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Abstract

This paper represents a step in our program towards the proof of the Pierce–Birkhoff
conjecture. In the nineteen eighties J. Madden proved that the Pierce-Birkhoff conjecture
for a ring A is equivalent to a statement about an arbitrary pair of points α, β ∈ Sper A and
their separating ideal < α, β >; we refer to this statement as the local Pierce-Birkhoff
conjecture at α, β. In [21] we introduced a slightly stronger conjecture, also stated for a
pair of points α, β ∈ Sper A and the separating ideal < α, β >, called the Connectedness
conjecture. In this paper, for each pair (α, β) with ht(< α, β >) = dimA, we define a
natural number, called complexity of (α, β). Complexity 0 corresponds to the case when one
of the points α, β is monomial; this case was settled in all dimensions in [21]. In the present
paper we introduce a new conjecture, called the Strong Connectedness conjecture, and
prove that the strong connectedness conjecture in dimension n−1 implies the connectedness
conjecture in dimension n in the case when ht(< α, β >) ≤ n − 1. We prove the Strong
Connectedness conjecture in dimension 2, which gives the Connectedness and the Pierce–
Birkhoff conjectures in any dimension in the case when ht(< α, β >) ≤ 2. Finally, we
prove the Connectedness (and hence also the Pierce–Birkhoff) conjecture in the case when
dim A = ht(< α, β >) = 3, the pair (α, β) is of complexity 1 and A is excellent with residue
field R.

1 Introduction

All the rings in this paper will be commutative with 1. Let R be a real closed field. Let
B = R[x1, . . . , xn]. If A is a ring and p a prime ideal of A, κ(p) will denote the residue field
of p.

The Pierce–Birkhoff conjecture asserts that any piecewise-polynomial function f : Rn →
R can be expressed as a maximum of minima of a finite family of polynomials in n variables.
We start by giving the precise statement of the conjecture as it was first stated by M.
Henriksen and J. Isbell in the early nineteen sixties.

Definition 1.1 A function f : Rn → R is said to be piecewise polynomial if Rn can be
covered by a finite collection of closed semi-algebraic sets Pi such that for each i there exists
a polynomial fi ∈ B satisfying f |Pi

= fi|Pi
.
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Clearly, any piecewise polynomial function is continuous. Piecewise polynomial functions
form a ring, containing B, which is denoted by PW (B).

On the other hand, one can consider the (lattice-ordered) ring of all the functions obtained
from B by iterating the operations of sup and inf. Since applying the operations of sup and
inf to polynomials produces functions which are piecewise polynomial, this ring is contained
in PW (B) (the latter ring is closed under sup and inf). It is natural to ask whether the two
rings coincide. The precise statement of the conjecture is:

Conjecture 1 (Pierce-Birkhoff) If f : Rn → R is in PW (B), then there exists a finite
family of polynomials gij ∈ B such that f = sup

i

inf
j
(gij) (in other words, for all x ∈ Rn,

f(x) = sup
i

inf
j
(gij(x))).

This paper is a step in a program for proving the Pierce–Birkhoff conjecture. The starting
point of this program is the abstract formulation of the conjecture in terms of the real
spectrum of B and separating ideals proposed by J. Madden in 1989 [26].

For more information about the real spectrum, see [7]; there is also a brief introduction
to the real spectrum and its relevance to the Pierce–Birkhoff conjecture in the Introduction
to [21].

Terminology: If A is an integral domain, the phrase “valuation of A” will mean “a valuation
of the field of fractions of A, non-negative on A”. Also, we will sometimes commit the
following abuse of notation. Given a ring A, a prime ideal p ⊂ A, a valuation ν of A

p
and

an element x ∈ A, we will write ν(x) instead of ν(x mod p), with the usual convention that
ν(0) = ∞, which is taken to be greater than any element of the value group.

Recall some notation : For a point α ∈ Sper A we denote by pα the support of α, by
A[α] = A

pα
and by A(α) the field of fractions of A[α]. We also let να denote the valuation

associated to α, Γα the value group, Rνα the valuation ring, kα its residue field and grα(A)
the graded ring associated to the valuation να. For f ∈ A with γ = να(f), let inαf denote

the natural image of f in
Pγ

Pγ+
. Finally, if k is any field, we denote by k its real closure.

Definition 1.2 Let
f : Sper A→

∐

α∈Sper A

A(α)

be a map such that, for each α ∈ Sper A, f(α) ∈ A(α). We say that f is piecewise polyno-
mial (denoted f ∈ PW (A)) if there exits a covering of Sper A by a finite family (Si)i∈I of
constructible sets, closed in the spectral topology and a family (fi)i∈I , fi ∈ A such that, for
each α ∈ Si, f(α) = fi(α).

We call fi a local representative of f at α and denote it by fα (fα is not, in general,
uniquely determined by f and α; this notation means that one such local representative has
been chosen once and for all).

Definition 1.3 A ring A is a Pierce-Birkhoff ring if, for each f ∈ PW (A), there exists a
finite collection {fij}i,j ⊂ A such that f = supi infj fij.

The generalized Pierce-Birkhoff Conjecture says:

Conjecture 2 (Pierce-Birkhoff Conjecture for regular rings) Let A be a regular ring.
Then A is a Pierce-Birkhoff ring.

Madden reduced the Pierce–Birkhoff conjecture to a purely local statement about sepa-
rating ideals and the real spectrum. Namely, he introduced

Definition 1.4 Let A be a ring. For α, β ∈ Sper A, the separating ideal of α and β,
denoted by < α, β >, is the ideal of A generated by all the elements f ∈ A which change sign
between α and β, that is, all the f such that f(α) ≥ 0 and f(β) ≤ 0.
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Definition 1.5 A ring A is locally Pierce-Birkhoff at α, β if the following condition holds :
let f be a piecewise polynomial function, let fα ∈ A be a local representative of f at α and
fβ ∈ A a local representative of f at β. Then fα − fβ ∈< α, β >.

Theorem 1.6 (Madden) A ring A is Pierce-Birkhoff if and only if it is locally Pierce-
Birkhoff for all α, β ∈ Sper A.

Remark 1.7 Assume that β is a specialization of α. Then
(1) < α, β >= pβ.
(2) fα − fβ ∈ pβ. Indeed, we may assume that fα 6= fβ, otherwise there is nothing to

prove. Since β ∈ {α}, fα is also a local representative of f at β. Hence fα(β) − fβ(β) = 0,
so fα − fβ ∈ pβ.

Therefore, to prove that a ring A is Pierce-Birkhoff, it is sufficient to verify the Definition
1.5 for all α, β such that neither of α, β is a specialization of the other.

In [21], we introduced

Conjecture 3 (the Connectedness conjecture) Let A be a regular ring. Let α, β ∈
Sper A and let g1, . . . , gs be a finite collection of elements of A\ < α, β >. Then there exists a
connected set C ⊂ Sper A such that α, β ∈ C and C∩{gi = 0} = ∅ for i ∈ {1, . . . , s} (in other
words, α and β belong to the same connected component of the set Sper A \ {g1 . . . gs = 0}).

In the paper [21], we stated the Connectedness conjecture (in the special case when A
is a polynomial ring) and proved that it implies the Pierce–Birkhoff conjecture. The same
proof shows that the Connectedness Conjecture implies the Pierce-Birkhoff Conjecture for
an arbitrary ring.

Definition 1.8 A subset C of Sper A is said to be definably connected if it is not a union
of two non-empty disjoint constructible subsets, relatively closed for the spectral topology.

Definition 1.9 Definable Connectedness Property Let A be a ring. Let α, β ∈ Sper A.
We say that A has the Definable Connectedness Property at α, β if, for any finite collection
g1, . . . , gs of elements of A\ < α, β >, there exists a definably connected set C ⊂ Sper A such
that α, β ∈ C and C ∩ {gi = 0} = ∅ for i ∈ {1, . . . , s} (in other words, α and β belong to the
same definably connected component of the set Sper A \ {g1 . . . gs = 0}).

Conjecture 4 (Definable Connectedness Conjecture) Let A be a regular ring. Then
A satisfies the Definable Connectedness Property at any α, β ∈ Sper A.

Exactly the same proof which shows that the Connectedness Property implies the Pierce-
Birkhoff Conjecture applies verbatim to show that the Definable Connectedness Property
implies the Pierce-Birkhoff conjecture for any ring A.

One advantage of the Connectedness conjecture is that it is a statement about A (resp.
about polynomials if A = B) which makes no mention of piecewise polynomial functions.

The Connectedness Conjecture is local in α and β. The purpose of this paper is to
associate to each pair (α, β) with ht(< α, β >) = dimA a natural number, called the
complexity of (α, β), and prove the Connectedness Conjecture in the simplest case, according
to this hierarchy, which is open : that of dimension 3 and complexity 1.

Definition 1.10 Let k be an ordered field. A k-curvette on Sper A is a morphism of the
form

α : A→ k
[[

tΓ
]]

,

where Γ is an ordered group. A k-semi-curvette is a k-curvette α together with a choice of
the sign data sgn x1,..., sgn xr, where x1, ..., xr are elements of A whose t-adic values induce
an F2-basis of Γ/2Γ.
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We explained in [22] how to associate to a point α of Sper A a k̄α-semi-curvette. Con-
versely, given an ordered field k, a k-semi-curvette α determines a prime ideal pα (the ideal
of all the elements of A which vanish identically on α) and a total ordering on A/pα induced
by the ordering of the ring k

[[

tΓ
]]

of formal power series.

Below, we will often describe points in the real spectrum by specifying the corresponding
semi-curvettes.

Let (A,m, R) be a regular local ring of dimension n and ν a valuation centered in A;
let Φ = ν(A \ {0}); Φ is a well-ordered set. For an ordinal λ, let γλ be the element of Φ
corresponding to λ.

Definition 1.11 A system of approximate roots of ν is a countable well-ordered set
Q = {Qi}i∈Λ, Qi ∈ A, minimal in the sense of inclusion, satisfying the following condition
: for every ν-ideal I in A, we have

I =







∏

j

Q
γj

j

∣

∣

∣

∣

∣

∣

∑

j

γjν(Qj) ≥ ν(I)







A. (1)

By definition, each Q ∈ Q comes equipped with additional data, called the expression of Q and
denoted by Ex(Q). The expression is a sum of generalized monomials involving approximate
roots which precede Q in the given order.

A system of approximate roots of ν up to γλ is a well-ordered set of elements of A
satisfying (1) only for ν-ideals I such that ν(I) < γλ.

A finite product of the form Qη =
∏

j

Q
ηj

j with ηj ∈ N is called a generalized monomial.

We order the set of generalized monomials by the lexicographical order of the pairs (ν(Qη), η)
(cf. [22], below Definition 1.4).

In paragraph 1.2, Theorem 1.7 of [22], we constructed a system of approximate roots up
to some γ, Qi, recursively in i. From now on, we fix this system of approximate roots once
and for all.

Let u1, . . . , un be a regular system of parameters of A.

Definition 1.12 Let i ∈ N be a natural number, consider an approximate root (Q,Ex(Q)).
The notion of Q being of complexity i is defined as follows. We say that Q is an approximate
root of complexity 0 if Q ∈ {u1, . . . , un}. For i > 0, we say that Q is of complexity i if all
the approximate roots appearing in Ex(Q) are of complexity at most i − 1 and at least one
approximate root appearing in Ex(Q) is of complexity precisely i− 1.

Fix α, β ∈ Sper A and consider the Connectedness conjecture for this pair (α, β). Assume√
< α, β > = m. We now define a natural number, called the complexity of (α, β).

Definition 1.13 The complexity of (α, β) is the smallest natural number i such that every
να-ideal containing < α, β > is generated by generalized monomials involving approximate
roots of complexity at most i.

In [21], we proved the Connectedness conjecture for polynomial rings of arbitrary dimen-
sion over a real closed field and pairs (α, β) of complexity 0. Using Corollary 5.2 below,
based on [3], Chapter VII, 8.6, we can extend this result to the case of excellent regular local
rings A of arbitrary dimension and pairs (α, β) of complexity 0.

In this paper, we will assume that R = R. In this case, Ex(Q) is a binomial in the
approximate roots preceding Q as we show below. The main result of this paper is :

Theorem 1.14 Let (A,m,R) be an excellent 3-dimensional regular local ring such that R →֒
A. Let α, β ∈ Sper A. Assume that one of the following holds :

(1) ht(< α, β >) ≤ 2
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(2) ht(< α, β >) = 3 and either {u1, u2, u3}∩ < α, β > 6= ∅ or (α, β) is of complexity at
most 1.
Then the Connectedness Conjecture (and hence the Local Pierce-Birkhoff Conjecture) holds
for (α, β).

Fix α, β ∈ Sper A and let p =
√
< α, β >. The case when ht(p) = 1 is easy. The proof

given in [22] works verbatim in any dimension.
The present paper is organized as follows.
In §2 we state a new conjecture, called the Strong Connectedness Conjecture. We show

that the Strong connectedness conjecture in dimension n − 1 implies the Connectedness
conjecture in dimension n whenever ht(p) < dim A.

In §3 we prove the Strong Connectedness Conjecture for arbitrary regular local rings of
dimension 2. We deduce the Connectedness Property and the local Pierce-Birkhoff Conjec-
ture for any ring A (of any dimension) and α, β ∈ Sper A such that ht(< α, β >) = 2 and
A√

<α,β> is regular.
§4 is devoted to the study of graded algebras associated to points of real spectra in the

case when the residue field of our local ring is R.
In §5 we prove a comparison theorem between connected components of a constructible

subset C ⊂ Sper A and those of the set C̃ ⊂ Sper R[u1, . . . , un](u1,...,un) defined by the same
formulae as C.

Finally, we describe some subsets of Sper A, containing α and β, which will be later
proved to be connected, thus verifying the Connectedness Conjecture.

In §6 we prove the Connectedness conjecture in the Case 2 of the Theorem 1.14.

2 The Strong Connectedness Conjecture

Let dim A = 3 and ht p = 2. A natural idea would be to apply the already known 2-
dimensional connectedness conjecture to the regular 2-dimensional local ring Ap. Then one

would construct a sequence of point blowings up π̃ : X̃l̃ → Sper Ap and a connected set

in X̃l̃ satisfying the conclusion of the conjecture. Finally, we would construct a sequence
π : Xl → Sper A of blowings up of points and smooth curves whose restriction to the generic
point of V (p) is π̃.

The difficulty with this approach is that the 2-dimensional connectedness conjecture
cannot be applied directly. Indeed, let g1, . . . , gs be as in the connectedness conjecture and
let ∆α ⊂ Γα denote the greatest isolated subgroup not containing να(p).
The hypothesis gi∈/ < α, β > does not imply that gi∈/ < α, β > Ap: it may happen that
να(gi) < να(< α, β >), να(g) − να(p) ∈ ∆α and so gi ∈< α, β > Ap, as we show by the
example below.

Example. Let α, β be given by the curvettes

x(t) = t(0,3) (2)

y(t) = t(0,4) + bt(1,0) (3)

z(t) = t(0,5) + ct(1,1), (4)

where b ∈ {bα, bβ} ⊂ R and c ∈ {cα, cβ} ⊂ R and t(0,1) > 0, t(1,0) > 0. The constants
bα, bβ, cα, cβ will be specified later. Let f1 = xz − y2, f2 = x3 − yz, f3 = x2y − z2; consider
the ideal (f1, f2, f3). The most general common specialization of α, β is given by the curvette

x(t) = t3 (5)

y(t) = t4 (6)

z(t) = t5, (7)

t > 0. The corresponding point of Sper A has support (f1, f2, f3), so p =
√
< α, β > =

(f1, f2, f3). Let (xα(t), yα(t), zα(t)) and (xβ(t), yβ(t), zβ(t)) be the curvettes defining α and
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β as in (2)–(4). Let us calculate f1(xα(t), yα(t), zα(t)) and f1(xβ(t), yβ(t), zβ(t)). In the
notation of (2)–(4) we have

f1(x(t), y(t), z(t)) = (c− 2b)t(1,4) + f̃1 (8)

f2(x(t), y(t), z(t)) = −(c+ b)t(1,5) + f̃2 (9)

f3(x(t), y(t), z(t)) = (b − 2c)t(1,6) + f̃3, (10)

where f̃i stands for higher order terms with respect to the t-adic valuation. Choose bα, bβ, cα,
cβ so that none of f1, f2, f3 change sign between α and β. The smallest να value of an
element which changes sign between α and β is (1, 4) + (0, 4) = (1, 5) + (0, 3) = (1, 8), so
να(< α, β >) = (1, 8). Thus we have fi∈/ < α, β >, but fi ∈< α, β > Ap, as desired.

Thus we are naturally led to formulate a stronger version of the Connectedness Conjec-
ture, one which has exactly the same conclusion but with somewhat weakened hypotheses.
This phenomenon occurs in all dimensions, as we now explain.

Definition 2.1 Strong Connectedness Property Let Σ be a ring, α, β ∈ Sper Σ, having
a common specialization ξ. We say that Σ has the Strong Connectedness Property at α, β if
given any g1, . . . , gs ∈ Σ \ (pα ∪ pβ) such that for all j ∈ {1, . . . , s},

να(gi) ≤ να(< α, β >), νβ(gi) ≤ νβ(< α, β >) (11)

and such that no gi changes sign between α and β, the points α and β belong to the same
connected component of Sper Σ \ {g1 · · · gs = 0}.

Conjecture 5 Strong Connectedness Conjecture Let Σ be a regular ring. Then Σ has
the Strong Connectedness Property at any pair of points α, β ∈ Sper Σ having a common
specialization.

Let A be a ring and α, β ∈ Sper A. Let p =
√
< α, β >, let α0 be the pre-image of α

under the natural inclusion σ : Sper Ap →֒ Sper A and similarly for β0.

Theorem 2.2 If Sper Ap has the Strong Connectedness property at α0, β0, then A satisfies
the Connectedness Conjecture at α, β.

Proof : Let g1, . . . , gs ∈ A be the elements appearing in the statement of the Connectedness
Conjecture. Renumbering the gi, if necessary, we may assume that g1, . . . , gl∈/ < α0, β0 >
and gl+1, . . . , gs ∈< α0, β0 >. The condition gl+1, . . . , gs ∈< α0, β0 > implies that, for
i ∈ {l+ 1, . . . , s}, να0(gi) = να0(< α0, β0 >).

By hypothesis, there exists a connected set C0 ⊂ Sper Ap, α0, β0 ∈ C0 such that C0 ⊂
{g1 · · · gs 6= 0}. Then σ(C0) satisfies the conclusion of the Connectedness Conjecture for
A,α, β, g1, . . . , gs. �

In the next section we will use Zariski’s theory of complete ideals to prove the Strong
Connectedness Conjecture in dimension 2, and hence also the Connectedness conjecture in
dimension 3, when ht(p) = 2.

3 The case when the height of p is 2

Theorem 3.1 Conjecture 5 is true when Σ is of dimension 2.

Proof : If one of α, β is a specialization of the other, the result is trivially true, because the
connected component of Sper Σ \ {g1 · · · gs = 0} containing the more general point among α
and β satisfies the conclusion of the conjecture. From now on we shall assume that none of
α and β is a specialization of the other.

Let z be a new variable. We will say that a point η ∈ Sper k[z] is closed if {η} = {η}.
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Consider a point α ∈ Sper Σ, dim Σ = 2. Let ξ be the most special specialization of
α. Assume that ht(pξ) = 2 and α 6= ξ. Let (x, y) be a regular system of parameters of Σpξ

and let k be the residue field k = Σ
pξ
. Let ρ : X → Sper Σ be the blowing up of Sper Σ

along (x, y). Let α′ be the strict transform of α in X (see [22], Definitions 3.19 and 3.20).
If να(y) ≥ να(x) then α′ ∈ Sper Σ[ y

x
]. Consider the homomorphism Σ[ y

x
] → k[z] which

maps y
x
to z and elements of Σ to their image in k. In this way, we identify Sper k[z] with

Sper Σ[ y
x
] ∩ ρ−1(ξ).

Definition 3.2 The slope of α, denoted by sl(α), is the following element of Sper k[z]∪{∞}
- if να(x) > να(y), sl(α) := ∞;
- if να(x) ≤ να(y), sl(α) is the most special specialization of α′ in Sper Σ[ y

x
].

Let α, β ∈ Sper Σ be the two points centered at ξ and having the same slope. We say
that α and β point in the same direction if sgn(x(α)) = sgn(x(β)) when sl(α) 6= ∞ (resp.
sgn(y(α)) = sgn(y(β)) when sl(α) = ∞). Otherwise we say that α and β point in different
direction.

Examples : Let Σ = Q[x, y].
1. Let α be the point of Sper Σ given by the following semi-curvette Q[x, y] →֒ Q(π)[[t]]

such that x 7→ t, y 7→ πt. Then ξ is the closed point with support (x, y) and the slope of α is
the point of Sper Q[z] such that for any rational number p/q we have z > p/q ⇐⇒ π > p/q.

2. Let α be a point of Sper Σ such that να(x) = να(y) > 0, να(y
2− 2x2) > 2να(x). Then

ξ is the closed point with support (x, y) and the slope of α is the point of Sper Q[z] with
support (z2 − 2).

Remark 3.3 In the situation of Definition 3.2, assume that sl(α) 6= ∞. Let k[z](sl(α)) be

the field of fractions of k[z]
psl(α)

. We can naturally identify k[z](sl(α)) with the ordered sub-field

of kα generated over k by the image of y
x
. The field k[z](sl(α)) is a simple extension of k

which can be algebraic as in the Example 2 above, or transcendental as in the Example 1.

Definition 3.4 Let f ∈ Sper Σ. We say that f = 0 is tangent to α if να(f) > να(pξ).

First assume that α and β have the same tangent, and that they are facing in different
directions along that tangent. Then < α, β >= pξ. We want to show that, for all i, gi∈/pξ.
Assume that gi ∈ pξ. Write gi = ax + by + g̃i where a, b ∈ Σ and g̃i ∈ (x, y)2. We may
assume that the common slope to α and β is not ∞. Then

να(gi) = να(pξ) = να(x) ≤ να(y) (12)

νβ(gi) = νβ(pξ) = νβ(x) ≤ νβ(y). (13)

Hence either a∈/pξ or (να(x) = να(y)) and b∈/pξ. In particular, sgnα(gi) = sgnα(ax + by)
and similarly for sgnβ.

Let k[z](sl(α)) be as in the previous remark. By (12) and (13), the natural image of a+b y
x

in k[z](sl(α))is non zero. Since α and β have the same slope, they induce the same order
on k[z](sl(α)). Hence a + b y

x
does not change sign between α and β, so x(a + b y

x
) changes

sign between α and β, which is a contradiction. Hence gi∈/pξ. Then a small connected
neighbourhood U (small enough so that {g1 · · · gs = 0} ∩U = ∅) of ξ satisfies the conclusion
of Conjecture 5. This proves the Theorem in the special case when α and β have the same
slope but point in different directions.

From now on assume that if α and β have the same slope, they point in the same direction.

Let π : X ′ → X = Sper A the shortest sequence of blowings up such that the strict
transforms α′ and β′ of α and β have the same specialization ξ′ with ht(pξ′) = 2 and distinct
slopes (see [22], by iterating Proposition 3.31). Note that, if g′i denotes the strict transform
of gi, then the g′i such that g′i(ξ) 6= 0 play no role and if g′i(ξ) = 0, by (11), {g′i = 0} cannot
be tangent to α′ or β′ or to the last exceptional divisor if it exists. Let OX′,ξ′ be the local
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ring of X ′ at ξ′ and let x′, y′ be a regular system of parameters such that {x′ = 0} is the
last exceptional divisor if it exists and {y′ = 0} the second one if any. In the case we had
not to blow up, we take an x′ such that {x′ = 0} is not tangent to α′, β′ or any of {g′i = 0}
and such that x′(α′) > 0 and x′(β′) > 0. Note that x′ does not change sign between α and
β (otherwise the blowing up sequence π would have stopped at an earlier stage). Replacing
x′ by −x′ if necessary, we may assume that x′(α′) > 0, x′(β′) > 0.

Let us introduce the following total ordering on the set {g′1, . . . , g′s}. Write each g′j as a
formal power series in the formal completion OX′,ξ′ → k′[[x′, y′]] as

g′j = y′ +
∞
∑

i=1

cijx
′i with cij ∈ k′.

This is possible because of the choice of x′, y′, the non tangency of {g′j = 0} with α′, β′

and the last exceptional divisor. We compare g′j and g′ℓ by comparing the monomials in
lexicographic ordering. Namely, we take the smallest i such that cij 6= ciℓ and we say that
j ≺ ℓ if cij < ciℓ. Without loss of generality, we may assume that g′1(α

′) > 0, . . . , g′ℓ(α
′) > 0,

g′ℓ+1(α
′) < 0, . . . , g′s(α

′) < 0 and also that 1 ≺ . . . ≺ ℓ, ℓ+ 1 ≺ . . . ≺ s.

Lemma 3.5 Let j, q ∈ {1, . . . , ℓ}, j ≺ q. Then {g′j > 0, x′ > 0} ⊂ {g′q > 0, x′ > 0}.
Let j, q ∈ {ℓ+ 1, . . . , s}, j ≺ q. Then {g′q > 0, x′ > 0} ⊂ {g′j > 0, x′ > 0}.

Proof : In the first case, we have to prove that g′q(δ) > 0 ⇒ g′j(δ) > 0. Write g′j =

y′ + c1jx
′ + · · · + cijx

′i + x′i+1
(· · · ) and g′q = y′ + c1qx

′ + · · · + ciqx
′i + x′i+1

(· · · ) with

ckj = ckq for k = 1, . . . , i − 1 and cij < ciq. We have g′q − g′j = (ciq − cij)x
′iu where u is

a positive unit of k′[[x′, y′]]. So g′q − g′j = dx′i in OX′,ξ′ with d ∈ OX′,ξ′ \ mX′,ξ′ such that
d = ciq − cij mod mX′,ξ′ , in particular d(δ) > 0.

And the same with the second inclusion. �

Lemma 3.6 We have c11 > c1s.

Proof : Note that we have

g′1(α
′) = y′(α′) + c11x

′(α′) + x′(α′)2h1 > 0 (14)

g′1(β
′) = y′(β′) + c11x

′(β′) + x′(β′)2h1 > 0 (15)

g′s(α
′) = y′(α′) + c1sx

′(α′) + x′(α′)2hs < 0 (16)

g′s(β
′) = y′(β′) + c1sx

′(β′) + x′(β′)2hs < 0 (17)

where h1, hs ∈ k′[[x′, y′]].
Write α′ as curvette :

x′(t) = tνα(x′) + · · ·
y′(t) = bαt

να(x′) + · · ·

where bα is the natural image of y′

x′ in kα.

Then g′1(α
′) > 0 ⇔ y′ + c11x

′ + x′2h1 > 0 ⇔ y′(t) + c11x
′(t) + x′(t)2h1(t) = (bα +

c11)t
να(x′) + · · · > 0 in kα[[t

Γα ]], so bα + c11 ≥ 0 in kα. By the same arguments, we have
: bα + c1s ≤ 0 in kα, bβ + c11 ≥ 0 and bβ + c1s ≤ 0 in kβ . If we had bα + c11 = 0 and
bβ + c11 = 0, then bα = bβ = −c11 ∈ k′. Hence k[z](sl(α′)) = k[z](sl(β′)), which contradicts
the fact that α′ and β′ have different slopes. Thus, at least one of the inequalities (14) and
(15) is strict, say bα + c11 > 0 for instance. Together with the inequality (16), this implies
that c11 > c1s. �

Let
C′ = {g′1 > 0, g′s < 0}.

By definition C′ contains α′ and β′, so is non empty.
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Corollary 3.7 For any δ ∈ C′, x′(δ) > 0.

Proof : It’s a straightforward consequence of the preceding Lemma and proof. Of course,
g′1(δ) > 0 ⇒ x′(δ)(bδ + c11) ≥ 0 and g′s(δ) < 0 ⇒ x′(δ)(bδ + c1s) ≤ 0 where bδ is defined in a
similar way as bα or bβ. So x

′(δ)(c11 − c1s) ≥ 0, which proves the result. �

By Lemma 3.5, for any δ ∈ C, we have g′1(δ) > 0, . . . , g′ℓ(δ) > 0, g′ℓ+1(δ) < 0, . . . , g′s(δ) <
0. So, finally, being a quadrant in Sper OX′,ξ′ , if OX′,ξ′ is an excellent ring, C′ is connected
by ([22], Theorem 3.35). So the image C of C′ in X satisfies the conclusion of the Strong
Connectedness Conjecture. �

Corollary 3.8 Let A be a ring, α, β ∈ Sper A, p =
√
< α, β. Assume that the local ring Ap

is excellent regular of dimension at most 2. Then A has the Connectedness Property at α, β
and hence satisfies the local Pierce-Birkhoff conjecture at α, β.

This follows immediately from Theorem 2.2 and Theorem 3.1.

Remark 3.9 All the results of this section remain true, with the same proofs if we drop the
excellence hypothesis on A, but replace the Strong Definable Connectedness Conjecture by
Definable Strong Connectedness Conjecture.

4 Graded algebras in the case of residue field R

Theorem 4.1 Let (Σ,m) be a local ring with residue field R. Let α ∈ Sper Σ such that να
is centered at m. For every γ ∈ Γα, we have

Pγ

Pγ+

∼= R.

Proof : We have non-canonical inclusions

R ⊂ Pγ

Pγ+

⊂ kα.

Thus it is sufficient to prove that R ≡ kα. Take an element b ∈ kα and let b be a representative
of b in Rα. By definitions, there exists a ∈ Σ[α] such that |b| ≤ a. Since να is centered at

m, we may take a to be a unit of Σ[α]. Let a be the image of a in Σ[α]
mΣ[α]

∼= R. Then |b| ≤ a.

Hence b ∈ R as desired. �

Corollary 4.2 Assume in addition that Σ is regular and R ⊂ Σ. Let Q be an approximate
root for α, then Ex(Q) is a difference of two generalized monomials in the approximate roots
preceding Q.

Proof : By the construction of approximate roots ([22], section 1.2), Ex(Q) comes from a
certain R-linear dependence relation among generalized monomials in approximate roots,
preceding Q, of the same value. According to Theorem 4.1, any two such monomials are R-
multiples of each other. Now the result follows from the construction of approximate roots.
�

5 Connectedness properties

Theorem 5.1 Let (A,m, R) be an excellent regular local ring such that R ⊂ A. Let (u1, . . .
, un) be a regular system of parameters of A. Let C ⊂ Sper A be a constructible set such that
all the elements of A appearing in formulae defining C belong to R[u1, . . . , un](u1,...,un). Let

C̃ ⊂ Sper R[u1, . . . , un](u1,...,un) denote the constructible set defined by the same formulae as
C. Let

U = {δ ∈ Sper A | δ is centered at m}
Ũ = {δ ∈ Sper R[u1, . . . , un](u1,...,un) | δ is centered at (u1, . . . , un)}.
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Then the natural map Sper A → Sper R[u1, . . . , un](u1,...,un) induces a bijection between the

set of connected components of C ∩ U and the set of connected components of C̃ ∩ Ũ .

Proof : Consider the following natural ring homomorphisms

R[u1, . . . , un](u1,...,un)
σ0 // A

σ // R[[u1, . . . , un]] .

The theorem follows from ([3], chap. VII, Proposition 8.6) applied to the rings A and
R[u1, . . . , un](u1,...,un). �

Corollary 5.2 Let (A,m, R) be an excellent regular local ring such that R ⊂ A. Let
(u1, . . . , un) be a regular system of parameters of A. Fix a subset J ⊂ {1, . . . , n} and the
point ξ ∈ Sper A such that pξ = m. Let U denote the subset of Sper A consisting of gener-
izations of ξ. Let C denote the subset of U defined by specifying sgn uq (which can be either
strictly positive on all of C or strictly negative on all of C) for q ∈ J and by imposing, in
addition, finitely many monomial inequalities of the form

∣

∣diu
λi
∣

∣ ≥
∣

∣uθi
∣

∣ , 1 ≤ i ≤M (18)

where di ∈ R \ {0}, λi, θi ∈ Nn and uq may appear only on the right hand side of the
inequalities (18) for q∈/J . Then C is connected.

Proof : Write λi = (λ1i, . . . , λni) and similarly for θi. It is sufficient to prove that any two
elements of C belong to the same connected component of C.

Consider the natural homomorphism

A→ Â = R[[u1, . . . , un]]. (19)

Let ξ̂ denote the point of Sper Â with support mÂ.
Following ([3], chap. VII, proposition 8.6), C is connected if and only if

Ĉ = {δ ∈ Sper R[[u1, . . . , un]] | uj(δ) > 0, j ∈ J,
∣

∣diu
λi
∣

∣ ≥
∣

∣uθi
∣

∣ , 1 ≤ i ≤M, ξ̂ ∈ {δ}}

is connected (this is where we are using the fact that A is excellent). So it suffices to prove
that Ĉ is connected.

By the preceding Theorem, Ĉ is connected if and only if the set

C† = {δ ∈ Sper R[u1, . . . , un](u1,...,un) | uj(δ) > 0, j ∈ J,
∣

∣diu
λi
∣

∣ ≥
∣

∣uθi
∣

∣ , 1 ≤ i ≤M, δ is centered at (u1, . . . , un)}

is connected.
Define

C0 = {δ ∈ Sper R[u1, . . . , un] | uj(δ) > 0, j ∈ J,
∣

∣diu
λi
∣

∣ ≥
∣

∣uθi
∣

∣ , 1 ≤ i ≤M, δ is centered at (u1, . . . , un)}

and

Cloc = {δ ∈ Sper R[u1, . . . , un]∏
j∈J uj

| uj(δ) > 0, j ∈ J,
∣

∣diu
λi
∣

∣ ≥
∣

∣uθi
∣

∣ , 1 ≤ i ≤M, δ is centered at (u1, . . . , un)}

The natural maps φ : R[u1, . . . , un] → R[u1, . . . , un](u1,...,un) and ψ : R[u1, . . . , un] →
R[u1, . . . , un]∏

j∈J uj
induce homeomorphisms φ|C0 : C0

∼= Cloc and ψ|C0 : C0
∼= C†.

So it suffices to prove that Cloc is connected. But

Cloc =
⋂

N∈N

CN
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where

CN = {δ ∈ Sper R[u1, . . . , un]∏
j∈J uj

| 1

N
≥ uj(δ) ≥ 0, j ∈ J,

∣

∣diu
λi
∣

∣ ≥
∣

∣uθi
∣

∣ , 1 ≤ i ≤M}.

By Lemma 4.1 of [21], each CN is a non empty closed connected subset of
Sper R[u1, . . . , un]∏

j∈J uj
, hence Cloc is connected by ([21], lemma 7.1). �

Remark 5.3 Keep the hypothesis of Corollary 5.2. Consider a set C̃ defined by inequalities
∣

∣

∣
d̃iu

λi

∣

∣

∣
≥

∣

∣uθi
∣

∣ , 1 ≤ i ≤M, d̃i ∈ A \m (20)

and the same sign conditions as C. For each i, 1 ≤ i ≤ M , take d′i ∈ R such that
∣

∣

∣
d̃i(ξ)

∣

∣

∣
>

|d′i|. Let ˜̃C ⊂ U be defined by
∣

∣d′iu
λi
∣

∣ ≥
∣

∣uθi
∣

∣ , 1 ≤ i ≤ M and the same sign conditions as

before. Then ˜̃C is connected and ˜̃C ⊂ C.

Assume that A is of dimension 3 and has residue field R. Let α, β ∈ Sper A and suppose
ht(< α, β >) = 3.

Let να0 be the monomial valuation defined by

να0(u1) = να(u1) (21)

να0(u2) = να(u2) (22)

να0(u3) = να(u3). (23)

In other words, for a polynomial f =
∑

γ∈N3 cγu
γ , we have να0(f) = minγ{να(uγ) | cγ 6= 0}.

Definition 5.4 An approximate root Q for α, of complexity at most one, is said to be
relevant for (α, β) if either Q ∈ {u1, u2, u3} or να0(Q) < να(< α, β >).

Note that if Q is relevant for (α, β), then Q is an approximate root for β. If, in addition
Q∈/{u1, u2, u3}, then νβ0(Q) < νβ(< α, β >).

Let {Qi}4≤i≤ℓ where ℓ ∈ {3, 4, . . . , r} denote the set of relevant approximate roots of
complexity 1 (the case ℓ = 3 means that the (α, β) has complexity 0).

Let g1, . . . , gs ∈ A be as in the statement of the Connectedness Conjecture. Let

gi = Qδi +

Ni
∑

j=1

cjiQ
δji , i ∈ {1, . . . , s} (24)

be the standard form of gi common to α and β of level να(< α, β >) (see [22], §1.3); by
definition then Qδi , Qδji are generalized monomials in the relevant approximate roots and
να(Q

δi) < να(Q
δji) , j ∈ {1, . . . , Ni}. The fact that there is only one dominant monomial

Qδi is due to Theorem 4.1.

1. Let

C =







δ ∈ SperA

∣

∣

∣

∣

∣

∣

δ is centered at (x, y, z)
νδ(Q

δi) < νδ(Q
δji) ∀i ∈ {1, . . . , s}, ∀j ∈ {1, . . . , Ni}

sgnδ(Qq) = sgnα(Qq) for all Qq appearing in Qδi







. (25)

2. Let C′ defined by the set of all δ, centered at (x, y, z), satisfying the inequalities
∣

∣Qδi(δ)
∣

∣ > Ni|Qδji(δ)| ∀i ∈ {1, . . . , s}, ∀j ∈ {1, . . . , Ni} (26)

and the sign conditions appearing in (25).

11



Remark 5.5 1. We have α, β ∈ C.
2. C ∩ {g1 · · · gs = 0} = ∅. Indeed, inequalities (25) imply that, for every δ ∈ C, gi(δ)

has the same sign as Qδi(δ); in particular, none of the gi vanish on C.
3. To prove the Connectedness Conjecture it is sufficient to prove that α and β lie in the

same connected component of C.

All the preceding remarks apply to C′.

6 The case when ht(p) = 3

Let (A,m) be an regular local ring of dimension 3 with residue field R contained in A. Let
u1, u2, u3 be a regular system of parameters of A such that να(u1) ≤ να(u2) ≤ να(u3).
Let α, β ∈ Sper A centered at m. In this case, the approximate roots of complexity 1 are
binomials in u1, u2, u3 (Corollary 4.2).

Lemma 6.1 Every valuation ν admits at most three approximate roots of complexity one.

Proof : An approximate root of complexity 1 is an irreducible binomial ω1 − ω2 having the
property that ν(ω1 − ω2) > ν(ω1) = ν(ω2). We now prove that there are only three possible
types of approximate roots of complexity 1 (up to exchanging the 2 monomials in order to
respect the monomial ordering defined in [22], §1.2, after Definition 1.4), that means :

uβ1

2 u
γ1

3 − λ1u
α1
1 (27)

uβ2

2 − λ2u
α2
1 uγ2

3 (28)

uγ3

3 − λ3u
α3
1 uβ3

2 (29)

λ1, λ2, λ3 ∈ R, with α1, β2, γ3 the smallest exponents possible.
By definition of approximate roots, the initial monomial of one approximate root cannot

be divisible by the initial monomial of another. Therefore, there is at most one approximate
root of each of the forms uβ2

2 − λ2u
α2
1 uγ2

3 and uγ3

3 − λ3u
α3
1 uβ3

2 .

We claim that there is also at most one of the form uβ1

2 u
γ1

3 −λ1uα1
1 . Indeed suppose there

were another one u
β′

1
2 u

γ′

1
3 −λ′1u

α′

1
1 ; then necessarily β1, β

′
1 < β2 and γ1, γ

′
1 < γ3. Without loss

of generality we may assume that α1 ≤ α′
1. Then λ1(u

β′

1
2 u

γ′

1
3 − λ′1u

α′

1
1 )− λ′1(u

α′

1−α1

1 (uβ1

2 u
γ1

3 −
λ1u

α1
1 )) = λ1u

β′

1
2 u

γ′

1
3 − λ′1u

β1

2 u
γ1

3 u
α′

1−α1

1 . Factoring out the greatest possible monomial, we
obtain an approximate root of one of the forms (28) or (29), but with exponent of u3 strictly
less than γ3 (respectively, exponent of u2 strictly less than β2), a contradiction. �

Remark 6.2 Note that, multiplying each of u1, u2, u3 by a suitable non-zero element of R,
we may assume λi = 1 for all i = 1, 2, 3.

Consider a triple of binomials Qi, Qj, Qk with Qi = uαi − uβi , Qj = uαj − uβj , Qk =
uαk − uβk , quasi-homogeneous for a certain Q-weight ν0, not necessarily approximate roots.

Consider the homomorphism σ : R[u1, u2, u3] → R[[t]] defined by σ(uq) = tν0(uq), q =
1, 2, 3. We have Qi, Qj, Qk ∈ ker(σ).

Lemma 6.3 There exists a syzygy ωiQi + ωjQj + ωkQk = 0 where ωi, ωj, ωk are quasi-
homogeneous polynomials in u1, u2, u3 with ωi, ωj , ωk∈/ ker(σ).

Proof : Let ν0(ui) = ai ∈ Q, for i = 1, 2, 3. Write ν0(u
αi) = a1αi1 + a2αi2 + a3αi3 and the

same for βi, so that αi, βi belong to the plane a1x+ a2y + a3z = ν0(u
αi).

In the same way, αj , βj belong to the plane a1x+ a2y+ a3z = ν0(u
αj ) and αk, βk belong

to the plane a1x+ a2y + a3z = ν0(u
αk).
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So that the vectors vi = αi − βi, vj = αj − βj , vk = αk − βk belong to the plane
a1x+ a2y+ a3z = 0 in Q3. So there is a rational relation of the form µivi+µjvj +µkvk = 0.
Multiplying by some integer, we may choose the µi, µj , µk ∈ Z.

This gives 3 relations between the coordinates :

µi(αi1 − βi1) + µj(αj1 − βj1) + µk(αk1 − βk1) = 0 (30)

µi(αi2 − βi2) + µj(αj2 − βj2) + µk(αk2 − βk2) = 0 (31)

µi(αi3 − βi3) + µj(αj3 − βj3) + µk(αk3 − βk3) = 0 (32)

From which we deduce that
(

(uαi)µi

(uβi)µi

)

×
(

(uαj )µj

(uβj)µj

)

×
(

(uαk)µk

(uβk)µk

)

= 1 (33)

and consequently

(uαi)µi (uαj )µj (uαk)µk = (uβi)µi(uβj)µj (uβk)µk

Which we can rewrite as

(uαi)µi (uαj )µj (uαk)µk − (uβi)µi (uβj )µj (uβk)µk = 0.

This last expression can be put under the following form, whatever the sign of the
µi, µj , µk :

[

(uαi)µi − (uβi)µi
]

(uαj )µj (uαk)µk +
[

(uαj )µj − (uβj )µj
]

(uβi)µi(uαk)µk

+
[

(uαk)µk − (uβk)µk
]

(uβi)µi(uαj )µj = 0.

Now the relation ak − bk = (a− b)(ak−1 + ak−2b+ · · ·+ bk−1) applied to the first bracket
shows that

[

(uαi)µi − (uβi)µi
]

= Qi×φi where φi is a quasi-homogeneous polynomial which
is clearly not in ker(σ). And the same with the two other brackets. This ends the proof. �

Notation : If Q = uη − λuθ is an approximate root, we denote by Q′ the expression

Q′ =
uη

uθ
− λ. (34)

Let G = ⊕γ∈ΓGγ be a graded algebra without zero divisors. The saturation of G,
denoted by G∗, is the graded algebra

G∗ = { g
h

| g, h ∈ G, h homogeneous, h 6= 0}.

Assume that Gγ
∼= R for all γ ∈ Γ. Given γ ∈ Γ and f, g ∈ Gγ , g 6= 0, the notation f

g

will mean the unique real number λ such that λg = f . The real number f
g
is independent of

the choice of the isomorphism
Gγ

∼= R. (35)

Note that the number λ can be interpreted as an element of G∗
0
∼= R.

Now let α, β ∈ Sper A. Let < α, β > be the separating ideal. Let µα = να(< α, β >)
and µβ = νβ(< α, β >). Let Qi, Qj be two common approximate roots of α, β such that
Qi, Qj∈/ < α, β >. Note that, since A

m
∼= R and α, β are centered at m, the graded algebras

grα(A) and grβ(A) satisfy the condition (35).
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Definition 6.4 We say that the two approximate roots Qi, Qj are (α, β)-comparable if one
of the following conditions holds :

να(Q
′
i) < να(Q

′
j) and νβ(Q

′
i) < νβ(Q

′
j)

να(Q
′
i) > να(Q

′
j) and νβ(Q

′
i) > νβ(Q

′
j)

να(Q
′
i) = να(Q

′
j), νβ(Q

′
i) = νβ(Q

′
j) and

inαQ
′
i

inαQ′
j

=
inβQ

′
i

inβQ′
j

.

We say that they are strongly comparable if, up to interchanging i and j, we have

να(Qi) + να0(Qj) < µα (36)

where να0 is the monomial valuation such that να0(x) = να(x), να0(y) = να(y), να0(z) =
να(z) (which implies that (36) also holds with α replaced by β).

Remark 6.5 Note that “strongly comparable” implies “comparable”. Indeed, write Qi =
uαi − uβi , Qj = uαj − uβj . Without loss of generality, we may write Q′

i =
Qi

uαi
, Q′

j =
Qj

u
αj .

By definition of strongly comparable, Qiu
αj , Qju

αi∈/ < α, β >. Thus either να(Qiu
αj ) <

να(Qju
αi), νβ(Qiu

αj ) < νβ(Qju
αi) or να(Qiu

αj ) > να(Qju
αi), νβ(Qiu

αj ) > νβ(Qju
αi) or

να(Qiu
αj ) = να(Qju

αi), νβ(Qiu
αj ) = να(Qju

αi) and inα(Qiu
αj )

inα(Qju
αi )

=
inβ(Qiu

αj )

inβ(Qju
αi )

.

We saw that there were at most 3 approximate roots of complexity 1 for να (and νβ).
Suppose there are three such approximate roots common to α and β, not in < α, β >, and
denote them by Q4, Q5, Q6.

Lemma 6.6 Q4, Q5, Q6 are either all pairwise comparable or all pairwise incomparable.

Proof : Assume that 2 of those roots, say Q4 and Q5, are comparable. Consider the syzygy
ω4Q4+ω5Q5+ω6Q6 = 0 where ω4, ω5, ω6 are quasi-homogeneous polynomials, not belonging
to ker(σ). Note that this syzygy implies that

να0(ω4Q4) = να0(ω5Q5) = να0(ω6Q6) (37)

We will prove that Q6 is comparable to Q4 and so, by symmetry, the same will hold for
Q6 and Q5. The following cases are possible :

1. να(Q
′
4) < να(Q

′
5). Then νβ(Q

′
4) < νβ(Q

′
5). Now using the syzygy and (37), we obtain

that να(ω4Q4) = να0(ω4Q4) + να(Q
′
4) = να0(ω5Q5) + να(Q

′
4) < να0(ω5Q5) + να(Q

′
5) =

να(ω5Q5). So να(ω4Q4) = να(ω6Q6) which implies that να(Q
′
4) = να(Q

′
6) and, similarly,

νβ(Q
′
6) = νβ(Q

′
4).

Now, the value of ω4Q4+ω6Q6 must be greater than the value of each summand because
of the syzygy; in other words, the initial forms of the summands must cancel each other in

the graded algebras of both να and νβ. Hence
inαQ′

6

inαQ′

4

=
inβQ

′

6

inβQ
′

4

, so Q6 is comparable to Q4.

2. να(Q
′
4) > να(Q

′
5). Then νβ(Q

′
4) > νβ(Q

′
5), so by symmetry with the previous case Q6

is comparable to Q5.
3. να(Q

′
4) = να(Q

′
5), νβ(Q

′
4) = νβ(Q

′
5) and

inαQ
′
4

inαQ′
5

=
inβQ

′
4

inβQ′
5

. (38)

It follows from να(Q
′
4) = να(Q

′
5) that να(ω4Q4) = να(ω5Q5) and similarly for β. Let

γα = να(ω4Q4) and γβ = νβ(ω4Q4).
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Consider the natural homomorphism of graded algebras

grα0A
∗ σα // grαA

∗ .

Let Bα = σα(grα0A
∗) and similarly for β.

Since there are three approximate roots of complexity 1, common to α and β, there are
at least two Q-linearly independent Q-linear dependence relations among να(x), να(y), να(z),

valid also for νβ(x), νβ(y), νβ(z). Thus there is a natural graded isomorphism grνα0A
ι // grνβ0

A .

Since ι(ker σα) = ker(σβ), the map ι induces an isomorphism Bα → Bβ. We obtain the fol-
lowing diagram :

grα0A
∗ σα //

##G
GG

GG
GG

G

ι

��

grαA
∗

Bα

-


;;xxxxxxxx

ιB

��
Bβ � q

""E
EE

EE
EE

EE

grβ0A
∗ σα //

;;xxxxxxxxx
grβA

∗

.

If ωi = M i
1 + · · · +M i

si
is quasi-homogeneous and not in ker(σ), we have, for all j ∈

{1, . . . , si}, ι(inα0(M
i
j)) = inβ0(M

i
j) and inα0(ωi) = inα0(M

i
1)+ · · ·+inα0(M

i
si
) and similarly

for β. From which we deduce that ι(inα0(ω4)) = inβ0(ω4). On the other hand, we have
ι(inα0(u

α4)) = inβ0(u
α4) and the same with uα4 replaced by uα5 .

Now we have

ι

(

inα0(u
α4ω4)

inα0(uα5ω5)

)

=
inβ0(u

α4ω4)

inβ0(uα5ω5)
.

Passing to the images in Bα and Bβ and taking into account that inα0(u
α4ω4)∈/ ker(σα), we

obtain the equality of non-zero real numbers

inα(u
α4ω4)

inα(uα5ω5)
=

inβ(u
α4ω4)

inβ(uα5ω5)
. (39)

Multiplying the equations (38) and (39), we obtain

inα(ω4)inα(u
α4)inα(Q

′
4)

inα(ω5)inα(uα5)inα(Q′
5)

=
inβ(ω4)inβ(u

α4)inβ(Q
′
4)

inβ(ω5)inβ(uα5)inβ(Q′
5)
. (40)

In other words,
inα(ω4Q4)

inα(ω5Q5)
=

inβ(ω4Q4)

inβ(ω5Q5)
.

3a. inαω4Q4 + inαω5Q5 = 0. Then inβω4Q4 + inβω5Q5 = 0. Then να(Q
′
6) > να(Q

′
4) and

νβ(Q
′
6) > νβ(Q

′
4), so Q6 is comparable to Q4.

3b. inαω4Q4 + inαω5Q5 6= 0. Then inβω4Q4 + inβω5Q5 6= 0. Then, using (37), να(Q
′
6) =

να(Q
′
4) and νβ(Q

′
6) = νβ(Q

′
4). Write the syzygy in the form ω′

4Q
′
4+ω′

5Q
′
5+ω′

6Q
′
6 = 0 where

να(ω
′
4) = να(ω

′
5) = να(ω

′
6) where, for i = 4, 5, 6, ω′

i = ωiu
αi . Now,

inαQ
′
6

inαQ′
4

=
−inα

ω′

4

ω′

6
Q′

4 − inα
ω′

5

ω′

6
Q′

5

inαQ′
4

= −inα
ω′
4

ω′
6

−inα
ω′
5

ω′
6

inαQ
′
5

inαQ′
4

= −inβ
ω′
4

ω′
6

−inβ
ω′
5

ω′
6

inβQ
′
5

inβQ′
4

=
inβQ

′
6

inβQ′
4

and so again Q6 is comparable to Q4.

From now on, assume that A is excellent.
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6.1 Some of u1, u2, u3 belong to the separating ideal

Assume that {u1, u2, u3}∩ < α, β > 6= ∅. The case u1, u2, u3 ∈< α, β > is trivial since then
< α, β >= m.

If u1∈/ < α, β > and u2, u3 ∈< α, β >, then the only relevant approximate roots appearing
in (24) and (26) are u1, u2, u3. Then all the inequalities defining C′ are monomial in u1, u2, u3.
So C′ is connected by Corollary 5.2.

Finally, suppose that u1, u2∈/ < α, β >, u3 ∈< α, β >. Then all the approximate roots
belong to {u3} ∪R[u1, u2].

After a suitable sequence of affine monomial blowings up A → A′ such that Sper A′

contains the common center m′ of α′ and β′, m′ has a regular system of parameters u′1, u
′
2, u

′
3

such that all the approximate roots are monomials in u′1, u
′
2, u

′
3 up to multiplication by units

of A′. Let ξ′ be the unique point of Sper A′ with support m′.
Let π : Sper A′ → Sper A the induced map of real spectra. Write Qδi = u′δ

′

ivi, Q
δji =

u′δ
′

jivji with vi, vji ∈ A′ \m′. If C is as in (25), the set π−1(C) contains the set

C̃ =







δ is centered at m′

νδ(u
′δ′i) < νδ(u

′δ′ji ), i ∈ {1, . . . , s}, j ∈ {1, . . . , Ni}
sgnδu

′
ℓ = sgnαu

′
ℓ for all u

′
ℓ appearing in u′δ

′

i for some i







.

Take d ∈ R such that d > max
1≤i≤s

Ni × max
1 ≤ i ≤ s
1 ≤ j ≤ Ni

|vji(ξ′)|
|vi(ξ′)|

.

Let

˜̃C =







δ is centered at m′

|u′δ′i(δ)| > d|u′δ′ji (δ)| i ∈ {1, . . . , s}, j ∈ {1, . . . , Ni}
sgnδu

′
ℓ = sgnαu

′
ℓ for all u

′
ℓ appearing in u′δ

′

i for some i







.

˜̃C is connected by Corollary 5.2.

Then α′, β′ ∈ ˜̃C, hence α, β ∈ π( ˜̃C), π( ˜̃C) is connected and contained in {g1 · · · gs 6= 0}.
This completes the proof in the case when {u1, u2, u3}∩ < α, β > 6= ∅.

From now on, we assume {u1, u2, u3}∩ < α, β >= ∅ and that, unless otherwise
specified, there are 3 relevant approximate roots Q4, Q5, Q6.

6.2 All the approximate roots are pairwise comparable

Without loss of generality, assume that να(Q
′
6) ≤ να(Q

′
4), να(Q

′
6) ≤ να(Q

′
5) and u1(α) >

0, u2(α) > 0, u3(α) > 0, Q6(α) > 0.
Write

Q6 = −ω4

ω6
Q4 −

ω5

ω6
Q5. (41)

Assume that ω5

ω6
Q5 >α,β 0 (if the opposite holds, a similar reasoning applies). Then

Q6 >α,β 0 ⇒ |ω4

ω6
Q4| >α,β |ω5

ω6
Q5|. There exists ǫ > 0 in R such that

(1− ǫ)|ω4

ω6
Q4| >α,β |ω5

ω6
Q5|. (42)

Then
|Q6| >α,β ǫ|

ω4

ω6
Q4|. (43)

We now describe the connected set required in the Connectedness Conjecture which we
will define by inequalities among certain generalized monomials and sign conditions on the
Qi. Let g1, . . . , gs ∈ A be as in the statement of the conjecture. Let

gi = Qδi +

Ni
∑

j=1

cjiQ
δji , i ∈ {1, . . . , s} (44)
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be the standard form of gi.

For each i ∈ {1, . . . , s}, in the sum
∑Ni

j=1 cjiQ
δji replace Q6 by the right hand side of (41)

and write the result as a sum of generalized monomials (with possibly negative exponents)
in u1, u2, u3, Q4, Q5 :

N ′

i
∑

j=1

c′jiQ
δ′ji .

In each generalized monomial Qδi , replace Q6 by ǫω4

ω6
Q4 and let c′iQ

δ′i be the resulting
generalized monomial.

Let D be the subset of Sper A consisting of points δ such that

|c′iQδ′i(δ)| > 1

N ′
i

|c′jiQδ′ji (δ)| i ∈ {1, . . . , s}, j ∈ {1, . . . , Ni} (45)

(1 − ǫ)|ω4

ω6
Q4(δ)| > |ω5

ω6
Q5(δ)| (46)

sgn(u1(δ)) = sgn(u1(α)) (47)

sgn(u2(δ)) = sgn(u2(α)) (48)

sgn(u3(δ)) = sgn(u3(α)) (49)

sgn(Q4(δ)) = sgn(Q4(α)) (50)

sgn(Q5(δ)) = sgn(Q5(α)) (51)

By definition of standard form, να(Q
δi) < να(Q

δji ) for all i, j and similarly for νβ. By

(43), this implies that να(Q
δ′i) < να(Q

δ′ji) for all i, j and the same for νβ . Thus inequalities
(45) hold for δ = α and δ = β. This proves that α, β ∈ D. The polynomials gi have constant
sign on D for all i because the inequalities ensure that the sign of gi is determined by the
sign of its dominant monomial Qδi . With these conditions, using (41), we see that the signs
of both Q6 and Qδi are constant on D.

It remains to prove that α and β belong to the same connected component of D Let
A→ A′ be a finite sequence of affine monomial blowings up such that Sper A′ contains the
common center m′ of α′ and β′ and there is a regular system of parameters (x′, y′, z′) at m′

such that x′ is a monomial in u1, u2, u3, y
′ = Q′

4 and z′ = Q′
5.

For each inequality
|cQǫ(δ)| < |dQγ(δ)| (52)

appearing in the definition of D, there exist ǫ′x, ǫ
′
y, ǫ

′
z, γ

′
x, γ

′
y, γ

′
z ∈ Z and elements u, v ∈

A′
m′ \m′A′

m′ such that cQǫ = ux′ǫ
′

xy′ǫ
′

yz′ǫ
′

z and dQγ = vx′γ
′

xy′γ
′

yz′γ
′

z . Take positive constants
ũ, ṽ ∈ R such that |u| < ũ and |v| > ṽ. Then, for any δ′ ∈ Sper A′

m′ , the inequality

|ũx′ǫ′x(δ′)y′ǫ′y (δ′)z′ǫ′z(δ′)| < |ṽx′γ′

x(δ′)y′γ
′

y (δ′)z′γ
′

z(δ′)| (53)

implies the inequality (52) where δ is the image of δ′ in Sper A.
Since

να(x
′ǫ′xy′ǫ

′

yz′ǫ
′

z) > να(x
′γ′

xy′γ
′

yz′γ
′

z) (54)

and similarly for β, the inequalities (53) hold for both δ′ = α′ and δ′ = β′.

Let D′ be the subset of Sper A′
m′ defined by all the resulting inequalities of the form (53)

and the sign conditions

sgn(x′(δ′)) = sgn(x′(α′)) (55)

sgn(y′(δ′)) = sgn(y′(α′)) (56)

sgn(z′(δ′)) = sgn(z′(α′)). (57)
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The setD′ is connected by Corollary 5.2. Its image in Sper A is connected, contains α and
β and is contained in the set {g1 · · · gs 6= 0}. This completes the proof of the Connectedness
Conjecture in the case when Q4, Q5, Q6 are pairwise comparable.

Remark 6.7 The same method works to prove the Connectedness conjecture also in the case
when νβ(Q

′
4) = νβ(Q

′
5) = νβ(Q

′
6) and να(Q

′
4) = να(Q

′
5) < να(Q

′
6).

6.3 The case when there are only one or two relevant approximate

roots

Assume that there are exactly 2 approximate roots Q4, Q5∈/ < α, β >, common to α and
β. We proceed as in the case of 3 comparable approximate roots. This means that, after a
suitable sequence of affine monomials blowings up A → A′ such that Sper A′ contains the
common center m′ of α′ and β′, m′ has a regular system of parameters x′, y′, z′ such that x′

is a monomial in u1, u2, u3, y
′ = Q′

4, z
′ = Q′

5 (remember the notation (34)).
Then as above, we replace the inequalities of type (52) by inequalities involving only

monomials as in (53). Once again we apply the Corollary 5.2 to ensure the existence of a set
C as required.

The case with only one relevant approximate root, Q4, is more difficult.

Claim. There exists a connected subset C̃ of C, which we will describe explicitly, containing
α and β.

Proof : First, we consider the special case when A is the localization of the polynomial
ring A = R[x, y, z](x,y,z). Let A → A1 → · · · → Ai be a finite sequence of affine monomial

blowings up with respect to α (see [21], Proposition 6.1) such that uα4−β4 ∈ Ai where
u = (x, y, z). Let zi = uα4−β4 − 1. By construction, Ai is the localization of a polynomial
ring of the form R[xi, yi, zi], where xi, yi are monomials in x, y, z and zi = uα4−β4 − 1, by
the multiplicative set R[x, y, z] \ (x, y, z). Let ui = (xi, yi, zi).

In Ai the inequalities (26) can be rewritten as

|(ci + zifi)u
γi

i | <
∣

∣

∣
(di + zihi)u

δi
i

∣

∣

∣
where ci, di ∈ R, cidi 6= 0, fi, hi ∈ R[xi, yi, zi]. (58)

Let C̃ ⊂ Sper Ai be the set defined by the stronger inequalities

|2ciuγi

i | ≤
∣

∣

∣

∣

1

2
diu

δi
i

∣

∣

∣

∣

(59)

and the sign conditions sgn(xi(δ)) = sgn(xi(α)), sgn(yi(δ)) = sgn(yi(α)), sgn(zi(δ)) =
sgn(zi(α)). The set C̃ contains the strict transforms of α and β.

Let D be the subset of Sper R[xi, yi, zi] defined by the inequalities (59) and the same
sign conditions as above.

Using the cartesian diagram

Sper R[x, y, z] Sper R[xi, yi, zi]oo

�

Sper R[x, y, z](x,y,z)
?�

OO

Sper R[xi, yi, zi]S
?�

OO

oo

where S = R[x, y, z] \ (x, y, z), we can identify C̃ with

∞
⋂

N=1

D ∩ {δ ∈ Sper R[xi, yi, zi] ; |x(δ)| ≤ 1

N
, |y(δ)| ≤ 1

N
, |z(δ)| ≤ 1

N
}.
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By Lemma 4.1 of [21], we have that D ∩ {δ ∈ Sper R[xi, yi, zi] ; |x(δ)| ≤ 1
N
, |y(δ)| ≤

1
N
, |z(δ)| ≤ 1

N
} is connected, so applying Lemma 7.1 of [21], we deduce that the intersection

is a non empty closed connected set, so C̃ is connected and contains the strict transforms of
α and β, hence its image in Sper A is the desired connected set. This completes the proof
when A = R[x, y, z](x,y,z). The general case now follows from Theorem 5.1.

6.4 The approximate roots are pairwise incomparable

Lemma 6.8 At least two of Q4, Q5, Q6 have να-value strictly greater than µα

2 (and similarly
for νβ-value).

Proof : This is an immediate consequence of Definition 6.4 and Remark 6.5. �

Without loss of generality, assume that

να(Q4) ≤ να(Q5) ≤ να(Q6). (60)

Then
να(Q5) >

µα

2
, να(Q6) >

µα

2
. (61)

Proposition 6.9 Consider a generalized monomial Qγ divisible by one of Q4Q5, Q4Q6,
Q5Q6, Q

2
5, Q

2
6.

Then (a) Qγ ∈< α, β >
(b) Qγ belongs to the ideal generated by all the generalized monomials belonging to

< α, β > and not divisible by any of Q2
5, Q

2
6, Q4Q5, Q4Q6, Q5Q6.

Proof : (a) If Q2
5

∣

∣ Qγ or Q2
6

∣

∣ Qγ , the result follows immediately from (61).
If Q4Q5 | Qγ , Q4Q6 | Qγ or Q5Q6 | Qγ , the result follows from Definition 6.4 and Lemma
6.5.

(b) By pairwise incomparability and (60), we have να(Q5) + ν0α(Q5) ≥ µα and similarly
for β. As well,

να(Q6) + ν0α(Q6) ≥ µα. (62)

Suppose, for example, Q2
5

∣

∣ Qγ . Write Q5 = ω− ǫ where ω, ǫ are monomials in x, y, z. Then
Qγ belongs to the ideal generated by Q5ǫ, Q5ω and by (62), Q5ǫ, Q5ω ∈< α, β >. The cases
when Qγ is divisible by Q2

6, Q4Q5, Q4Q6, Q5Q6 are handled similarly. �

We now describe the connected set required in the Connectedness Conjecture by in-
equalities on the size of certain generalized monomials and sign conditions on the Qi. Let
g1, . . . , gs ∈ A be as in the statement of the conjecture. Let

gi = Qδi +

Ni
∑

j=1

cjiQ
δji , i ∈ {1, . . . , s} (63)

be the standard form of gi of level να(< α, β >.

Let S be a finite set of generalized monomials, not divisible by Q2
5, Q

2
6, Q4Q5, Q4Q6,

Q5Q6, belonging to < α, β >, which generate < α, β >. In addition, we require all the
monomials Qλ ∈ S to have the following property : if Q4

∣

∣ Qλ then

να(Q
λ)− να(Q4) + να0(Q4) < µα (64)

and similarly for Q5 and Q6.
Let T be the set of all the generalized monomials not belonging to < α, β >.
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Let C be the subset of Sper A consisting of points δ such that

νδ(Q
γ) < νδ(Q

λ) (65)

νδ(Q
θ) = νδ(Q

η) (66)

sgn(u1(δ)) = sgn(u1(α)) (67)

sgn(u2(δ)) = sgn(u2(α)) (68)

sgn(u3(δ)) = sgn(u3(α)) (69)

sgn(Q4(δ)) = sgn(Q4(α)) (70)

sgn(Q5(δ)) = sgn(Q5(α)) (71)

sgn(Q6(δ)) = sgn(Q6(α)) (72)

where (i) Qθ,Qη run over all the pairs of elements of T satisfying (66) for δ = α and δ = β,
(ii) Qγ ,Qλ run over all the pairs of generalized monomials such that Qγ ∈ T , Qλ ∈ T ∪S

and (65) holds for δ = α and δ = β.

Note that the definition of C implies that for all δ ∈ C, the binomials Q4, Q5, Q6 are
approximate roots for the valuation νδ.

All points δ ∈ C share, by definition of C, the same approximate roots Q4, Q5, Q6. This
implies that the dimQ(

∑3
j=1 Qνδ(ui)) = 1, for all δ ∈ C (in particular, for δ = α and δ = β).

Moreover, there exist r, s ∈ Q such that νδ(u2) = rνδ(u1) and νδ(u3) = sνδ(u1) for all δ ∈ C.
Then each equality or inequality of (65), (66) may be written in a form containing only
ν(u1) and ν(Q4), ν(Q5), ν(Q6). As νδ0(Q

λ) can be written purely in terms of ν(u1) and as
ν(Qℓ) = ν0(Qℓ) + ν(Q′

ℓ), any relation of the form (65) or (66) may be written in terms of
ν(u1), ν(Q

′
4), ν(Q

′
5), ν(Q

′
6).

Proposition 6.10 C contains a point ǫ such that νǫ(Q
′
4) = νǫ(Q

′
5) = νǫ(Q

′
6).

Without loss of generality, assume that

να(Q
′
4) = να(Q

′
5) < να(Q

′
6) and (73)

νβ(Q
′
4) = νβ(Q

′
6) < να(Q

′
5) (74)

Replacing α by α′ lying in C such that

να′(Q′
4) = να′(Q′

5) < να′(Q′
6) (75)

and Γα′ ⊂ R does not change the problem and similarly for β. From now on, we will assume
that Γα ⊂ R and Γβ ⊂ R.

Let

φ :















δ ∈ Sper A

∣

∣

∣

∣

∣

∣

∣

∣

Γδ ⊂ R

δ centered in m

Q4, Q5, Q6 are approximate
roots for δ.















→ {(a1, a2, a3, a4) ∈ R4

| a1, a2, a3, a4 > 0} (76)

be the map defined by φ(δ) = (νδ(u1), νδ(Q
′
4), νδ(Q

′
5), νδ(Q

′
6)).

Lemma 6.11 A point (a1, a2, a3, a4) ∈ R4, a1 > 0, a2 > 0, a3 > 0, a4 > 0 is in the image of
φ if and only if one of the following conditions holds

a2 = a3 ≤ a4, a2 = a4 ≤ a3, a3 = a4 ≤ a2. (77)

Proof : Write the syzygy in the form ω′
4Q

′
4 + ω′

5Q
′
5 + ω′

6Q
′
6 = 0. The “only if” part follows

from this.
“If” : Suppose, for example, that a2 = a3 ≤ a4. Consider a sequence of blowings up

A→ A′ such that A′ has a maximal ideal m′ with a regular system of parameters (x′, y′, z′)
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such that Q′
4 = y′, Q′

6 = z′ and u1, u2, u3 are monomials in x′, up to multiplication by units
of A′. Write u1 = x′γv with γ ∈ N∗

+, v ∈ A′\m′. Take a point δSper A such that νδ(x
′) = a1

γ
,

νδ(y
′) = a2, νδ(z

′) = a4. Then δ is centered in m and has Q4, Q5, Q6 as approximate roots.
this proves that (a1, a2, a3, a4) ∈ Im(φ).

Next, we reduce the problem to the case when each of the inequalities (65) and equalities
(66) involves at most one ofQ4, Q5, Q6 (possibly raised to some power). Namely let h1, . . . , hp
be the complete list of inequalities (65) and equalities (66). We order the hi in such a way
that all the inequalities-equalities involving at most one of Q4, Q5, Q6 come first and those
involving at least 2 of Q4, Q5, Q6 come later. In each of the above two lists, we order the
inequalities-equalities by the value of the left-hand side.

Lemma 6.12 Assume Proposition 6.10 is true in the special case when each hi contains at
most one of Q4, Q5, Q6. Then it is true in general.

Proof : We argue by contradiction. Suppose that Proposition 6.10 is false for h1, . . . , hp.
Without loss of generality, we may assume that Proposition is true for h1, . . . , hp−1. Let

C̃ ⊃ C be the set defined by the same conditions as C except for hp. By assumptions, C̃
contains a point ǫ such that νǫ(Q

′
4) = νǫ(Q

′
5) = νǫ(Q

′
6).

In the following formulae, the notation

{νδ(Qγ) = νδ(Q
λ)} (78)

means “the set of all the points of R4 of the form (νδ(u1), νδ(Q
′
4), νδ(Q

′
5), νδ(Q

′
6)) where δ

satisfies (78)”. This notation makes sense because because νδ(Q
γ) and νδ(Qλ) are completely

determined by (νδ(u1), νδ(Q
′
4), νδ(Q

′
5), νδ(Q

′
6)). The set (78) is contained in a hyperplane H

of R4, defined by a linear equation with rational coefficients, and contains the subset of H
satisfying the conditions (77).

If hp is a strict inequality, write hp in the form νδ(Q
γ) < νδ(Q

λ) and consider two
segments in R4

[(να(u1), να(Q
′
4), να(Q

′
5), να(Q

′
6)), (νǫ(u1), νǫ(Q

′
4), νǫ(Q

′
5), νǫ(Q

′
6))] (79)

[(νβ(u1), νβ(Q
′
4), νβ(Q

′
5), νβ(Q

′
6)), (νǫ(u1), νǫ(Q

′
4), νǫ(Q

′
5), νǫ(Q

′
6))]. (80)

Since νǫ(Q
′
4) = νǫ(Q

′
5) = νǫ(Q

′
6) and the left endpoint of

[(να(u1), να(Q
′
4), να(Q

′
5), να(Q

′
6)), (νǫ(u1), νǫ(Q

′
4), νǫ(Q

′
5), νǫ(Q

′
6))]

satisfies the conditions (77), so does every point of that interval. The same holds for the
interval

[(νβ(u1), νβ(Q
′
4), νβ(Q

′
5), νβ(Q

′
6)), (νǫ(u1), νǫ(Q

′
4), νǫ(Q

′
5), νǫ(Q

′
6))].

Since ǫ∈/C, the following intersections are non empty; each of them consists of one point

[(να(u1), να(Q
′
4), να(Q

′
5), να(Q

′
6)), (νǫ(u1), νǫ(Q

′
4), νǫ(Q

′
5), νǫ(Q

′
6))] (81)

∩
{

νδ(Q
γ) = νδ(Q

λ)
}

=: {(a1, a2, a3, a4)} (82)

and

[(νβ(u1), νβ(Q
′
4), νβ(Q

′
5), νβ(Q

′
6)), (νǫ(u1), νǫ(Q

′
4), νǫ(Q

′
5), νǫ(Q

′
6))] (83)

∩{νδ(Qγ) = νδ(Q
λ)} =: {(b1, b2, b3, b4)}. (84)

Take points α0 ∈ φ−1((a1, a2, a3, a4)) and β0 ∈ φ−1((b1, b2, b3, b4)).

In particular

να0(Q
′
4) = να0(Q

′
5) ≤ να0(Q

′
6) and (85)

νβ0(Q
′
4) = νβ0(Q

′
6) ≤ νβ0(Q

′
5) (86)
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and at least one of the two inequalities is strict. Note that α0 6= β0. Suppose the inequality
(85) is strict. Let hp0 be the equality νδ(Q

γ) = νδ(Q
λ).

If hp is an equality, put α0 = α, β0 = β and let hp0 = hp.
We can now contradict (85), (86) as follows. Suppose, for example, that hp0 has the form

νδ(Q
a
4ω) = νδ(Q5η) (87)

a ≥ 1 and write Q4 = ǫ4 − ω4, Q5 = ǫ5 − ω5.
Then Qa−1

4 ωǫ4 and ǫ5η do not belong to < α, β > and the relation between να(Q
a−1
4 ωǫ4)

and να(ǫ5η) (which may be <,= or >) belongs to the list h1, . . . , hp−1. Therefore, this
relation is the same for α0 and β0. From this, it follows that the relation between νδ(Q4)−
νδ0(Q4) = νδ(Q

′
4) and νδ(Q5)− νδ0(Q5) = νδ(Q

′
5) (which may be <,= or >) is the same for

δ = α0 and for δ = β0. This contradicts (85), (86). �

We now need the following geometric lemma.

Lemma 6.13 - Tetrahedron Lemma - Consider 4 points of R3, P,Q,R, S, not lying in
the same plane. Then they define an affine basis of R3 and let (u, v, w, t) be the barycentric
coordinates with respect to this basis (so u+v+w+ t = 1). Let A be a point with coordinates
(u1, v1, w1, t1) such that u1, v1, w1, t1 > 0 and u1 = v1 ≤ w1 and B be a point with coordinates
(u2, v2, w2, t2) such that u2, v2, w2, t2 > 0 and v2 = w2 ≤ u2. Consider a finite set of linear
inequalities of the form gi ≥ 0, i = 1, . . . ,m such that for all i ∈ {1, . . . ,m}, gi(A) ≥ 0 and
gi(B) ≥ 0. Moreover suppose that, for each given i, only one of u, v, w appears in gi, which
means that the plane gi = 0 passes at least through two of the points P,Q,R.

Then there exists a point D with coordinates (λ/3, λ/3, λ/3, 1 − λ), 0 ≤ λ ≤ 1 such
gi(D) ≥ 0 for all i ∈ {1, . . . ,m}.

Proof : Let I be the point with coordinates (1/3, 1/3, 1/3, 0). Without loss of generality,
we may assume that, for all i, the plane {gi = 0} intersects the segment IS in a point Mi

between I and S.
Let i be such that gi(R) = 0. Then the intersection of {gi = 0} with the triangle RIS is

the segment RMi.
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Let A1 and A2 be the points of IS defined by

A1S =
⋃

RMi lies above A

i∈{1,...,m}

MiS

and
IA2 =

⋃

RMi lies below A

i∈{1,...,m}

IMi

respectively.
Similarly, for all i such that gi(P ) = 0 we define B1, B2 ∈ IS such that

B1S =
⋃

PMi lies above B

i∈{1,...,m}

MiS

and
IB2 =

⋃

PMi lies below B

i∈{1,...,m}

IMi

respectively.
Let B′ be the point of intersection of PB with IS. We will prove that A1 belongs to the

interval [SB′] and B′ to [SA2]. And then put D = B′. This will complete the proof.
Let us show that B′ ∈ [SA2]. Now, if A2 is defined by a plane of the form gi = 0 with

gi(R) = 0 and gi(P ) = 0, then necessarily, B′ is closer to S than A2.
So we may assume that A2 is defined by a plane of the form u− kt = 0.
If A2 is closer to S than B′, then P and B′ are both in the same half-space whose

boundary is the plane A2QR with equation u−kt = 0. Then (u−kt)(B) > 0. But, because,
(u − kt)(A) < 0 so also (u − kt)(B) < 0, which is a contradiction. We prove the same way
that A1 ∈ [SB′]. So B′ lies between A1 and A2 as desired. �

Applying the Tetrahedron Lemma to all the relations of the form (65) or (66) ensures the
existence of a point D on IS satisfying the same relations. Consider a point δ ∈ Sper A such
that νδ has the same three approximate roots Q4, Q5, Q6 and satisfying moreover the fact
that the coordinates (ν(u1), ν(Q

′
4), ν(Q

′
5), ν(Q

′
6)) correspond to the point D, then δ ∈ C.

So we are reduced to the limit case (see Remark (6.7)) where all the approximate roots
are pairwise comparable for the couple (α, δ) and for the couple (β, δ). This defines two
connected sets C1 and C2, avoiding all {gi = 0}, and such that C1 contains α and δ and C2

contains β and δ. So letting C = C1 ∪ C2 gives a connected set as required.

This settles the last remaining case ((Q4, Q5, Q6) pairwise incomparable) and with it
Theorem 1.14.
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