequalities of type (52) by inequalities involving only monomials as in (53). Once again we apply the Corollary 5.2 to ensure the existence of a set C as required.

The case with only one relevant approximate root, Q 4 , is more difficult.

Claim. There exists a connected subset C of C, which we will describe explicitly, containing α and β.

Proof : First, we consider the special case when A is the localization of the polynomial ring

a finite sequence of affine monomial blowings up with respect to α (see [START_REF] Lucas | On connectedness of sets in the real spectra of polynomial rings[END_REF], Proposition 6.1) such that u α4-β4 ∈ A i where u = (x, y, z). Let z i = u α4-β4 -1. By construction, A i is the localization of a polynomial ring of the form R[x i , y i , z i ], where x i , y i are monomials in x, y, z and z i = u α4-β4 -1, by the multiplicative set R[x, y, z] \ (x, y, z). Let u i = (x i , y i , z i ).

In A i the inequalities (26) can be rewritten as

Let C ⊂ Sper A i be the set defined by the stronger inequalities

and the sign conditions sgn(x i (δ)) = sgn(x i (α)), sgn(y i (δ)) = sgn(y i (α)), sgn(z i (δ)) = sgn(z i (α)). The set C contains the strict transforms of α and β.

Let D be the subset of Sper R[x i , y i , z i ] defined by the inequalities (59) and the same sign conditions as above.

Using the cartesian diagram

N } is connected, so applying Lemma 7.1 of [START_REF] Lucas | On connectedness of sets in the real spectra of polynomial rings[END_REF], we deduce that the intersection is a non empty closed connected set, so C is connected and contains the strict transforms of α and β, hence its image in Sper A is the desired connected set. This completes the proof when A = R[x, y, z] (x,y,z) . The general case now follows from Theorem 5.1.

6.4

The approximate roots are pairwise incomparable Lemma 6.8 At least two of Q 4 , Q 5 , Q 6 have ν α -value strictly greater than µα 2 (and similarly for ν β -value).

Proof : This is an immediate consequence of Definition 6.4 and Remark 6.5.

Without loss of generality, assume that

Proposition 6.9 Consider a generalized monomial Q γ divisible by one of

to the ideal generated by all the generalized monomials belonging to < α, β > and not divisible by any of

the result follows from Definition 6.4 and Lemma 6.5.

(b) By pairwise incomparability and (60), we have ν α (Q 5 ) + ν 0α (Q 5 ) ≥ µ α and similarly for β. As well,

Suppose, for example,

where ω, ǫ are monomials in x, y, z. Then Q γ belongs to the ideal generated by Q 5 ǫ, Q 5 ω and by (62

handled similarly. We now describe the connected set required in the Connectedness Conjecture by inequalities on the size of certain generalized monomials and sign conditions on the Q i . Let g 1 , . . . , g s ∈ A be as in the statement of the conjecture. Let

be the standard form of g i of level ν α (< α, β >.

Let S be a finite set of generalized monomials, not divisible by

belonging to < α, β >, which generate < α, β >. In addition, we require all the monomials Q λ ∈ S to have the following property : if

and similarly for Q 5 and Q 6 . Let T the set of all the generalized monomials not belonging to < α, β >.

Let C be the subset of Sper A consisting of points δ such that

where (i) Q θ , Q η run over all the pairs of elements of T satisfying (66) for δ = α and δ = β, (ii) Q γ , Q λ run over all the pairs of generalized monomials such that Q γ ∈ T , Q λ ∈ T ∪S and (65) holds for δ = α and δ = β.

Note that the definition of C implies that for all δ ∈ C, the binomials Q 4 , Q 5 , Q 6 are approximate roots for the valuation ν δ .

All points δ ∈ C share, by definition of C, the same approximate roots Q 4 , Q 5 , Q 6 . This implies that the dim Q ( 3 j=1 Qν δ (u i )) = 1, for all δ ∈ C (in particular, for δ = α and δ = β). Moreover, there exist r, s ∈ Q such that ν δ (u 2 ) = rν δ (u 1 ) and ν δ (u 3 ) = sν δ (u 1 ) for all δ ∈ C. Then each equality or inequality of ( 65), (66) may be written in a form containing only ν(u 1 ) and ν(Q 4 ), ν(Q 5 ), ν(Q 6 ). As ν δ0 (Q λ ) can be written purely in terms of ν(u 1 ) and as

, any relation of the form ( 65) or (66) may be written in terms of

Without loss of generality, assume that

Replacing α by α ′ lying in C such that

and Γ α ′ ⊂ R does not change the problem and similarly for β. From now on, we will assume that Γ α ⊂ R and Γ β ⊂ R.

Let

φ :

be the map defined by

and only if one of the following conditions holds

Proof : Write the syzygy in the form

The "only if" part follows from this.

"If" : Suppose, for example, that a 2 = a 3 ≤ a 4 . Consider a sequence of blowings up A → A ′ such that A ′ has a maximal ideal m ′ with a regular system of parameters (x

Then δ is centered in m and has Q 4 , Q 5 , Q 6 as approximate roots. this proves that (a 1 , a 2 , a 3 , a 4 ) ∈ Im(φ).

Next, we reduce the problem to the case when each of the inequalities (65) and equalities (66) involves at most one of Q 4 , Q 5 , Q 6 (possibly raised to some power). Namely let h 1 , . . . , h p be the complete list of inequalities (65) and equalities (66). We order the h i in such a way that all the inequalities-equalities involving at most one of Q 4 , Q 5 , Q 6 come first and those involving at least 2 of Q 4 , Q 5 , Q 6 come later. In each of the above two lists, we order the inequalities-equalities by the value of the left-hand side. Lemma 6.12 Assume Proposition 6.10 is true in the special case when each h i contains at most one of Q 4 , Q 5 , Q 6 . Then it is true in general.

Proof : We argue by contradiction. Suppose that Proposition 6.10 is false for h 1 , . . . , h p . Without loss of generality, we may assume that Proposition is true for h 1 , . . . , h p-1 . Let C ⊃ C be the set defined by the same conditions as C except for h p . By assumptions, C contains a point ǫ such that ν ǫ (Q

). In the following formulae, the notation

means "the set of all the points of R 4 of the form (ν δ (u 1 ),

)) where δ satisfies (78)". This notation makes sense because because ν δ (Q γ ) and ν δ (Qλ) are completely determined by (ν δ (u 1 ),

). The set (78) is contained in a hyperplane H of R 4 , defined by a linear equation with rational coefficients, and contains the subset of H satisfying the conditions (77).

If h p is a strict inequality, write h p in the form ν δ (Q γ ) < ν δ (Q λ ) and consider two segments in R 4

) and the left endpoint of

satisfies the conditions (77), so does every point of that interval. The same holds for the interval

))]. Since ǫ∈ /C, the following intersections are non empty; each of them consists of one point

and

Take points α 0 ∈ φ -1 ((a 1 , a 2 , a 3 , a 4 )) and

In particular

21

and at least one of the two inequalities is strict. Note that α 0 = β 0 . Suppose the inequality (85) is strict. Let h p0 be the equality

If h p is an equality, put α 0 = α, β 0 = β and let h p0 = h p .

We can now contradict (85), (86) as follows. Suppose, for example, that h p0 has the form

a ≥ 1 and write

Then Q a-1 4 ωǫ 4 and ǫ 5 η do not belong to < α, β > and the relation between ν α (Q a-1 4 ωǫ 4 ) and ν α (ǫ 5 η) (which may be <, = or >) belongs to the list h 1 , . . . , h p-1 . Therefore, this relation is the same for α 0 and β 0 . From this, it follows that the relation between ν

) (which may be <, = or >) is the same for δ = α 0 and for δ = β 0 . This contradicts (85), (86).

We now need the following geometric lemma. Lemma 6.13 -Tetrahedron Lemma -Consider 4 points of R 3 , P, Q, R, S, not lying in the same plane. Then they define an affine basis of R 3 and let (u, v, w, t) be the barycentric coordinates with respect to this basis (so u + v + w + t = 1). Let A be a point with coordinates (u 1 , v 1 , w 1 , t 1 ) such that u 1 , v 1 , w 1 , t 1 > 0 and u 1 = v 1 ≤ w 1 and B be a point with coordinates (u 2 , v 2 , w 2 , t 2 ) such that u 2 , v 2 , w 2 , t 2 > 0 and v 2 = w 2 ≤ u 2 . Consider a finite set of linear inequalities of the form g i ≥ 0, i = 1, . . . , m such that for all i ∈ {1, . . . , m}, g i (A) ≥ 0 and g i (B) ≥ 0. Moreover suppose that, for each given i, only one of u, v, w appears in g i , which means that the plane g i = 0 passes at least through two of the points P, Q, R.

Then there exists a point D with coordinates (λ/3, λ/3, λ/3, 1λ), 0 ≤ λ ≤ 1 such g i (D) ≥ 0 for all i ∈ {1, . . . , m}.

Proof : Let I be the point with coordinates (1/3, 1/3, 1/3, 0). Without loss of generality, we may assume that, for all i, the plane {g i = 0} intersects the segment IS in a point M i between I and S.

Let i be such that g i (R) = 0. Then the intersection of {g i = 0} with the triangle RIS is the segment RM i .

Let A 1 and A 2 be the points of IS defined by Let us show that B ′ ∈ [SA 2 ]. Now, if A 2 is defined by a plane of the form g i = 0 with g i (R) = 0 and g i (P ) = 0, then necessarily, B ′ is closer to S than A 2 .

So we may assume that A 2 is defined by a plane of the form ukt = 0. If A 2 is closer to S than B ′ , then P and B ′ are both in the same half-space whose boundary is the plane A 2 QR with equation ukt = 0. Then (ukt)(B) > 0. But, because, (ukt)(A) < 0 so also (ukt)(B) < 0, which is a contradiction. We prove the same way that A 1 ∈ [SB ′ ]. So B ′ lies between A 1 and A 2 as desired.

Applying the Tetrahedron Lemma to all the relations of the form (65) or (66) ensures the existence of a point D on IS satisfying the same relations. Consider a point δ ∈ Sper A such that ν δ has the same three approximate roots Q 4 , Q 5 , Q 6 and satisfying moreover the fact that the coordinates (ν(u 1 ), ν(Q ′ 4 ), ν(Q ′ 5 ), ν(Q ′ 6 )) correspond to the point D, then δ ∈ C. So we are reduced to the limit case (see Remark (6.7)) where all the approximate roots are pairwise comparable for the couple (α, δ) and for the couple (β, δ). This defines two connected sets C 1 and C 2 , avoiding all {g i = 0}, and such that C 1 contains α and δ and C 2 contains β and δ. So letting C = C 1 ∪ C 2 gives a connected set as required.

This settles the last remaining case ((Q 4 , Q 5 , Q 6 ) pairwise incomparable) and with it Theorem 1.14.