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Abstract

This paper represents a step in our program towards the proof of the Pierce—Birkhoff
conjecture. In the nineteen eighties J. Madden proved that the Pierce-Birkhoff conjecture
for a ring A is equivalent to a statement about an arbitrary pair of points «, 8 € Sper A and
their separating ideal < «, 8 >; we refer to this statement as the local Pierce-Birkhoff
conjecture at «, 8. In [2I] we introduced a slightly stronger conjecture, also stated for a
pair of points «, 8 € Sper A and the separating ideal < «, 8 >, called the Connectedness
conjecture. In this paper, for each pair («, ) with ht(< «,8 >) = dim A, we define a
natural number, called complexity of («, 8). Complexity 0 corresponds to the case when one
of the points «, 8 is monomial; this case was settled in all dimensions in [2I]. In the present
paper we introduce a new conjecture, called the Strong Connectedness conjecture, and
prove that the strong connectedness conjecture in dimension n — 1 implies the connectedness
conjecture in dimension n in the case when ht(< «,8 >) < n — 1. We prove the Strong
Connectedness conjecture in dimension 2, which gives the Connectedness and the Pierce—
Birkhoff conjectures in any dimension in the case when ht(< «,8 >) < 2. Finally, we
prove the Connectedness (and hence also the Pierce-Birkhoff) conjecture in the case when
dim A = ht(< a, 8 >) = 3, the pair («, 8) is of complexity 1 and A is excellent with residue
field R.

1 Introduction

All the rings in this paper will be commutative with 1. Let R be a real closed field. Let
B =R[z1,...,x,]. If Aisaring and p a prime ideal of A, x(p) will denote the residue field
of p.

The Pierce-Birkhoff conjecture asserts that any piecewise-polynomial function f : R™ —
R can be expressed as a maximum of minima of a finite family of polynomials in n variables.
We start by giving the precise statement of the conjecture as it was first stated by M.
Henriksen and J. Isbell in the early nineteen sixties.

Definition 1.1 A function f : R™ — R is said to be piecewise polynomial if R" can be
covered by a finite collection of closed semi-algebraic sets P; such that for each i there exists
a polynomial f; € B satisfying f|P1_ = fi

P;e



Clearly, any piecewise polynomial function is continuous. Piecewise polynomial functions
form a ring, containing B, which is denoted by PW(DB).

On the other hand, one can consider the (lattice-ordered) ring of all the functions obtained
from B by iterating the operations of sup and inf. Since applying the operations of sup and
inf to polynomials produces functions which are piecewise polynomial, this ring is contained
in PW(B) (the latter ring is closed under sup and inf). It is natural to ask whether the two
rings coincide. The precise statement of the conjecture is:

Conjecture 1 (Pierce-Birkhoff) If f : R™ — R is in PW(B), then there exists a finite
family of polynomials g;; € B such that f = supinf(g;;) (in other words, for all x € R™,
i J

flz) = sup ir;f (9 (x)))-

This paper is a step in a program for proving the Pierce-Birkhoff conjecture. The starting
point of this program is the abstract formulation of the conjecture in terms of the real
spectrum of B and separating ideals proposed by J. Madden in 1989 [26].

For more information about the real spectrum, see [7]; there is also a brief introduction
to the real spectrum and its relevance to the Pierce-Birkhoff conjecture in the Introduction

to [21].

Terminology: If A is an integral domain, the phrase “valuation of A” will mean “a valuation
of the field of fractions of A, non-negative on A”. Also, we will sometimes commit the
following abuse of notation. Given a ring A, a prime ideal p C A, a valuation v of % and

an element x € A, we will write v(x) instead of v(x mod p), with the usual convention that
v(0) = oo, which is taken to be greater than any element of the value group.

Recall some notation : For a point o € Sper A we denote by p, the support of «, by
Ala] = pia and by A(«) the field of fractions of Ala]. We also let v, denote the valuation
associated to a, I',, the value group, R, the valuation ring, k, its residue field and gr,, (A)
the graded ring associated to the valuation v,. For f € A with v = v,(f), let in, f denote

. . P,
the natural image of f in P

Finally, if k is any field, we denote by k its real closure.

Definition 1.2 Let
f: Sper A — H A(a)
aeSper A

be a map such that, for each o € Sper A, f(a) € A(a). We say that f is piecewise polyno-
mial (denoted f € PW(A)) if there exits a covering of Sper A by a finite family (S;)icr of
constructible sets, closed in the spectral topology and a family (f;)icr, fi € A such that, for
each a € S5, f(a) = fi(a).

We call f; a local representative of [ at o and denote it by fo (fo is not, in general,
uniquely determined by f and «; this notation means that one such local representative has
been chosen once and for all).

Definition 1.3 A ring A is a Pierce-Birkhoff ring if, for each f € PW(A), there exists a
finite collection {fij}i; C A such that f = sup, inf; fi;.

The generalized Pierce-Birkhoff Conjecture says:

Conjecture 2 (Pierce-Birkhoff Conjecture for regular rings) Let A be a regular ring.
Then A is a Pierce-Birkhoff ring.

Madden reduced the Pierce-Birkhoff conjecture to a purely local statement about sepa-
rating ideals and the real spectrum. Namely, he introduced

Definition 1.4 Let A be a ring. For o, € Sper A, the separating ideal of a and 3,
denoted by < «, B >, is the ideal of A generated by all the elements f € A which change sign
between o and 3, that is, all the f such that f(a) >0 and f(8) < 0.



Definition 1.5 A ring A is locally Pierce-Birkhoff at «, B if the following condition holds :
let f be a piecewise polynomial function, let fo € A be a local representative of f at o and
fa € A a local representative of f at B. Then fo — fg €< a,f >.

Theorem 1.6 (Madden) A ring A is Pierce-Birkhoff if and only if it is locally Pierce-
Birkhoff for all v, 8 € Sper A.

Remark 1.7 Assume that (3 is a specialization of . Then

(1) < a,B >=pg.

(2) fo — f5 € pg. Indeed, we may assume that fo # fg, otherwise there is nothing to
prove. Since 5 € {a}, fo is also a local representative of f at §. Hence fo(B) — fs(8) =0,
50 fa — [ €Pp.

Therefore, to prove that a ring A is Pierce-Birkhoff, it is sufficient to verify the Definition
[ for all o, f such that neither of o, 8 is a specialization of the other.

In [21], we introduced

Conjecture 3 (the Connectedness conjecture) Let A be a regular ring. Let o, €
Sper A and let g1, . .., gs be a finite collection of elements of A\ < «, 8 >. Then there exists a
connected set C C Sper A such that a, 8 € C and CN{g; =0} =0 fori € {1,...,s} (in other
words, a and 3 belong to the same connected component of the set Sper A\ {g1...gs = 0}).

In the paper [21I], we stated the Connectedness conjecture (in the special case when A
is a polynomial ring) and proved that it implies the Pierce-Birkhoff conjecture. The same
proof shows that the Connectedness Conjecture implies the Pierce-Birkhoff Conjecture for
an arbitrary ring.

Definition 1.8 A subset C of Sper A is said to be definably connected if it is not a union
of two non-empty disjoint constructible subsets, relatively closed for the spectral topology.

Definition 1.9 Definable Connectedness Property Let A be a ring. Let o, B € Sper A.
We say that A has the Definable Connectedness Property at o, B if, for any finite collection
J1s---,gs of elements of A\ < «, B >, there exists a definably connected set C C Sper A such
that a, 8 € C and CN{g; =0} =0 fori € {1,...,s} (in other words, o and (3 belong to the
same definably connected component of the set Sper A\ {g1...gs =0}).

Conjecture 4 (Definable Connectedness Conjecture) Let A be a regular ring. Then
A satisfies the Definable Connectedness Property at any o, € Sper A.

Exactly the same proof which shows that the Connectedness Property implies the Pierce-
Birkhoff Conjecture applies verbatim to show that the Definable Connectedness Property
implies the Pierce-Birkhoff conjecture for any ring A.

One advantage of the Connectedness conjecture is that it is a statement about A (resp.
about polynomials if A = B) which makes no mention of piecewise polynomial functions.

The Connectedness Conjecture is local in @ and §. The purpose of this paper is to
associate to each pair («, ) with ht(< a,8 >) = dim A a natural number, called the
complexity of (a, 8), and prove the Connectedness Conjecture in the simplest case, according
to this hierarchy, which is open : that of dimension 3 and complexity 1.

Definition 1.10 Let k be an ordered field. A k-curvette on Sper A is a morphism of the
form
a: A= k[[M]],

where I is an ordered group. A k-semi-curvette is a k-curvette a together with a choice of
the sign data sgn x1,..., sgn x,, where xy, ..., x, are elements of A whose t-adic values induce
an Fa-basis of T'/2T.



We explained in [22] how to associate to a point a of Sper A a k,-semi-curvette. Con-
versely, given an ordered field k, a k-semi-curvette o determines a prime ideal p,, (the ideal
of all the elements of A which vanish identically on «) and a total ordering on A/p, induced
by the ordering of the ring k [[tFH of formal power series.

Below, we will often describe points in the real spectrum by specifying the corresponding
semi-curvettes.

Let (A, m, R) be a regular local ring of dimension n and v a valuation centered in A;
let ® = v(A\ {0}); ® is a well-ordered set. For an ordinal A, let 5 be the element of ®
corresponding to .

Definition 1.11 A system of approximate roots of v is a countable well-ordered set
Q = {Qi}ien, Qi € A, minimal in the sense of inclusion, satisfying the following condition
: for every v-ideal I in A, we have

J

1={JJ@r Z%‘V(Qj)ZV(I) A (1)

By definition, each Q@ € Q comes equipped with additional data, called the expression of Q and
denoted by Ex(Q). The expression is a sum of generalized monomials involving approximate
roots which precede Q) in the given order.

A system of approximate roots of v up to yn is a well-ordered set of elements of A
satisfying (@) only for v-ideals I such that v(I) < 7.

A finite product of the form Q" =[] Q;’j withn; € N is called o generalized monomial.

J
We order the set of generalized monomials by the lexicographical order of the pairs (v(Q"),n)

(cf. [22], below Definition 1.4).

In paragraph 1.2, Theorem 1.7 of [22], we constructed a system of approximate roots up
to some 7, @;, recursively in . From now on, we fix this system of approximate roots once
and for all.

Let uq, ..., u, be a regular system of parameters of A.

Definition 1.12 Let i € N be a natural number, consider an approximate root (Q, Ex(Q)).
The notion of Q being of complexity i is defined as follows. We say that Q is an approximate
root of complexity 0 if Q € {uy,...,un}. Fori > 0, we say that Q is of complexity i if all
the approximate roots appearing in Ex(Q) are of complexity at most i — 1 and at least one
approximate root appearing in Ex(Q) is of complexity precisely i — 1.

Fix a, 8 € Sper A and consider the Connectedness conjecture for this pair («, 3). Assume
V< a,B > =m. We now define a natural number, called the complexity of («, 3).

Definition 1.13 The complexity of («, B) is the smallest natural number i such that every
Vo-ideal containing < o, > is generated by generalized monomials involving approximate
roots of complexity at most i.

In [21], we proved the Connectedness conjecture for polynomial rings of arbitrary dimen-
sion over a real closed field and pairs («, 8) of complexity 0. Using Corollary below,
based on [3], Chapter VII, 8.6, we can extend this result to the case of excellent regular local
rings A of arbitrary dimension and pairs («, 3) of complexity 0.

In this paper, we will assume that R = R. In this case, Ex(Q) is a binomial in the
approximate roots preceding ) as we show below. The main result of this paper is :

Theorem 1.14 Let (A, m,R) be an excellent 3-dimensional reqular local ring such that R —
A. Let a, B € Sper A. Assume that one of the following holds :
(1) ht(< a, 8 >) <2



(2) ht(< «, B >) = 3 and either {uy,uz,us}N < o, B ># 0 or (a, B) is of complexity at
most 1.
Then the Connectedness Conjecture (and hence the Local Pierce-Birkhoff Conjecture) holds

for (o, B).
Fix a, 8 € Sper A and let p = /< a, 8 >. The case when ht(p) = 1 is easy. The proof

given in [22] works verbatim in any dimension.

The present paper is organized as follows.

In §2l we state a new conjecture, called the Strong Connectedness Conjecture. We show
that the Strong connectedness conjecture in dimension n — 1 implies the Connectedness
conjecture in dimension n whenever ht(p) < dim A.

In §3] we prove the Strong Connectedness Conjecture for arbitrary regular local rings of
dimension 2. We deduce the Connectedness Property and the local Pierce-Birkhoff Conjec-
ture for any ring A (of any dimension) and «a, 8 € Sper A such that ht(< «, 8 >) = 2 and
A j=aps is regular.

{4 is devoted to the study of graded algebras associated to points of real spectra in the
case when the residue field of our local ring is R.

In §5] we prove a comparison theorem between connected components of a constructible
subset C' C Sper A and those of the set C' C Sper R[uy, ... s Un] (uy,...,u,) defined by the same
formulae as C.

Finally, we describe some subsets of Sper A, containing « and 3, which will be later
proved to be connected, thus verifying the Connectedness Conjecture.

In §6] we prove the Connectedness conjecture in the Case 2 of the Theorem [[LT4]

2 The Strong Connectedness Conjecture

Let dim A = 3 and ht p = 2. A natural idea would be to apply the already known 2-
dimensional connectedness conjecture to the regular 2-dimensional local ring A,. Then one
would construct a sequence of point blowings up 7 : X[ — Sper A, and a connected set
in XZ satisfying the conclusion of the conjecture. Finally, we would construct a sequence
7 : X; — Sper A of blowings up of points and smooth curves whose restriction to the generic
point of V(p) is 7.

The difficulty with this approach is that the 2-dimensional connectedness conjecture
cannot be applied directly. Indeed, let g1,...,gs be as in the connectedness conjecture and
let A, C T, denote the greatest isolated subgroup not containing v, (p).

The hypothesis g;¢ < a, > does not imply that ¢;¢ < «, 8 > Ap: it may happen that
va(9i) < va(< a,B >), va(g) — va(p) € Ay and so g; €< o, 8 > Ay, as we show by the
example below.

Example. Let «, 8 be given by the curvettes

z(t) = ¢t (2)
y(t) = O 410 (3)
2(t) = ¢ 4D (4)

where b € {by,bs} C R and ¢ € {ca,cs} C R and ¢tV > 0,t:9 > 0. The constants
ba,bs, Ca, cp will be specified later. Let fi = 2z — y?, fo = 2 — yz, f3 = 2%y — 2%; consider
the ideal (f1, fo, f3). The most general common specialization of «, 8 is given by the curvette

o(t) = (5)
y(t) = ¢ (6)
() = 15, (7)

t > 0. The corresponding point of Sper A has support (f1, f2, f3), so p = V< a,8> =
(f1, f2, f3). Let (za(t),ya(t), za(t)) and (z5(t),ys(t), 25(t)) be the curvettes defining a and



B as in @)-). Let us calculate fi(za(t),ya(t),za(t)) and fi(zs(t),ys(t), z5(t)). In the
notation of (2)-@) we have

fila(®),y(t),2(t) = (c—20)t0Y + f{ (8)
Fala()y(t), (1)) = —(c+ )t + fo (9)
Fa(a(),y(t),2(t) = (b—20)t"0 + f, (10)

where ﬁ stands for higher order terms with respect to the ¢-adic valuation. Choose b, bg, cq,
cg so that none of fi, fa, f3 change sign between a and §. The smallest v, value of an
element which changes sign between « and f is (1,4) + (0,4) = (1,5) + (0,3) = (1,8), so
vo(< o, 8 >) =(1,8). Thus we have fid < o, 8 >, but f; €< a, > Ay, as desired.

Thus we are naturally led to formulate a stronger version of the Connectedness Conjec-
ture, one which has exactly the same conclusion but with somewhat weakened hypotheses.
This phenomenon occurs in all dimensions, as we now explain.

Definition 2.1 Strong Connectedness Property Let X2 be a ring, o, B € Sper X, having
a common specialization €. We say that ¥ has the Strong Connectedness Property at o, B if
given any gi,...,gs € X\ (pa UPpg) such that for all j € {1,...,s},

Va(9i) Sva(< . B>), vp(gi) <wvp(<a,f>) (11)

and such that no g; changes sign between o and B, the points o and B belong to the same
connected component of Sper X\ {g1---gs = 0}.

Conjecture 5 Strong Connectedness Conjecture Let ¥ be a regular ring. Then X has
the Strong Connectedness Property at any pair of points o, € Sper 3 having a common
specialization.

Let A be a ring and «, 8 € Sper A. Let p = /< a,f >, let ag be the pre-image of «
under the natural inclusion o : Sper A, < Sper A and similarly for Jo.

Theorem 2.2 If Sper A, has the Strong Connectedness property at o, Bo, then A satisfies
the Connectedness Conjecture at v, 3.

Proof : Let g1,...,gs € A be the elements appearing in the statement of the Connectedness
Conjecture. Renumbering the g;, if necessary, we may assume that ¢1,...,9¢ < ag, B0 >
and gi41,...,9s €< ag,Bo >. The condition ¢;41,...,9s €< g, o > implies that, for
ie{l+1,...,8} Vay(9i) = Vao (< a0, Bo >).

By hypothesis, there exists a connected set Cy C Sper A, ap, S0 € Co such that Cy C
{g1---gs # 0}. Then o(C)) satisfies the conclusion of the Connectedness Conjecture for
Ao, 8,915,095 O

In the next section we will use Zariski’s theory of complete ideals to prove the Strong
Connectedness Conjecture in dimension 2, and hence also the Connectedness conjecture in
dimension 3, when ht(p) = 2.

3 The case when the height of p is 2

Theorem 3.1 Conjecture [l is true when X is of dimension 2.

Proof : If one of «, B is a specialization of the other, the result is trivially true, because the
connected component of Sper ¥\ {g;1 - - - gs = 0} containing the more general point among «
and [ satisfies the conclusion of the conjecture. From now on we shall assume that none of
« and f is a specialization of the other.

Let z be a new variable. We will say that a point 7 € Sper k2] is closed if {n} = {n}.



Consider a point a € Sper X, dim X = 2. Let & be the most special specialization of
a. Assume that ht(pg) = 2 and o # . Let (2,y) be a regular system of parameters of ¥,
and let k be the residue field k = %. Let p : X — Sper ¥ be the blowing up of Sper X

along (z,y). Let o’ be the strict transform of o in X (see [22], Definitions 3.19 and 3.20).
If vo(y) > va(x) then o € Sper X[4]. Consider the homomorphism X[2] — k[z] which

maps £ to z and elements of ¥ to their image in k. In this way, we identify Sper k[z] with

Sper £[2]1 57 (¢).

Definition 3.2 The slope of a, denoted by sl(«), is the following element of Sper k[z]U{oco}

-if va(x) > va(y), sl(a) := oco;

- if vo(x) <val(y), sl(a) is the most special specialization of o/ in Sper L[]

Let o, B € Sper 3 be the two points centered at & and having the same slope. We say
that o and 8 point in the same direction if sgn(xz(a)) = sgn(xz(B)) when sl(a) # oo (resp.
sgn(y(a)) = sgn(y(B)) when sl(a) = oo). Otherwise we say that o and 5 point in different
direction.

Examples : Let ¥ = Q[z, y].

1. Let « be the point of Sper ¥ given by the following semi-curvette Q[z, y] < Q(m)[[t]]
such that x — ¢, y — wt. Then £ is the closed point with support (z,y) and the slope of « is
the point of Sper Q[z] such that for any rational number p/q we have z > p/q <= 7 > p/q.

2. Let a be a point of Sper ¥ such that v, (z) = va(y) > 0, v (y* — 222) > 2v,(x). Then
¢ is the closed point with support (z,y) and the slope of « is the point of Sper Q[z] with
support (22 — 2).

Remark 3.3 In the situation of Definition[32, assume that sl(«) # oco. Let k[z](sl(a)) be

the field of fractions of pkl[(z]) . We can naturally identify k[z](sl(«)) with the ordered sub-field

of ko generated over k by the image of £. The field k[z](sl()) is a simple extension of k
which can be algebraic as in the Example 2 above, or transcendental as in the Fxample 1.

Definition 3.4 Let f € Sper ©. We say that f = 0 is tangent to a if vo(f) > va(pe).

First assume that « and 8 have the same tangent, and that they are facing in different
directions along that tangent. Then < a, 8 >= pe. We want to show that, for all i, g;&pe.
Assume that g; € pe. Write g; = az + by + §; where a,b € ¥ and §; € (x,y)?. We may
assume that the common slope to a and § is not co. Then

Va(gi) = Va(pﬁ) = Va(x) < va(y) (12)
va(gi) = va(pe) =vp() < vp(y). (13)

Hence either adpe or (vo(z) = va(y)) and bepe. In particular, sgna(g;) = sgna(az + by)
and similarly for sgng.

Let k[z](sl(c)) be as in the previous remark. By (I2)) and (I3), the natural image of a+b2
in k[z](sl(a))is non zero. Since av and B have the same slope, they induce the same order
on k[z](sl(c)). Hence a + b% does not change sign between « and 3, so z(a + b%) changes
sign between « and S, which is a contradiction. Hence g;¢pe. Then a small connected
neighbourhood U (small enough so that {g;---gs =0} NU = 0) of ¢ satisfies the conclusion
of Conjecture Bl This proves the Theorem in the special case when « and S have the same
slope but point in different directions.

From now on assume that if @ and g have the same slope, they point in the same direction.

Let m : X’ —+ X = Sper A the shortest sequence of blowings up such that the strict
transforms o and 5’ of a and 3 have the same specialization ' with ht(pe) = 2 and distinct
slopes (see [22], by iterating Proposition 3.31). Note that, if g; denotes the strict transform
of g;, then the g} such that g}(§) # 0 play no role and if ¢;(¢) = 0, by ), {¢g; = 0} cannot
be tangent to o’ or 8’ or to the last exceptional divisor if it exists. Let Ox/ ¢ be the local



ring of X’ at £ and let 2/, y’ be a regular system of parameters such that {«’ = 0} is the
last exceptional divisor if it exists and {y’ = 0} the second one if any. In the case we had
not to blow up, we take an z’ such that {2’ = 0} is not tangent to o/, 8" or any of {¢g; = 0}
and such that 2/(o/) > 0 and 2/(8’) > 0. Note that 2’ does not change sign between « and
B (otherwise the blowing up sequence 7 would have stopped at an earlier stage). Replacing
2’ by —2’ if necessary, we may assume that z'(a’) > 0, 2/(5") > 0.

Let us introduce the following total ordering on the set {g},...,g5}. Write each g} as a
formal power series in the formal completion Ox: ¢ — k'[[2/, Y]] as

o0
g} = y' + Zcij,f/z with Cij € K.

i=1
This is possible because of the choice of z’,3’, the non tangency of {g; = 0} with o, 3’
and the last exceptional divisor. We compare gé and g, by comparing the monomials in
lexicographic ordering. Namely, we take the smallest i such that ¢;; # c;¢ and we say that
Jj = Lif ¢;; < c;p. Without loss of generality, we may assume that gj(a/) > 0,...,gp(a’) > 0,
gri1 (@) <0,...,9i(a') <Oand alsothat 1 < ... <, L+1<...<s.

Lemma 3.5 Let j,q € {1,...,4}, j < q. Then {g; > 0,2" >0} C {g, > 0,2" > 0}.

Let j,q € {{+1,...,s}, j < q. Then {g; > 0,2" >0} C {g; > 0,2' > 0}.
Proof : In the first case, we have to prove that g;(d) > 0 = gj(6) > 0. Write g} =
y/ + Cle/ 4ot Cijfﬂli + I/iJrl(.”) and gzlz _ y/ + Cqul NI Cin/i + x/iJrl(”.) with
ckj = cpg for k=1,...,i—1 and ¢;; < ¢;q. We have gfl — g;- = (¢iqg — ¢ij)z'"u where u is
a positive unit of k'[[z",y]]. So g, — g; = dz'" in Ox/ ¢ with d € Ox/ ¢ \ mx/ ¢ such that
d = ¢iq — ¢i; mod mx/ ¢, in particular d(6) > 0.

And the same with the second inclusion. [

Lemma 3.6 We have c11 > ci5.

Proof : Note that we have

g1() =y (') + cnd(a’) + 2/ (a')?hy > 0 (14)
91(8) =y (B) + ena’ (8') + 2/ (8')?h1 > 0 (15)
gs(@) = ¢/ () + c12’ () + 2’ (@) *hs < 0 (16)
9s(8) = ' (B) + crs2’ (B') + 2 (8')%hs <0 (17)
where hy, hs € K'[[2/,y]].
Write o as curvette :
a(t) = @)y
y/(t) — batl’a(zl) + ...

where b, is the natural image of % in k.

Then ¢} (/) > 0 < ¢/ + cna’ + 2%hy > 0 & /() + enna/(t) + 2/ ()b (t) = (ba +
cll)t”a(m,) + - > 0 in ku[[t"=]], so by 4+ c11 > 0 in k,. By the same arguments, we have
D bo+cis £ 0in kg, bg+c11 > 0 and bg + c1s < 0 in kg. If we had by + 11 = 0 and
bg + c11 = 0, then by, = bg = —c11 € k'. Hence k[z](sl(a/)) = k[2](sl(8")), which contradicts
the fact that o and 8’ have different slopes. Thus, at least one of the inequalities ([4]) and
(@3 is strict, say b, + ¢11 > 0 for instance. Together with the inequality (@], this implies
that c11 > c15. O

Let
C"={g1 > 0,9, < 0}.

By definition C” contains o and 3, so is non empty.



Corollary 3.7 For any ¢ € C’, 2/(§) > 0.

Proof : It’s a straightforward consequence of the preceding Lemma and proof. Of course,
g1(8) > 0= 2'(6)(bs +c11) > 0 and ¢4(d) < 0= z'(5)(bs + c15) < 0 where bs is defined in a
similar way as by or bg. So 2'(0)(c11 — ¢15) > 0, which proves the result. O

By Lemma B3, for any ¢ € C, we have g}(d) > 0,...,9y(5) >0, g, ,(6) <0,...,9,(5) <
0. So, finally, being a quadrant in Sper Ox/ ¢, if Ox ¢ is an excellent ring, C” is connected

by ([22], Theorem 3.35). So the image C of C’ in X satisfies the conclusion of the Strong
Connectedness Conjecture. [

Corollary 3.8 Let A be a ring, o, 8 € Sper A, p = /< «, B. Assume that the local ring A,
is excellent reqular of dimension at most 2. Then A has the Connectedness Property at c, 3
and hence satisfies the local Pierce-Birkhoff conjecture at «, 5.

This follows immediately from Theorem and Theorem 311

Remark 3.9 All the results of this section remain true, with the same proofs if we drop the
excellence hypothesis on A, but replace the Strong Definable Connectedness Conjecture by
Definable Strong Connectedness Conjecture.

4 Graded algebras in the case of residue field R

Theorem 4.1 Let (X, m) be a local ring with residue field R. Let o € Sper ¥ such that v,

is centered at m. For every v € Iy, we have If” = R.
T+

Proof : We have non-canonical inclusions

P.
RC =L C kq.
Cp-C

T+

Thus it is sufficient to prove that R = k,. Take an element b € k4 and let b be a representative
of b in R,. By definitions, there exists a € X[« such that |b| < a. Since v, is centered at

m, we may take a to be a unit of X[a]. Let @ be the image of a in mEE[‘[’i] =~ R. Then [b| < @.
Hence b € R as desired. [J

Corollary 4.2 Assume in addition that ¥ is reqular and R C ¥. Let QQ be an approzimate
root for a, then Ex(Q) is a difference of two generalized monomials in the approzimate roots
preceding Q.

Proof : By the construction of approximate roots ([22], section 1.2), Ex(Q) comes from a
certain R-linear dependence relation among generalized monomials in approximate roots,
preceding @, of the same value. According to Theorem Il any two such monomials are R-
multiples of each other. Now the result follows from the construction of approximate roots.
O

5 Connectedness properties

Theorem 5.1 Let (A,m, R) be an excellent regular local ring such that R C A. Let (uq, ...
,Un) be a regular system of parameters of A. Let C C Sper A be a constructible set such that
Unp ) - Let

.....

.....

C. Let
U ={6¢€ Sper A | 0 is centered at m}

U = {6 € Sper R[uy, ... s Un](uy,..oun) | O 8 centered at (uy, ..., un)}



Then the natural map Sper A — Sper Rlui, ..., Un|(u,,...u,) nduces a bijection between the
set of connected components of C NU and the set of connected components of C N U.

Proof : Consider the following natural ring homomorphisms
Rluq, ... ,un](uhm)un) LNy A Rl[u1, ..., un]] -

The theorem follows from ([3], chap. VII, Proposition 8.6) applied to the rings A and
R[ul, . 7un](u1,...,un)- |:|

Corollary 5.2 Let (A,m,R) be an excellent regular local ring such that R C A. Let
(u1,...,up) be a reqular system of parameters of A. Fix a subset J C {1,...,n} and the
point & € Sper A such that pe = m. Let U denote the subset of Sper A consisting of gener-
izations of €. Let C' denote the subset of U defined by specifying sgn uq (which can be either
strictly positive on all of C' or strictly negative on all of C) for ¢ € J and by imposing, in
addition, finitely many monomial inequalities of the form

|diﬂ)\i

> |u

L 1<i<M (18)
where d; € R\ {0}, \i,0; € N"™ and uy may appear only on the right hand side of the
inequalities ([I8) for q&/J. Then C is connected.

Proof : Write A\; = (A14,..., A\ni) and similarly for ;. It is sufficient to prove that any two
elements of C' belong to the same connected component of C.
Consider the natural homomorphism

A— A=R[uy,... u. (19)

Let é denote the point of Sper A with support mA.
Following ([3], chap. VII, proposition 8.6), C' is connected if and only if
, 1<i< M, e {61}

C = {6 € Sper R[[u1,...,u,]] | u;(6) >0, j € J,|du

> |u”

is connected (this is where we are using the fact that A is excellent). So it suffices to prove
that C'is connected. A
By the preceding Theorem, C' is connected if and only if the set
Cy = {6 € Sper Rlui,...,Un|(uy,..;un) | ©(0) >0, j€J,
|dig’\i > |y‘9i , 1 <i< M,Jis centered at (uq,...,u,)}

is connected.

Define
Co = {0 €Sper Rlu1,...,uy] | uj(6) >0, jeJ,
‘digA" > ‘gei , 1 <i< M,J is centered at (u1,...,un)}
and
Ciroe = {0 € Sper Rlug,... ’u”]l_[je] w; | ui(0) >0, j€J,
|dig)‘i > |g9i , 1 <1< M,0 is centered at (uq,...,un)}
The natural maps ¢ : Rlui,...,u,] — Ru1,...,Un](us,..,u,) and ¥ @ Rlug,... u,| —
Rluy,. .. 7“"]Hj€,; u; induce homeomorphisms ¢|c, : Co = Coe and ¥|c, : Co = C.
So it suffices to prove that Cj,. is connected. But
C'loc = ﬂ C'N
NeN
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where

1

Cn = {6 € Sper R[uh'"’u”]ﬂjgu]‘ | N

> u;(6) >0, j€J,

}diﬂAi

> |u®

L 1<i< M}

By Lemma 4.1 of [21], each Cy is a non empty closed connected subset of
Sper Rlui, ..., un][],_, u,, hence Cioc is connected by ([21], lemma 7.1). [J

Remark 5.3 Keep the hypothesis of Corollary[52. Consider a set C defined by inequalities

> ‘201-

and the same sign conditions as C. For each i, 1 <i < M, take d € R such that

()| >
|di|. Let CCcU be defined by }dgy’\i , 1 <i < M and the same sign conditions as

before. Then C is connected and C C C.

> |u

Assume that A is of dimension 3 and has residue field R. Let a, 8 € Sper A and suppose
ht(< o, >) =3.
Let vo0 be the monomial valuation defined by

Vao(u1) = va(uq) (21)
Vao(u2) = vo(uz) (22)
Vao(usg) = va(us). (23)

In other words, for a polynomial f =} ys cyu”, we have vao(f) = min, {va(u?) | ¢, # 0}.

Definition 5.4 An approzimate root Q for «, of complexity at most one, is said to be
relevant for (a, B) if either Q € {u1,uz,us} or vao(Q) < va(< o, B >).

Note that if @ is relevant for («, 8), then @ is an approximate root for §. If, in addition
Q¢ {u1,uz,us}, then vgo(Q) < vg(< o, 8 >).

Let {Q:}a<i<¢ where ¢ € {3,4,...,r} denote the set of relevant approximate roots of
complexity 1 (the case £ = 3 means that the (a, 8) has complexity 0).

Let g1,...,9s € A be as in the statement of the Connectedness Conjecture. Let
N;
9i=Q% +> c;iQ%, ie{l,... s} (24)
j=1

be the standard form of g; common to « and 8 of level v,(< «,8 >) (see [22], §1.3); by
definition then Q%, Q% are generalized monomials in the relevant approximate roots and
va(Q%) < 14(Q%:) , j € {1,...,N;}. The fact that there is only one dominant monomial
QY% is due to Theorem @11

1. Let

0 is centered at (z,y, 2)
C =< 68¢€SperA | v5(Q%) < vs(Q%) Vie {1,...,s}, Vje{l,....,N;} ». (25)
sgns(Qq) = sgna(Qq) for all Q, appearing in Q%

2. Let C” defined by the set of all d, centered at (z,y, z), satisfying the inequalities
|Q%(6)| > Ni|Q% (8)| Vi € {1,...,s}, Vje{l,...,N;} (26)

and the sign conditions appearing in (25]).

11



Remark 5.5 1. We have o, 8 € C.

2. CN{g1---gs =0} = 0. Indeed, inequalities (20) imply that, for every § € C, g;(9)
has the same sign as Q% (8); in particular, none of the g; vanish on C.

3. To prove the Connectedness Conjecture it is sufficient to prove that o and 3 lie in the
same connected component of C.

All the preceding remarks apply to C’.

6 The case when ht(p) =3

Let (A, m) be an regular local ring of dimension 3 with residue field R contained in A. Let
uy,u2,u3 be a regular system of parameters of A such that v,(u1) < ve(uz) < ve(us).
Let a, 8 € Sper A centered at m. In this case, the approximate roots of complexity 1 are
binomials in uq, ug, ug (Corollary f2).

Lemma 6.1 Every valuation v admits at most three approximate roots of complexity one.

Proof : An approximate root of complexity 1 is an irreducible binomial w; — wo having the
property that v(wy —ws) > v(w1) = v(wz). We now prove that there are only three possible
types of approximate roots of complexity 1 (up to exchanging the 2 monomials in order to
respect the monomial ordering defined in [22], §1.2, after Definition 1.4), that means :

uglugl — Aui? (27)
u§2 — Xuf?ul® (28)
ug® — Agu?3u§3 (29)

A1, A2, Az € R, with «aq, B2, v3 the smallest exponents possible.

By definition of approximate roots, the initial monomial of one approximate root cannot
be divisible by the initial monomial of another. Therefore, there is at most one approximate
root of each of the forms ub? — AuS2ud? and ud® — Agusus®.

We claim that there is also at most one of the form ug "ud' — A\ju?. Indeed suppose there
were another one uQiug1 — ﬁu?;; then necessarily 61,61 <,62 and 7/1,71 < - Without loss
of generality we may assume that a; < of. Then A\ (ug1 ugt — NSty — X (u T (u e —
Auit)) = A1u2iugi — Xlugluglu?,l_al. Factoring out the greatest possible monomial, we
obtain an approximate root of one of the forms (28] or (29), but with exponent of u3z strictly
less than 3 (respectively, exponent of ug strictly less than f3), a contradiction. O

Remark 6.2 Note that, multiplying each of u1,us,us by a suitable non-zero element of R,
we may assume \; =1 for all i = 1,2, 3.

Consider a triple of binomials @;, Q;, Qr with Q; = u* — u?, Q; =u™ — ui, Q=
u® — uP*  quasi-homogeneous for a certain Q-weight 1, not necessarily approximate roots.

Consider the homomorphism o : Rlu, uz,u3] — R[[t]] defined by o(u,) = t*0(ta) ¢ =
1,2,3. We have Q;, Q;, Qx € ker(o).

Lemma 6.3 There exists a syzygy w;Q; + w;Q; + wpQr = 0 where w;,w;,wy, are quasi-
homogeneous polynomials in us,ug, us with w;, w;, wreker(o).

Proof : Let vo(u;) = a; € Q, for i = 1,2,3. Write vp(u®) = a1q41 + asq;2 + aza;z and the
same for (3;, so that «;, 8; belong to the plane aix + asy + azz = vo(u™).

In the same way, o, 3; belong to the plane a1z + a2y + aszz = vp(u®) and ax, B; belong
to the plane a1x + asy + agz = vo(u™*).

12



So that the vectors v; = a; — 35, v; = aj — B4, v = o — B belong to the plane
a1z + azy +aszz = 0 in Q3. So there is a rational relation of the form ju;v; + v+ prvg = 0.
Multiplying by some integer, we may choose the p;, ft, pir € Z.

This gives 3 relations between the coordinates :

pi(oir — Bin) + pj(agn — Bijn) + pw (o — Bra) =0 (30)
pi(oie — Biz) + pj(aje — Bi2) + pr(owe — Pr2) =0 (31)
pi(ous — Big) + wj(ajs — Bis) + pw(ows — Brs) =0 (32)

From which we deduce that
() () * () = &

(gai)m (gaj )Hj (gak )uk _ (gﬂi>ﬂi (gﬁj )Hj (gﬁk )Hk

and consequently

Which we can rewrite as
() (P (™) = () ) ) =0,

This last expression can be put under the following form, whatever the sign of the
iy gy ok

[(gai)m _ (g:@i)ﬂi] (w9 )1 (uo* ) 4 [(gaj Y — (gﬂj)ﬂj] (gﬁi)ﬂi (R
+ [(gak)#k _ (gﬁk)#k] (gﬁi)#i (gaj)#j = 0.
Now the relation a® — b* = (a —b)(a*~! +a*~2b+--- +b*~1) applied to the first bracket

shows that [(g‘”)’“ — (g'@i)’“} = Q; X ¢; where ¢; is a quasi-homogeneous polynomial which
is clearly not in ker(o). And the same with the two other brackets. This ends the proof. [J

Notation : If Q = u" — Mu? is an approximate root, we denote by @’ the expression

n
Q' = 5 A. (34)

Let G = ©,erGy be a graded algebra without zero divisors. The saturation of G,
denoted by G*, is the graded algebra

G = {% | g,h € G, h homogeneous, h # 0}.

Assume that G, = R for all y € I'. Given v € I' and f,g € G4, g # 0, the notation 5

will mean the unique real number A such that A\g = f. The real number 5 is independent of
the choice of the isomorphism ‘
G, = R. (35)

Note that the number A can be interpreted as an element of G =

Now let «, 8 € Sper A. Let < «, 8 > be the separating ideal. Let po = vo(< o, 8 >)
and pg = v3(< a, B >). Let Q;,Q; be two common approximate roots of a, 8 such that
Qi,Q;¢ < o, 8 >. Note that, since % =~ R and «, 8 are centered at m, the graded algebras
gr,(A) and grg(A) satisfy the condition (B3).
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Definition 6.4 We say that the two approzimate roots Q;,Q; are (o, 3)-comparable if one
of the following conditions holds :

va(Q}) < va(Q)) and vs(Q;) < vp(Q5)

va Qi) > va(Q)) and vs(Q;) > vp(Q5)

/ I I I ' O‘Q/i . Q;
Va(Qi) = va(Q5), v5(Q3) = v5(Q;) and Z-ZQQ; - ;ZZQQ'

We say that they are strongly comparable if, up to interchanging i and j, we have

Va(Qi) + Vao(Qj) < fha (36)

where Voo s the monomial valuation such that veo(x) = vo (), Vao(y) = va(y), Vao(z) =
Vo(z) (which implies that [38) also holds with « replaced by 3).

Remark 6.5 Note that “strongly comparable” implies “comparable”. Indeed, write QQ; =
u —ufi Q= u® —uPi. Without loss of generality, we may write Q) = fal , Q) = ij. .
By definition of strongly comparable, Q;u®,Q;u* ¢ < «,B >. Thus either vy (Q;u®
Va(Qju), va(Qiu) < va(Qju') or va(Qiu®) > va(Qju®), vg(Qiu®) > va(Q;u*

O — QG 05 — T ina(QiEaj) _ inﬁ(@iﬂaj)
Vﬂ(Qlﬂ )_ VOC(C?Jg )7 Vﬁ(QlQ )_ VOC(C?Jg ) a’nd ina(ng%) - inB(ng“i)'

J
<

)
) or

We saw that there were at most 3 approximate roots of complexity 1 for v, (and vg).
Suppose there are three such approximate roots common to o and (3, not in < «, 8 >, and
denote them by Qq4, @5, Q.

Lemma 6.6 Q4,Q5,Q¢s are either all pairwise comparable or all pairwise incomparable.

Proof : Assume that 2 of those roots, say Q4 and @5, are comparable. Consider the syzygy
wyQa+wsQs+weQs = 0 where wy, ws, wg are quasi-homogeneous polynomials, not belonging
to ker(o). Note that this syzygy implies that

Va0(w1Q4) = Va0 (wsQ5) = Vao(weQs) (37)

We will prove that Qg is comparable to Q4 and so, by symmetry, the same will hold for
Q¢ and Q5. The following cases are possible :

1. vo(Q)) < va(QF). Then vg(Q)) < vz(Q%). Now using the syzygy and [B7), we obtain
that vo(wiQ4) = Vao(WsQ4) + va(QL) = Vao(WsQ5) + va(QL) < Vao(wsQs) + va(Q5) =
Vo (W5Q5). S0 Vo (wiQa) = vo(weQe) which implies that v, (Q)) = va(Qf) and, similarly,
vp(Q6) = vs(QY)-

Now, the value of wsQ4 + wsQs must be greater than the value of each summand because
of the syzygy; in other words, the initial forms of the summands must cancel each other in
n,Q; _ insQq
m.Q) mgQ,’

2. v4(Q}) > vo(QF). Then vg(QY) > vz(Q%), so by symmetry with the previous case Qg
is comparable to Q5.

3. va(Q)) = va(@Q5), v5(Q)) = v5(Q5) and
in, Q) ingQ}
in,QL  ingQL’
It follows from v, (Q)) = va(QF) that v, (wiQ4) = Vo(wsQs) and similarly for 3. Let
Ya = Va(w4Q4) and VB = Vﬁ(UJ4Q4).

the graded algebras of both v, and vg. Hence S0 Qg is comparable to Q4.

(38)
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Consider the natural homomorphism of graded algebras
gr o A* > gr A* .

Let Bo = 0a(gr,oA*) and similarly for 3.
Since there are three approximate roots of complexity 1, common to a and 3, there are
at least two Q-linearly independent Q-linear dependence relations among vy (), Vo (y), Va (2),

valid also for vg(z), v5(y), vs(2). Thus there is a natural graded isomorphism gr,_,A —— gry,,A
Since t(ker 0,) = ker(os), the map ¢ induces an isomorphism B, — Bg. We obtain the fol-
lowing diagram :

gropAt ———=gr, A"

N
L lm
N

grgoA* - % grgA*

If wi = M +--- + M; is quasi-homogeneous and not in ker(c), we have, for all j €
{1,...,s:}, (1na0( )) = ingo(M;) and ingo(w;) = inao(M{) + - - - +ingo(M!,) and similarly
for [3. From which we deduce that t(inqo(ws)) = ingo(ws). On the other hand, we have
t(ingo(u®*)) = ingo(u™*) and the same with u** replaced by u®®

(inao(u““m)) ingo(u*wy)
L =

inao(u®sws) ingo(u®sws)

Now we have

Passing to the images in B, and Bg and taking into account that inyg(u**w4)¢ ker(oy,), we
obtain the equality of non-zero real numbers

ing(u*wyq)  ing(u®wy)

= — . 39
ing(u®ws)  ing(u®ws) (39)

Multiplying the equations [B8) and ([39), we obtain
ing (wa)ine (u™)ing (@) _ ing(wa)ing(u™)ing(Q}) (40)

ing (ws)ina (w0 )ing (Q5)  ing(ws)ing (u”s )ing Q)

In other words,
ing(wiQs)  ing(wiQy)
ing(wsQs)  ing(wsQs)
3a. inqawsQ4 + inqwsQs = 0. Then ingwsQ4 + ingws Qs = 0. Then v, (Qf) > va(Q)) and
v3(Qg) > v3(QY), so Qg is comparable to Q4.
3b. inpw4Q4 + inqwsQs # 0. Then ingwsQq + ingwsQs # 0. Then, using B7), v (Qf) =
Vo (Q}) and vg(Qg) = vp(QY). Write the syzygy in the forrn wQQﬁl +wiQf + wiQg = 0 where

Vo (w)) = Vo (wh) = vo(wg) where, for i = 4,5,6, w, = w;u*. Now,

. . u)l / . UJ, / . .
in,Qp —MagrQ—inagrQs Lowy . whingQf owy . whingQf  ingQg
. ;= . 7 = —Mg— —1Myg— = —Mg——INg— S =T 7
in, @) in, @) wg wg ing Q) A wiing@)  ingQ)

and so again (g is comparable to Q4.

From now on, assume that A is excellent.
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6.1 Some of uy,us, u3 belong to the separating ideal

Assume that {uy,us,uz}N < a, 8 ># 0. The case uj,us,us €< «, 3 > is trivial since then
<a,f>=m.

Ifurd < a, 8 > and ug, ug €< «, 8 >, then the only relevant approximate roots appearing
in ([24) and (26)) are u1, ug, us. Then all the inequalities defining C” are monomial in u1, us, us.
So C" is connected by Corollary (.2

Finally, suppose that uq,usd < o, >, us €< «, 8 >. Then all the approximate roots
belong to {us} UR[uq,us).

After a suitable sequence of affine monomial blowings up A — A’ such that Sper A’
contains the common center m’ of o’ and 8, m’ has a regular system of parameters u}, u, uj
such that all the approximate roots are monomials in v}, u}, u4 up to multiplication by units
of A’. Let ¢ be the unique point of Sper A’ with support m’.

Let 7 : Sper A’ — Sper A the induced map of real spectra. Write Q% = Wi, Qi =
g"sgivﬁ with v;,v;; € A’ \ w/. If C is as in ([25), the set 7~ 1(C) contains the set

0 is centered at m’

¢ =4 vy < vs), i€ {1,...,s}j € {1,..., Ni}
sgnsuy = sgnquy for all uj appearing in u/% for some i
. !/
Take d € R such that d > max N; x max M
1<i<s 1<i<s [wi@)l

Let
0 is centered at m’

C=1q [W(©) > du(8)| i€ {l,...,s},j€{l,....N;}
sgnsuy, = sgnqu) for all uj appearing in u/% for some i
C is connected by Corollary 5.2 .

Then o/, 8’ € C, hence o, 3 € ©(C), ©(C) is connected and contained in {g; - -- g, # 0}.
This completes the proof in the case when {uq, us, uz}N < a, f >+ (.

From now on, we assume {uj,us,uz}N < o, 3 >= ) and that, unless otherwise
specified, there are 3 relevant approximate roots Q4, @5, Q-

6.2 All the approximate roots are pairwise comparable

Without loss of generality, assume that v, (Qf) < va(Q)), va(Qf) < vo(QF) and uy (o) >
0, uz(cr) > 0, uz(cr) > 0,Qs(cx) > 0.
Write
Qo = ——Qs— —Qs. (41)
W we

Assume that %2625 >a.5 0 (if the opposite holds, a similar reasoning applies). Then
Q6 >ap 0= |Z—‘G‘Q4| >0.8 |$—2Q5| There exists € > 0 in R such that

Wy Ws
1—¢)|— a8 |— . 42
(1= 922 >0 1225 (42)
Then Wi
Q6| >a,5 €|—Qal. (43)
We

We now describe the connected set required in the Connectedness Conjecture which we
will define by inequalities among certain generalized monomials and sign conditions on the
Qi. Let g1,...,9s € A be as in the statement of the conjecture. Let

N;
9 =Q% +) c;iQ, ie{l,.... s} (44)

j=1
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be the standard form of g;.

For each ¢ € {1,..., s}, in the sum Zjvzl ;i Q%1 replace Qg by the right hand side of (@I)
and write the result as a sum of generalized monomials (with possibly negative exponents)
in Uy, U2, U3, Q47 Q5 :

N/

AP
E ¢ Q%
Jj=1

In each generalized monomial Q% replace Qg by 6$—§Q4 and let c’iQ‘sé be the resulting
generalized monomial.
Let D be the subset of Sper A consisting of points § such that

Q% (5)] > %lczi@éiwn ie{l,...,s}, je{l,...,Ni} (45)
(1- e>|j—§c24<5>| > IZ—ZQs(é)I (46)
sgn(ur(8)) = sgn(u1(a)) (47)
sgn(uz(8)) = sgn(uz(a)) (48)
sgn(us(8)) = sgn(us(a)) (49)
sgn(Q4(6)) = sgn(Qa(a)) (50)
sgn(Q5(6)) = sgn(Qs(a)) (51)

By definition of standard form, v, (Q%) < v, (Q%%) for all 4,j and similarly for vs. By
@3)), this implies that VQ(Q‘;Q) < VQ(Q‘;}Z') for all 4, j and the same for vg. Thus inequalities
@3 hold for § = aw and § = 8. This proves that o, 5 € D. The polynomials g; have constant
sign on D for all i because the inequalities ensure that the sign of g; is determined by the
sign of its dominant monomial Q%. With these conditions, using (@I]), we see that the signs
of both Qg and Q% are constant on D.

It remains to prove that a and 5 belong to the same connected component of D Let
A — A’ be a finite sequence of affine monomial blowings up such that Sper A’ contains the
common center m’ of @’ and 8’ and there is a regular system of parameters (z/,y’, z') at m’
such that 2’ is a monomial in wy, us, uz, ¥y’ = Q) and 2’ = Q%.

For each inequality

cQ(0)] < [dQ(9)] (52)

appearing in the definition of D, there exist €,,€,,¢,,7,,7,,7: € Z and elements u,v €
Al \m/A!, such that cQf = ua’®y/ 2> and dQ = va"=y v z""=. Take positive constants
@, 0 € R such that |u| < @ and |v| > 0. Then, for any ¢’ € Sper A/ ,, the inequality

|z’ (8" )y 0 (87)2" (87)| < |5V (8")y' s (87) 2" (&) (53)

implies the inequality (52]) where ¢ is the image of ¢’ in Sper A.
Since ! ’ ! ! ! ’
Ve, (:I:/ex yley Z/ez) > Vg, (:CIVI ylyy Z/'yz) (54)

and similarly for 8, the inequalities (B3]) hold for both §' = o/ and §' = 3.

Let D’ be the subset of Sper A/, defined by all the resulting inequalities of the form (53]
and the sign conditions

sgn(z'(8")) = sgn(z'(a)) (55
sgn(y'(3")) = sgn(y'(a’)) (56
sgn(z'(8")) = sgn(z'(a)) (57)
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The set D’ is connected by Corollary 2.2l Its image in Sper A is connected, contains o and
B and is contained in the set {g1 - - - gs # 0}. This completes the proof of the Connectedness
Conjecture in the case when @4, @5, Q¢ are pairwise comparable.

Remark 6.7 The same method works to prove the Connectedness conjecture also in the case

when vg(Q}) = v5(Q5) = vp(Qs) and va(Q)) = va(Q5) < va(Qs)-

6.3 The case when there are only one or two relevant approximate
roots

Assume that there are exactly 2 approximate roots Qu, Qs5¢ < «, >, common to « and
5. We proceed as in the case of 3 comparable approximate roots. This means that, after a
suitable sequence of affine monomials blowings up A — A’ such that Sper A’ contains the
common center m’ of o’ and 3’, m’ has a regular system of parameters 2/, 3, 2’ such that 2’
is a monomial in uq,ug, us, ¥’ = Q}, 2’ = Q% (remember the notation (34))).

Then as above, we replace the inequalities of type (B2) by inequalities involving only
monomials as in (G3]). Once again we apply the Corollary 5.2 to ensure the existence of a set
C as required.

The case with only one relevant approximate root, @4, is more difficult.

Claim. There exists a connected subset C of C', which we will describe explicitly, containing
a and 3.

Proof : First, we consider the special case when A is the localization of the polynomial
ring A = Rz, y, 2|(z,4,.). Let A = A — --- = A; be a finite sequence of affine monomial
blowings up with respect to « (see [21], Proposition 6.1) such that u® =%+ € A; where
u = (z,9,2). Let z; = u®~P* — 1. By construction, A; is the localization of a polynomial
ring of the form R[z;,y;, z;], where z;,y; are monomials in z,y,z and z; = u™ P — 1, by
the multiplicative set R[z,y, 2] \ (z,y, 2). Let u;, = (z, ys, 2i)-

In A; the inequalities (26) can be rewritten as

((ci 4 zif)u)’| < |(di + zihi)u'| where ¢;,d; € R, ¢;d; # 0, fi,hi € Rz, yi, 2] (58)

Let C' C Sper A; be the set defined by the stronger inequalities

(59)

12¢iu]

< ‘ldzﬂfl
2

and the sign conditions sgn(z;(0)) = sgn(x;(a)), sgn(yi(6)) = sgn(yi(a)), sgn(z;(9)) =
sgn(zi(a)). The set C' contains the strict transforms of o and 3.

Let D be the subset of Sper R[z;,y;, 2;] defined by the inequalities (B9)) and the same
sign conditions as above.

Using the cartesian diagram

Sper Rz, y, z] Sper Rlz;, yi, 2]

Sper R[z,y, 2](4,y,-) < Sper R[z;,y;, zi]s

(zy,
where S = R[z,y, 2] \ (z,v, z), we can identify C' with
1

() DN {6 € Sper Rlzs, s, 2] 5 [2(8)] < ~ 90l =
N=1

=0 <

21;
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By Lemma 4.1 of [2I], we have that D N {6 € Sper Rlzi,yi, 2] ; |2(6)] < %, [y(d)] <
+, |2(8)] £ %} is connected, so applying Lemma 7.1 of [21], we deduce that the intersection
is a non empty closed connected set, so C' is connected and contains the strict transforms of
« and [, hence its image in Sper A is the desired connected set. This completes the proof

when A = R[z,9, 2](z,y,-). The general case now follows from Theorem (.11

6.4 The approximate roots are pairwise incomparable

Lemma 6.8 At least two of Q4,Q5, Qs have vo-value strictly greater than & (and similarly
for vg-value).

Proof : This is an immediate consequence of Definition and Remark O

Without loss of generality, assume that

Va(Q4) < va(Q5) < va(Qs)- (60)

Then
Voz(Q5) > %7 Voz(QG) > %' (61)

Proposition 6.9 Consider a generalized monomial Q7 divisible by one of Q41Qs5, Q4Qs,
Q5Qs, Q3, Q3.
Then (a) QY e< «, 3 >

(b) Q7 belongs to the ideal generated by all the generalized monomials belonging to
< a, B> and not divisible by any of Q2, Q2, Q1Qs5, Q1Qs, Q5Qs-

Proof : (a) If Q2 | Q" or Q3 | Q", the result follows immediately from (&1]).

If Q4Q5 | Q7, QuQs | Q7 or Q5Qs | Q7, the result follows from Definition [£.4] and Lemma
(b) By pairwise incomparability and (60l), we have v4(Q5) + 0o (@5) > o and similarly

for 5. As well,

Va(Qﬁ) + VOa(QG) 2 Mo (62)
Suppose, for example, Q2 ’ Q7. Write Q5 = w — € where w, € are monomials in x,y, z. Then

Q" belongs to the ideal generated by Qse, Qsw and by ([@2), Qs¢e, Qsw €< a, 8 >. The cases
when Q7 is divisible by Q2, Q1Qs, Q1Qs, @5Qs are handled similarly. [J

We now describe the connected set required in the Connectedness Conjecture by in-
equalities on the size of certain generalized monomials and sign conditions on the Q;. Let

g1,---,9s € A be as in the statement of the conjecture. Let
N;
9i=Q% +> c;iQ%, ie{l,... s} (63)
j=1

be the standard form of g; of level v, (< «, 8 >.

Let S be a finite set of generalized monomials, not divisible by Q2, Q%, Q4Qs, Q4Qs,
Q5Qsg, belonging to < «, >, which generate < «, >. In addition, we require all the
monomials Q* € S to have the following property : if Q4 ’ Q* then

Vo (QY) = v (Q4) + va0(Q4) < pa (64)

and similarly for Q5 and Qg.
Let 7 be the set of all the generalized monomials not belonging to < «a, 8 >.
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Let C be the subset of Sper A consisting of points ¢ such that

v5(Q7) < vs(QY) (65)

v5(Q%) = vs(Q") (66)
sgn(u1(9)) = sgn(ui(a)) (67)
sgn(uz(9)) = sgn(uz(a)) (68)
sgn(uz(9)) = sgn(us(a)) (69)
sgn(Qa(9)) = sgn(Qa(a)) (70)
sgn(Qs(9)) = sgn(Qs(a)) (71)
sgn(Qs(9)) = sgn(Qs(a)) (72)

where (i) QY, Q" run over all the pairs of elements of T satisfying (68]) for § = o and 6 = f3,
(i) Q7, Q* run over all the pairs of generalized monomials such that Q” € 7, Q* € TUS
and (68) holds for § = « and § = §.

Note that the definition of C' implies that for all § € C, the binomials Qg4,Q5, Q¢ are
approximate roots for the valuation vs.

All points § € C share, by definition of C, the same approximate roots Q4, Qs5, Qg. This
implies that the dimQ(Zgzl Qus(u;)) =1, for all § € C (in particular, for 6 = o and § = j).
Moreover, there exist r, s € Q such that vs(uz) = rvs(u1) and vs(us) = svs(uq) for all 6 € C.
Then each equality or inequality of (G3l), ([GE) may be written in a form containing only
v(uy) and v(Q4),v(Qs),v(Qs). As vso(Q™) can be written purely in terms of v(u;) and as
v(Qe) = ro(Qe) + v(Q), any relation of the form (G5]) or (66) may be written in terms of

v(u1),v(Q)), v(@s), v(Q5)-
Proposition 6.10 C contains a point € such that v.(Q}) = ve(Q%) = ve(Qf)-

Without loss of generality, assume that

va(Q4) = va(Q5) <va(Qs) and (73)
vp(Q4) = vp(Q6) < va(Qs) (74)

Replacing a by o/ lying in C' such that
vor (Q}) = var (Q5) < var (Q5) (75)

and I',y C R does not change the problem and similarly for 5. From now on, we will assume
that I'y C R and I'g C R.

Let
I'sCcR
. d centered in m {(a1,az,a3,a4) € R*
¢:q0€Sper A Q4,Qs, Q¢ are approximate - | a1, as2,a3,a4 > 0} (76)
roots for .

be the map defined by ¢(d) = (vs(u1), vs(Q}), vs(Q%), vs(QF))-

Lemma 6.11 A point (a1,az,a3,a4) € R*, a1 > 0,a2 > 0,a3 > 0,a4 > 0 is in the image of
¢ if and only if one of the following conditions holds

az = az < ag, az = ag < az, az = ag < as. (77)

Proof : Write the syzygy in the form w)Q)) + wiQ% + wiQi = 0. The “only if” part follows
from this.

“If” : Suppose, for example, that as = a3 < a4. Consider a sequence of blowings up
A — A’ such that A’ has a maximal ideal m’ with a regular system of parameters (z/, 3/, 2’)
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such that Q) = v/, Q% = 2z’ and uq, ug, uz are monomials in z’, up to multiplication by units
of A’. Write u; = 2"7v with vy € N%, v € A"\ m/. Take a point §Sper A such that vs(z’) = %,
vs(y') = a2, vs(z') = aq. Then ¢ is centered in m and has Q4, Q5, Qs as approximate roots.
this proves that (a1, as2,as, as) € Im(¢).

Next, we reduce the problem to the case when each of the inequalities (Ghl) and equalities
(€8] involves at most one of Q4, @5, Q¢ (possibly raised to some power). Namely let hq, ..., h,
be the complete list of inequalities (GZ) and equalities (GG)). We order the h; in such a way
that all the inequalities-equalities involving at most one of Q4, @5, Q¢ come first and those
involving at least 2 of Q4, @5, Q¢ come later. In each of the above two lists, we order the
inequalities-equalities by the value of the left-hand side.

Lemma 6.12 Assume Proposition[6.10 is true in the special case when each h; contains at
most one of Q4, Qs, Q. Then it is true in general.

Proof : We argue by contradiction. Suppose that Proposition is false for hq,..., hp.
Without loss of generality, we may assume that Proposition is true for hq,...,hp—1. Let
C D C be the set defined by the same conditions as C' except for hp. By assumptions, C
contains a point € such that v.(Q}) = v.(Q%) = v(Qf).

In the following formulae, the notation

{rs(Q") = vs(Q")} (78)

means “the set of all the points of R? of the form (vs(u1),vs(Q)),vs(Q%), vs(Qf)) where §
satisfies ([8))”. This notation makes sense because because v5(Q?) and vs(QA\) are completely
determined by (v5(u1),vs5(Q%), vs(QF), vs(QF)). The set ([T8) is contained in a hyperplane H
of R*, defined by a linear equation with rational coefficients, and contains the subset of H
satisfying the conditions (7).

If h, is a strict inequality, write h, in the form v5(Q?) < v5(Q*) and consider two
segments in R4

[(va(u1), va(Q4), Va(@5), va(Q6)): (Ve(ur), ve(Qh), ve(@5), ve(Q6))] (79)

[(Vﬁ(ul)v VB(QQ)? VB(Q{S)v VB(QIG))v (Ve(ul)v Vé(Qﬁl)v Vﬁ(Qé’))v VG(QIG))] (80)
Since v (Q}) = v.(QF) = v.(Qf) and the left endpoint of

[(va(u1), va(Q4), Va(@5), va(Q6)): (Ve(ur), ve(Qh), ve(@5), ve(Q6))]

satisfies the conditions (M), so does every point of that interval. The same holds for the
interval

[(Vﬁ(ul)v VB(QA)? VB(QZ’))? VB(Q%))? (Ve(ul)v Vé(Qil)v Vﬁ(Qé’))v VG(Q%))]

Since e¢C, the following intersections are non empty; each of them consists of one point

[(Va(u1), va(QY), Voz(Qg)a Voz(Qlﬁ))v (Ve (u1), ve(QY), VG(QIS)v Ve(Q%))] (81)
N{vs(Q") =vs(QY)} =: {(a1,a2,a3,a4)} (82)
and
[(VB (ul)v Vs (Qﬁl)v Vs (Qg)v Vs (Q%))v (Ve (ul)u Ve(Qil)v Vé(Qg)v VG(QIG))] (83)
N{rs(Q") = vs(QY)} =: {(b1, ba, b3, ba)}. (84)

Take points g € ¢~ 1((a1,az,a3,a4)) and By € ¢~ 1((b1, b, b3, ba)).
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and at least one of the two inequalities is strict. Note that ag # So. Suppose the inequality
() is strict. Let hy, be the equality vs(QY) = vs(Q™).

If h, is an equality, put ag = «, By = 8 and let hy, = hy.
We can now contradict (8H), (86) as follows. Suppose, for example, that h,, has the form

vs(Qiw) = vs(Qsn) (87)

a > 1 and write Q4 = €4 — wy, Q5 = €5 — Ws.

Then Q¢ wey and €57 do not belong to < «, 8 > and the relation between v, (Q5 ™ 'wey)
and v (e5m) (which may be <,= or >) belongs to the list hi,...,hp—1. Therefore, this
relation is the same for ag and 5. From this, it follows that the relation between vs(Q4) —
v50(Q4) = v5(Q))) and vs(Qs) — vs0(Qs5) = vs(Q%) (which may be <, = or >) is the same for
d = ap and for § = fy. This contradicts (85), (8d). O

We now need the following geometric lemma.

Lemma 6.13 - Tetrahedron Lemma - Consider 4 points of R3, P,Q, R, S, not lying in
the same plane. Then they define an affine basis of R® and let (u,v,w,t) be the barycentric
coordinates with respect to this basis (so u+v+w+t=1). Let A be a point with coordinates
(u1,v1, w1, t1) such that uy,vi,wy,t1 > 0 anduy = v1 < wy and B be a point with coordinates
(ug,v2,wa,ta) such that ug, vy, wa,ta > 0 and vo = wy < uy. Consider a finite set of linear
inequalities of the form g; > 0, i =1,...,m such that for all i € {1,...,m}, g;(A) > 0 and
gi(B) > 0. Moreover suppose that, for each given i, only one of u,v,w appears in g;, which
means that the plane g; = 0 passes at least through two of the points P, Q, R.

Then there exists a point D with coordinates (A/3,A/3,A/3,1 = X), 0 < A < 1 such
gi(D) >0 for allie {1,...,m}.

Proof : Let I be the point with coordinates (1/3,1/3,1/3,0). Without loss of generality,
we may assume that, for all 4, the plane {g; = 0} intersects the segment I.S in a point M;
between [ and S.

Let i be such that g;(R) = 0. Then the intersection of {g; = 0} with the triangle RIS is
the segment RM;.
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Let A; and Ay be the points of 1.S defined by

As= )  Mms
RM, lies above A

P€{1,.m}

and
TAy = U IM;
RZ\/Ii lies below A

P€{1,.m}

respectively.
Similarly, for all ¢ such that g;(P) = 0 we define By, B2 € IS such that

B1S = U M;S

and
IBy= |J 1M,

respectively.

Let B’ be the point of intersection of PB with I.S. We will prove that A; belongs to the
interval [SB’] and B’ to [SA3]. And then put D = B’. This will complete the proof.

Let us show that B" € [SAs]. Now, if Ay is defined by a plane of the form g; = 0 with
gi(R) = 0 and g;(P) = 0, then necessarily, B’ is closer to S than As.

So we may assume that As is defined by a plane of the form u — kt = 0.

If As is closer to S than B’, then P and B’ are both in the same half-space whose
boundary is the plane A;QR with equation u — k¢t = 0. Then (u — kt)(B) > 0. But, because,
(u—kt)(A) < 0 so also (u — kt)(B) < 0, which is a contradiction. We prove the same way
that A; € [SB’]. So B’ lies between A; and As as desired. [

Applying the Tetrahedron Lemma to all the relations of the form (G2 or (66) ensures the
existence of a point D on IS satisfying the same relations. Consider a point § € Sper A such
that vs has the same three approximate roots Q4, @5, Qs and satisfying moreover the fact
that the coordinates (v(u1),v(Q}),v(Q%),v(Qf)) correspond to the point D, then § € C.
So we are reduced to the limit case (see Remark (G.7])) where all the approximate roots
are pairwise comparable for the couple (o, d) and for the couple (/3,4). This defines two
connected sets Cy and Cs, avoiding all {g; = 0}, and such that C; contains o and ¢ and Co
contains f# and 4. So letting C' = Cy U Cy gives a connected set as required.

This settles the last remaining case ((Q4,Qs,Qs) pairwise incomparable) and with it
Theorem [[.T41

References

[1] S. Abhyankar and T.T. Moh, Newton—Puiseuzx expansion and generalized Tschirnhausen
transformation I. Reine Agew. Math. 260, 47-83 (1973).

[2] S. Abhyankar and T.T. Moh, Newton—Puiseuzx expansion and generalized Tschirnhausen
transformation II. Reine Agew. Math. 261, 29-54 (1973).

[3] C. Andradas, L. Briicker, J.M. Ruiz, Constructible Sets in Real Geometry, Springer
(1996).

[4] D. Alvis, B. Johnston, J.J. Madden, Local structure of the real spectrum of a surface,
infinitely near points and separating ideals. Preprint.

[5] R. Baer, Uber nicht-archimedisch geordnete Korper (Beitrage zur Algebra). Sitz. Ber.
Der Heidelberger Akademie, 8 Abhandl. (1927).

23



(6]

[12]

[13]

G. Birkhoff and R. Pierce, Lattice-ordered rings. Annales Acad. Brasil Ciénc. 28, 41-69
(1956).

J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle. Springer—Verlag, Berlin
1987.

S.D. Cutkosky, B. Teissier, Semi-groups of valuations on local rings, Michigan Mat. J.,
Vol. 57, pp. 173-193 (2008).

C. N. Delzell, On the Pierce-Birkhoff conjecture over ordered fields, Rocky Mountain J.
Math.

L. Fuchs, Telweise geordnete algebraische Strukturen. Vandenhoeck and Ruprecht, 1966.

R. Goldin and B. Teissier, Resolving singularities of plane analytic branches with one
toric morphism., Resolution of singularities (Obergurgl, 1997), 315-340, Progr. Math.,
181, Birkhauser, Basel, 2000.

Herrera Govantes, F. J.; Olalla Acosta, M. A.; Spivakovsky, M. Valuations in algebraic
field extensions, Journal of Algebra , Vol. 312 , N. 2 | pp. 1033-1074 (2007).

F. J. Herrera Govantes, M. A. Olalla Acosta, M. Spivakovsky, B. Teissier, Fxtending
a valuation centered in a local domain to the formal completion., Proc. London Math.
Soc., first published online March 23, 2012 doi:10.1112/plms/pds002

M. Henriksen and J. Isbell, Lattice-ordered rings and function rings. Pacific J. Math.
11, 533-566 (1962).

I. Kaplansky, Mazimal fields with valuations I. Duke Math. J., 9:303-321 (1942).
I. Kaplansky, Mazimal fields with valuations II. Duke Math. J., 12:243-248 (1945).
W. Krull, Allgemeine Bewertungstheorie, J. Reine Angew. Math. 167, 160-196 (1932).

T.C. Kuo, Generalized Newton—Puiseux theory and Hensel’s lemma in C[[z, y]]. Cana-
dian J. Math., (6) XLI, 1101-1116 (1989).

T.C. Kuo, A simple algorithm for deciding primes in C[[z, y]]. Canadian J. Math., 47
(4), 801-816 (1995).

M. Lejeune-Jalabert, Thése d’Etat. Université Paris 7 (1973).

F. Lucas, J.J. Madden, D. Schaub and M. Spivakovsky, On connectedness of sets in the
real spectra of polynomial rings, Manuscripta Math. 128, 505-547, 2009.

F. Lucas, D. Schaub and M. Spivakovsky, Approximate roots of a valuation and the
Pierce-Birkhoff Conjecture, Ann. Fac. Sci. Toulouse, Mathématique, Série 6, Vol. XXI,
Fasc. 2, 259-342, 2012.

S. MacLane, A construction for prime ideals as absolute values of an algebraic field.
Duke Math. J. 2, 492-510 (1936).

S. MacLane, A construction for absolute values in polynomial rings. Transactions of the
AMS 40, 363-395 (1936).

S. MacLane and O.F.G. Schilling, Zero-dimensional branches of rank one on algebraic
varieties. Ann. of Math. 40, 3 (1939).

J. J. Madden, Pierce-Birkhoff rings. Arch. Math. 53, 565-570 (1989).
J. J. Madden, The Pierce-Birkhoff conjectures (unpublished preprint).

L. Mahé, On the Pierce-Birkhoff conjecture. Rocky Mountain J. Math. 14, 983-985
(1984).

L. Mahé, On the Pierce-Birkhoff conjecture in three variables., J. Pure Appl. Algebra,
211, 459-470 (2007).

M. Marshall, Orderings and real places of commutative rings. J. Alg. 140, 484-501
(1991).

24



[31]
[32]
[33]
[34]
[35]

[36]
[37]

[38]

[39]

[46]

M. Marshall, The Pierce-Birkhoff conjecture for curves. Can. J. Math. 44, 1262-1271
(1992).

H. Matsumura, Commutative Algebra. Benjamin/Cummings Publishing Co., Reading,
Mass., 1970.

A. Prestel, Lectures on formally real fields, Lecture Notes in Math., Springer—Verlag—
Berlin, Heidelberg, New York, 1984.

A Prestel, C.N.Delzell Positive Polynomials, Springer monographs in mathematics,
2001.

S. Priess-Crampe, Angeordnete strukturen: gruppen, kérper, projektive FEbenen,
Springer—Verlag—Berlin, Heidelberg, New York, 1983.

N. Schwartz, Real closed spaces. Habilitationsschrift, Miinchen 1984.

M. Spivakovsky, Valuations in function fields of surfaces. Amer. J. Math 112, 1, 107-156
(1990).

M. Spivakovsky, A solution to Hironaka’s polyhedra game. Arithmetic and Geometry,
Vol II, Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday,
M. Artin and J. Tate, editors, Birkh&user, 1983, pp. 419-432.

B. Teissier, Valuations, deformations and toric geometry., Proceedings of the Saskatoon
Conference and Workshop on valuation theory, Vol. II, F-V. Kuhlmann, S. Kuhlmann,
M. Marshall, editors, Fields Institute Communications, 33 (2003), 361-459.

M. Vaquié, Famille admise associée a une valuation de K[z], Séminaires et Congres 10,
edited by Jean-Paul Brasselet and Tatsuo Suwa, 2005, pp. 391-428.

M. Vaquié, Extension d’une valuation, Trans. Amer. Math. Soc. 359 (2007), no. 7,
3439-3481.

M. Vaquié, Algébre graduée associée d une valuation de K|[z], Adv. Stud. Pure Math.,
46, Math. Soc. Japan, Tokyo, 2007.

M. Vaquié, Famille admissible de valuations et défaut d’une extension, J. Algebra 311
(2007), no. 2, 859-876.

M. Vaquié, Valuations, 539-590, Progr. Math., 181, Birkhauser, Basel, 2000.

S. Wagner, On the Pierce-Birkhoff Conjecture for Smooth Affine Surfaces over Real
Closed Fields, Ann. Fac. Sci. Toulouse, Math. (6) 19, Spec. Issue, 221-242 (2010).

O. Zariski, P. Samuel Commutative Algebra,Vol. 11, Springer Verlag.

25



	Introduction
	The Strong Connectedness Conjecture
	The case when the height of p is 2
	Graded algebras in the case of residue field R
	Connectedness properties
	The case when ht(p)=3
	Some of u1,u2,u3 belong to the separating ideal
	All the approximate roots are pairwise comparable
	The case when there are only one or two relevant approximate roots
	The approximate roots are pairwise incomparable


