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In-line digital holography is an imaging technique which is being increasingly

used for studying 3D flows. It has been previously shown that very accurate

reconstructions of objects could be achieved with the use of an inverse

problems framework. Such approaches however suffer from higher computa-

tional times compared to less accurate conventional reconstructions based

on hologram back-propagation. To overcome this computational issue, we

propose a coarse-to-fine multi-scale approach to strongly reduce the algorithm

complexity. We illustrate that an accuracy comparable to state-of-the-art

methods’ can be reached while accelerating parameter-space scanning. ©
2012 Optical Society of America

OCIS codes: 100.3190, 090.1760, 100.5010, 100.6640, 100.2000

1. Introduction

Study of 3D flows has many applications in different fields of science such as fluid mechanics

(e.g., study of turbulence [1], droplet evaporation [2,3]) and biology (e.g., study of locomotion

of micro-organisms [4]). The goal of these applications is mainly to study motion of turbulent

3D fluid structures or the dispersion and mixing of particles inside a volume. The impact
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of the micro-particles suspension on the rheology is interesting [5] in the context of non-

Newtonian fluids. Other examples are study of the interactions between micro-particles [6].

For these applications it is therefore essential to use imaging tools to track 3D positions

of these micro-particles and/or to observe the changes in their shapes using a sequence of

measurements. The requirements of such methods are mainly high accuracy, fast imaging

techniques and simplicity of the image processing tools for users.

Since its early developments, in-line digital holography (DH) has increasingly been used in

studies of 3D flows (see [7–10] and references therein) because of its following advantages: high

speed imaging technique, very simple setup, accurate measurements (without magnification

the accuracies are 1µm for transversal and 10µm for depth estimation, with magnification

they can reach up to 5nm and 100nm respectively). DH consists of two steps. First, during

the recording step, objects are illuminated by a laser beam and diffraction patterns are

captured by the camera. This 2D hologram is then processed in a second step to extract 3D

locations, and possibly shape information, of the illuminated objects.

Most hologram processing techniques in the literature are based on hologram diffraction.

They first simulate optical reconstruction of the object wave (using, for example, the Fresnel

transform to back-propagate the hologram [11]). Then, they segment the obtained 3D volume

to detect and locate in-focus objects. Let us note that hologram back-propagation does not

fully invert hologram formation [12], which is the reason for several artifacts encountered in

reconstructed volumes such as ghost images, border effects and twin images.

Segmentation of in-focus objects is performed based on the real part [13,14] or imaginary

part [15] of reconstructed volume or some transformation of this reconstructed object field

(e.g., wavelet transform [16] or integrated amplitude modulus [17]). From a signal processing

perspective, hologram-diffraction based techniques have limited accuracies due to (i) signal

truncation which dramatically limits the accuracy of field reconstruction close to the bor-

ders, and (ii) low spatial resolution of digital sensors which either results in false object

detection(due to ghost images) or enforces limitations on the recording setup leading to a

lower signal magnitude, and consequently lower signal-to-noise ratio (see [18] for details).

In contrast to classical hologram-diffraction approaches, methods for reconstructing par-

ticle holograms based on an inverse problems formulation lead to optimal detection perfor-

mance and efficient estimators [19,21]. These methods are sometimes referred to as compres-

sive sensing methods in the literature [20, 26, 29]. Starting from a model of the diffraction

pattern of a particle, these approaches search for the location and size of particles that best

“explain” observed data (i.e., maximum likelihood estimation of location and size). In ad-

dition to higher accuracy of estimations, such inverse problems approaches can expand the

field of view outside of the sensor area up to a factor 16 [19, 22], which is out of reach of

classical methods [12].
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An important practical issue of these approaches, though, is their huge computational cost.

We suggest using a coarse-to-fine scheme with a multi-scale (not necessarily dyadic) pyramid

to overcome this limitation. Connections between multi-scale techniques and holography have

long been made [16,23,24]. We show that parameter space scanning can be made time-efficient

using multiple scales by first exploring exhaustively a small sub-volume, and then focusing

computational effort on local optimization with refined resolutions.

The structure of the paper is as follows: Sec. 2 gives a brief introduction to inverse problems

approaches in DH, then Sec. 3 describes the main body of this paper: In Sec. 3.A the proposed

multi-scale approach is described in detail. In Sec. 3.B the analytical approximation of the

diffraction pattern model of spherical particles is formulated. In Sec. 3.C and 3.D we discuss

the choice of pyramid height and a criterion for adaptively stopping local optimizations

at each scale. We then compare both speed and accuracy to the existing inverse problems

technique in Sec. 4.

2. Inverse problems approaches in digital holography

Inverse problems represent a general class of problems where unknowns are related to

measurements through a known model (simulating the measurements is referred to as the

“direct problem”), and estimating the unknowns from their corresponding measurements

can be a difficult task.

In the context of DH reconstruction, two kinds of problems can be considered: (i) non-

parametric reconstruction of objects; (ii) detection and location of simple parametric shapes

(typically, spherical particles).

Non-parametric reconstruction of objects requires inversion of the diffraction operator

which maps a 3D transmittance volume to a 2D hologram. This is an ill-posed problem that

requires regularization for its inversion. Successful reconstructions have been obtained with

smoothness constraints (enforced by total variation minimization [25,26,28–30]) or sparsity

in the spatial domain [22].

Parametric reconstruction is useful for particle hologram reconstruction. We will focus in

the following on spherical particles which is important in many metrological applications.

The problem in that case is to estimate 3D location and diameter of particles from a single

hologram. It has been shown [31] that a particle hologram d can be well approximated as

the sum of the diffraction pattern mi of each particle:

d ≈

Npart∑

i=1

αimi, (1)

where hologram d and models mi are adequately centered (i.e., constant offset removed).

We represent both the N -pixels hologram and diffraction patterns as vectors in R
N , as is
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common practice in the context of linear inverse problems. Npart represents the number of

particles in the hologram. The model mi of the diffraction pattern created by the ith particle

is a non-linear parametric model (see Eq. 7). The coefficients αi are positive values that

account for the amplitude of each diffraction pattern (this amplitude may vary from one

particle to another due to inhomogeneity of the incoming wave).

In Eq. 1, while the diffraction patterns created by each particle are modeled through the

models mi, the interferences between the particles’ diffraction patterns are approximated by

an incoherent summation. This linearization of the hologram formation model is essential in

in-line holography and is valid when particles are small (i.e., with diameters less than a few

hundred microns) and not too numerous. Let us note that an empirical criterion proposed by

Royer [27] states that the holograms are of good quality provided that the projected surface

of the particles are less than 1% of the sensor surface. In the rest of this paper, we will use the

linear model under the assumption that the inter-particle interferences are negligible. This

assumption is widely and successfully used in the literature of in-line digital holography of

micro-particles [19, 31, 39, 40].

Accurate estimates can be obtained by weighted least-squares fitting [19,21], i.e., by finding

parameters of a single diffraction pattern model m that minimize the square Mahalanobis

distance to the data considered as the cost function:

D2
W
(d,m) = (d−m)tW (d−m) (2)

with W the inverse of the covariance matrix of noise. Even if noise is considered to be

uncorrelated, the matrixW plays an important role since it represents the hologram support.

W is then diagonal, with diagonal entries equal to 0 for unmeasured pixels (e.g., pixels outside

of the hologram support) and equal to the inverse of noise variance 1/σ2 for measured pixels.

When the noise is Gaussian, then maximum likelihood estimates of the parameters of model

m are obtained by minimizing D2
W
(d,m). To ensure robust detection with holograms of

several particles, an iterative detection/localization scheme has been proposed in [31].

To have more concise mathematical expressions, we introduce the scalar product of two

vectors 〈u,v〉W and the induced norm ‖u‖2
W

as

〈u,v〉W =
utWv

1tW1
( =

∑
k wkukvk∑

k wk

for a diagonal W: W= diag(w)) (3)

‖u‖2
W

= 〈u,u〉W =
utWu

1tW1
( =

∑
k wku

2
k∑

k wk

for a diagonal W: W= diag(w)). (4)

Using this notation, minimizing Mahalanobis distance is equivalent to minimizing

‖d−m‖2
W
. The 3D reconstruction algorithm can then be summarized in three steps [19,31]:
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1. An exhaustive search in parameter space to find the best matching element in a discrete

dictionary of diffraction patterns {m1, . . . ,mK} (Fig. 1:(b)). The goal of this step is to

identify the size r and 3D location (x, y, z) of a single particle that would best explain

the data (i.e., particle with maximum likelihood).

argmin
α≥0

1≤i≤K

‖αmi − d‖2W (5)

Partial minimization with respect to α leads to a generalized maximum correlation

criterion [12]:

argmax
i

[〈d,mi〉W]2+
‖mi‖2W

(6)

where [.]+ = max(., 0) denotes the positive part and is used to eliminate anti-correlated

models from consideration.

2. A local optimization step which improves the estimation of the particle location and size

obtained at the previous step. This is done by numerical optimization of the parameters

of non-linear model m(x, y, z, r). This step overcomes the accuracy limitation induced

by the sampling used to generate the discrete dictionary {m1, . . . ,mK}. Sub-pixel

accuracy is reached by continuous optimization of the fitting criterion (Fig. 1:(c)): The

initial values of parameters x, y, z, r used to begin local optimization are the values

xi, yi, zi, ri corresponding to sampled model mi.

3. A “cleaning” step where observed data is updated by removing the diffraction pattern

of the particle detected and located previously. Processing steps 1 to 3 are then repeated

on the residuals (i.e., data with previously detected objects removed).

This algorithm is described in more detail by Soulez et al. [19, 31] and is based on the

CLEAN algorithm introduced by Högbom in radio-astronomy [32] and matching pursuit by

Mallat and Zhang [33]. The use of a local optimization step can be seen as a way to handle a

continuous dictionary of diffraction patterns. This algorithm belongs to the family of greedy

algorithms [34].

It should be noted that one advantage of having a parametric image formation model is the

possibility of using estimation theory to calculate lower bounds on the achievable accuracies

of parameter estimation (see Sec. 3.D). These lower bounds can help to assess performance

of different hologram processing algorithms. According to estimation theory [35], the accu-

racy on parameter estimation by maximum likelihood asymptotically reaches these lower

bounds (with large numbers of measurements). Based on maximum likelihood estimation,

the described inverse problem approach can thus be considered optimal in this respect.
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(a) (b) (c)

Fig. 1. (a) Hologram of a spherical micro-particle, (b) sampled 4D search space

for exhaustive search step, (c) a 1D profile of the cost function of particle for

visualization purpose. This cost function is jointly optimized in practice over

the four parameters (x, y, z, r) during the local optimization step. The result of

the exhaustive search is used as the initial point for this optimization. The pa-

rameters used in this example are the following: laser wavelength λ =0.532 µm,

pixel size 7 µm, signal-to-noise ratio 50, size of the hologram 2048×2048 pixels,

distance between particle and sensor 0.3 m and radius 33 µm.

6



However, high accuracy comes at the cost of large computation times which can be consid-

ered a strong disadvantage compared to classical approaches. In order to reduce this problem,

we propose a multi-scale approach to dramatically accelerate step 1 of greedy particle detec-

tion algorithm. This approach is introduced in detail in the next section.

3. Proposed multi-scale approach to 3D particle localization and sizing

The inverse problems approaches presented in previous section model both hologram for-

mation (particle diffraction, hologram sampling and finite support) and objects (opaque

spherical particles defined by their 3D coordinates and radius). They lead to optimal detec-

tion and estimation performance at a large computational cost. The exhaustive-search step

(step 1 described in Sec. 2) can be made much faster by down-sampling the hologram. This

leads to a rough estimate of particle size and position that can further be improved by local

optimization (i.e., model fitting) on increasingly higher-resolution versions of the hologram.

We first give an overview of the method, then detail how the hologram multi-scale pyramid

is built, and design adaptive stopping criteria.

3.A. Overview of the method

The exhaustive-search step requires exploring a sampled 4D parameter space. To reach pixel-

accuracy in (x, y) and sufficient accuracy in (z, r), hundreds of (z, r) pairs may need to be

considered for each (x, y) location, leading to hundreds of millions or billions of quadruples

(x, y, z, r) to be tested. Shift-invariance of the model can be exploited by using the Fast

Fourier Transforms (FFT). The search is thus reduced for each exhaustive-search step to the

computation of hundreds of convolutions to evaluate the generalized maximum correlation

criterion given in Eq. 6 (the criterion requires 7 FFTs for each (z, r) pair [19]). This is

then repeated for each particle unless multiple particle detection is implemented [12,36]. To

further reduce computational complexity, we propose to carry out the exhaustive search on

a down-sampled version of the hologram, as described in algorithm FAST (Fig. 2).

Before getting into the detail of each step, here is a sketch of the algorithm. Since ex-

haustive search is a computational bottleneck, we build a multi-resolution pyramid from the

hologram (see Fig. 3(a)) and perform an exhaustive search on the coarsest scale only. Local

optimization is then performed on increasingly fine scales, restarting numerical optimization

each time from the parameters obtained at the previous (coarser) scale. The down-sampled

hologram at level k is computed by low-pass filtering and down-sampling the full-resolution

hologram d by a linear filter F(k) (see Sec. 3.C.1) where Tk corresponds to the period of

down-sampling. We denote down-sampled holograms as ď in algorithm FAST (Fig. 2).

Using a coarse resolution hologram for the exhaustive search step not only reduces the

number of (x, y) samples by a factor T 2
k (and, thus, the size of images on which 2D FFTs are
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computed) but also makes the cost function D2
W

smoother. Sampling of parameters z and r

(i.e., depth and radius of a particle) can also be made coarser in this way. Fig. 3(a) illustrates

the widening of cost function D2
W

when coarser resolution holograms are considered (a profile

of D2
W

along axis z is drawn). The risk of getting trapped in a local minimum is then much

weaker, which relaxes sampling constraints that guarantee being within reach of the global

minimum. We discuss convergence of our multi-resolution algorithm to the global minimum

in Sec. 3.E.

We now detail how each step of the algorithm is performed in order to reach an accuracy

comparable to that of the slower single-resolution approach. We begin with a description of

the diffraction-pattern model m in Sec. 3.B, then describe down-sampling filtering and the

choice of the maximum down-sampling period in Sec. 3.C. We detail the stopping criteria

for each refinement step in Sec. 3.D.

3.B. Diffraction pattern model

A spherical opaque particle generates a diffraction pattern made of concentric rings with

both frequency and amplitude modulations. For particles small with respect to the recording

distance (πr2 ≪ λz), the diffraction pattern is well modeled by a linear frequency modulation

(chirp) and a cardinal Bessel amplitude modulation [21, 31, 37]. The use of a digital camera

generates an integration effect over a pixel area which introduces additional amplitude mod-

ulation by cardinal sines. The model mi of a particle located at coordinates (xi, yi, zi) with

radius ri can then be written [18]:

mi(ℓ) =
πr2i
λzi

· sin(π ρ2ℓ
λzi

) · J1c(2π ri ρℓ
λzi

) · sinc(π s∆xℓ

λzi

) · sinc(π s∆yℓ
λzi

)
(7)

where mi(ℓ), the ℓ
th element of vector mi, represents the ℓ

th pixel of the diffraction pattern of

particle i. Particle i is located respectively at distances ∆xℓ and ∆yℓ from the ℓth pixel along

x-axis (resp. y-axis). The radial distance ρℓ =
√

∆xℓ
2 +∆yℓ 2 corresponds to the distance

between the center of the diffraction rings (i.e., the projection of the center of particle i onto

plane (x, y)) and the center of pixel ℓ. The wavelength of the laser is written λ, and s2 is

equal to the sensitive area of a pixel (i.e., fill-factor times the area of a pixel). The cardinal

Bessel function of the first kind is written J1c( · ) while sinc( · ) denotes the cardinal sine

function.

3.C. Construction of the multi-resolution pyramid

3.C.1. Filtering and down-sampling

The hologram at level k is obtained by application of linear filter F(k) on the original hologram

d:

ď = F(k)d (8)
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Algorithm FAST (Fast and Accurate multi-Scale esTimator of size and location

of particles)

Input: hologram d, parameters of the setup (laser wavelength, pixel size, range of plausible

particle locations and radii T ).

Output: estimated parameters of the Nd detected particles: {xi, yi, zi, ri}i=1,...,Nd

choose a down-sampling factor kmax ⊲ see Sec. 3.C.2

repeat ⊲ particle detection loop

ď = F(kmax)d ⊲ down-sample hologram d by the period Tkmax

i⋆ ← argmax
i

[
〈ď, m̌i〉W

]2
+

‖m̌i‖2W
⊲ do exhaustive search on coarsest scale

(x, y, z, r)← (xi⋆ , yi⋆ , zi⋆ , ri⋆) ⊲ set obtained parameters as initial values

k ← kmax

while k ≥ 1 ⊲ for all resolution levels of the pyramid

ď = F(k)d ⊲ down-sample hologram d by the period Tk

(x, y, z, r)← argmin
x,y,z,r,α

D2
W
(ď, m̌) ⊲ refine particle parameters, stop according to Sec. 3.D

k ← k − 1 ⊲ descend on pyramid

Tk ← ⌊Tk+1/2⌋ ⊲ calculate Tk for finer scales

end while

if α > αmin and (x, y, z, r) ∈ T ⊲ parameters fulfill conditions for being a particle

store (x, y, z, r) ⊲ add parameters to the collection of detected particles

else

stop ⊲ return already detected particles and finish

end if

end repeat

Fig. 2. The proposed multi-scale algorithm for particle detection and sizing

from a digital hologram.
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(a)

(b)

Fig. 3. (a) Schema of the proposed multi-scale algorithm , (b) 1D profile of

the cost function computed on the original hologram: black crosses show the

results of estimation after each step of pyramidal multi-scale algorithm on the

profile of the cost function, black circle shows an example of coarse estimation

from exhaustive search of FAST (Fig. 2) with kmax = 0 (single-scale approach).

As shown here, this coarse detection should be found inside the main basin of

the cost function whereas the coarse estimation using pyramidal multi-scale

algorithm could be outside the basin.
10



where F(k) is a (N/T 2
k ) × N matrix transforming the N -pixels hologram d into a coarser

scale hologram ď with T 2
k times less pixels.

To prevent severe aliasing effects, F(k) must have low-pass behavior. We chose to average

T 2
k values together before down-sampling to reduce aliasing while leaving noise uncorrelated

(so that matrix W in Eq. 2 and following remains diagonal). In the following, F(k) is an

averaging filter followed by a down-sampling operation. Other choices for F(k) are suggested

in Sec. 5.

3.C.2. Maximum down-sampling period selection

The maximum down-sampling period Tkmax
defines the resolution for which exhaustive search

is performed before successive refinements by local optimization are done (see algorithm

FAST in Fig. 2). Two reasons for not selecting an arbitrarily large down-sampling factor are:

(i) using lower resolution holograms reduces the accuracy, especially on z and r, and may

lead to initial estimates of parameters (x, y, z, r) too far from the actual 3D location and size

of the particle to find the correct parameters by successive refinements; (ii) down-sampled

versions of the model are known in closed form provided the down-sampling factor is limited.

We address the first issue by requiring that the down-sampling period T
(i)
kmax

is such that

a significant number q of diffraction fringes are still visible on coarse-scale hologram ď. We

derive in appendix A a bound for T
(i)
kmax

and kmax as:

T
(i)
kmax

=

⌊
1

κ

√
λzmin

2q + 1/2

⌋
, k(i)

max =
⌊
log2(T

(i)
kmax

)
⌋

(9)

with λ the wavelength, zmin the a priori minimum depth of a particle, κ the pixel width

(pixels are assumed to be square for notational convenience) and the brackets representing

the floor function. We discuss in Sec. 3.E and show on our experiments in Sec. 4 that setting

q equal to 10 is enough to obtain correct estimates of particle parameters.

The second issue relates to the ability to express the down-sampled models in closed form.

This is essential for fast estimation of Mahalanobis distance between coarse holograms and

down-sampled models during local optimization. We recall from appendix B that hologram

convolution with a kernel of limited size amounts to an amplitude modulation of the diffrac-

tion rings formulated by Fresnel function. This is due to the correspondence between fre-

quencies of diffraction rings and (spatial) radii of these fringes. The coarse-resolution model

m̌i is then obtained by weighting the original model expression:

m̌i(ℓ) = mi(ℓ
′) · f̃(ℓ′) (10)

where m̌i(ℓ) is the ℓth pixel of coarse-resolution model m̌i, ℓ
′ is the index of the correspond-

ing pixel in full-resolution model, and f̃ is the Fourier transform of the low-pass filter (an
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(a) (b) (c)

Fig. 4. (a) Zoomed-in captured hologram containing two spherical micro-

particles, (b) Zoomed-in down-sampled hologram considering both Eq. 9 and

Eq. 11 as the criteria (Tkmax
= min(T

(i)
kmax

, T
(ii)
kmax

) = 4), (c) Zoomed-in down-

sampled hologram using only Eq. 11 for the down-sampling factor (Tkmax
= 9).

Most of the high-frequencies are filtered out which makes it impossible for

exhaustive search to find a relevant coarse estimation of parameters.

averaging filter in our case) used to build the pyramid (see Appendix B). Computation of

the coarse-resolution model m̌i at level k (which contains N/T 2
k pixels) requires only N/T 2

k

evaluations of model mi and frequency responses f̃ (i.e., far less than N evaluations for the

full-resolution hologram/model).

To derive Eq. 10 it is assumed that the filter and the aperture of the objects are real,

symmetric with respect to origin and small. This last assumption defines a second constraint

T
(ii)
kmax

on the down-sampling period (see Appendix B: Ineq.(16)). Considering a maximum a

priori radius for particles rmax, and sensor size L (hologram width), T
(ii)
kmax

and kmax are (see

Appendix C for details):

T
(ii)
kmax

=

⌊
2

(√
L

10
−

rmax

κ

)⌋
, k(ii)

max =
⌊
log2(T

(ii)
kmax

)
⌋

(11)

In order to satisfy both conditions we choose the down-sampling factor as:

min(T
(i)
kmax

, T
(ii)
kmax

). Fig. 4 shows the effect of down-sampling using only Eq. 11 as well as

considering both criteria in Eq. 9 and Eq. 11.

3.D. Stopping criteria for successive local optimizations

A previous study [38] has shown that resolution in digital holography could be estimated by

computation of Cramer-Rao lower bounds (CRLBs). This approach can be extended to the
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evaluation of the accuracy of 3D particle location and size estimates. Let vector θ denote

the vector of particle parameters: θ = (x, y, z, r)t. Cramer-Rao lower bounds express the

variance of the ath parameter estimate θ̂a based on the inverse of Fisher information matrix

I:

var(θ̂a) ≥
[
I−1
]
a,a

(12)

with Fisher information matrix defined by [38]:

[I]a,b =
1

2

(
∂m(θ)

∂θa

)t

W

(
∂m(θ)

∂θb

)
(13)

If noise is white and stationary, W is equal to 1/σ2 times the identity matrix. Fisher in-

formation matrix can be easily derived for resolution level k of the multi-resolution pyramid:

[I]
(k)
a,b =

T 2
k

2σ2

(
∂m̌(θ)

∂θa

)t(
∂m̌(θ)

∂θb

)
(14)

Using Eq. 12 and Eq. 14, the standard deviation on parameter estimation can be simply

calculated and used as the stopping criteria for consecutive local optimization steps.

3.E. Convergence

Maximum likelihood estimation of particle parameters requires minimization of the cost

function (i.e., Mahalanobis distance) D2
W
(d,m). Finding the global minimum of this cost

function is difficult due to non-convexity of the criterion. Local optimization starting from

an initial guess θ0 will generally lead to the global optimum θ⋆ only if θ0 is already in the

convexity region (i.e., the main basin of the cost function) B(θ⋆). The exhaustive search step

needs to perform a dense enough sampling of parameters space to ensure that region B(θ⋆)

is probed.

As noted in Sec. 3.A, low-pass filtering applied to the hologram to produce the coarse-

resolution levels of the multi-resolution pyramid gives better behaved cost-functions (i.e.,

with smoother and larger main basin). This effect is visible on profiles along the z axis of cost

functions plotted in Fig. 3(a). Successive refinements obtained by local optimization of the

cost function on progressively finer resolutions also helps to find the global minimum θ⋆ even if

the initial guess obtained on the coarsest scale θ0 is not inside the basin B(θ⋆): Fig. 3(b). The

global convergence condition θ0 ∈ B(θ⋆) is relaxed into a sequence of convergence conditions

at each scale: 



θ0 ∈ B(θ⋆(kmax))

θ⋆(kmax) ∈ B(θ⋆(kmax−1))

...

θ⋆(1) ∈ B(θ⋆)

(15)
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We show in the next section that, with our choice of kmax, these conditions are fulfilled in

practice.

4. Experiments and results

To quantify the performance of the proposed multi-scale algorithm for particle detection

and sizing in DH, simulated and real holograms were processed using the standard inverse

problems approach and our multi-scale algorithm. We used the Matlab as the programming

environment. The reported time gain results are obtained using the FFTW library [42] and

OpenMP to exploit multi-threading on a 6-core CPU for the calculations of the forward and

backward Fourier transforms and the models required for the optimization steps. In addition,

a close estimation of the models are calculated by interpolating the values of a precomputed

table to reduce the calculation time.

This section presents the results obtained from simulated and experimental holograms.

Simulations are performed in two different test cases: (i) holograms of particles with various

radii placed at different depth positions; (ii) holograms of the same particles with different

noise levels. Speed and accuracy are compared to the reference single-scale approach. The

hologram processing method is then validated on experimental holograms from a recent

study [39].

4.A. Simulations

To study the multi-scale approach on particles with different radii and different depth po-

sition, two sets of simulations were performed to estimate (i) the speedup brought by our

multi-scale approach; (ii) the accuracy of our algorithm compared to the standard single-scale

inverse problems approach.

For the first case, simulations were performed for 100 holograms each containing 5 particles

with randomly chosen coordinates. We used the following parameters: particles with radii

between 20 µm and 70 µm were placed at distances ranging from 30 cm to 48 cm of a 1024×

1280 pixel camera with pixel size of 21.7 µm and fill-factor of 0.84 . White Gaussian noise

was added, leading to a SNR of ≈ 16 (SNR is calculated as the ratio of the magnitude of

signal over the standard deviation of noise). We choose, to be in the same conditions as the

experiments with the magnification of 1.42. The maximum down-sampling factor calculated

from Eq. 9 and Eq. 11 for preserving 10 fringes (q = 10) was Tkmax
= min {9, 4} = 4 and so

kmax = 2.

The inverse problems approach was then used to process holograms with and without

(i.e., kmax = 0) the multi-scale approach. The results show accurate particle detection and

estimation for both configurations. The RMSE of the particle coordinate estimates as well as

the computational time costs are shown in Table. 1. The accuracies indicated in this table are
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calculated for numerical simulations and are therefore better than achievable accuracies of

the algorithm on real data. As indicated in this table, the multi-scale algorithm has virtually

the same accuracy for kmax = 2 as for the single-scale case (kmax = 0). However the time cost

of the first one is more than four times less than the second one, which justifies the interest

in using the pyramidal multi-scale algorithm. According to our results shown in this table,

the time costs of local optimization step of both algorithms is the same. The comparison

between the exhaustive search step of single-scale approach with time cost of multi-scale

algorithm excluding the last local optimization shows the time gain equal to a factor of 10.

The overall time gain was on average equal to a factor of 4.2 .

The second set of the simulations was dedicated to the study of the possible limitations

of multi-scale approach. Apart from the limitations on the number of the pyramid’s levels

(which is explained in Sec. 3.C.2), we performed several simulations on 100 holograms de-

creasing the SNR to check the limitations of our multi-scale method. In all our experiments,

the results indicate that where ever the one-scale approach succeeds in the detection and

parameters estimation, so does the multi-scale approach. This result is not surprising since

the filtering on the upper levels of multi-scale approach does not change the noise character-

istics of the global least squares fitting problem.We found a lower bound of 0.3 on the SNR

for the previously used application parameters.

4.B. Experimental holograms

To ensure that the performance of the proposed algorithm remains the same for real data,

it was also tested on experimental holograms of mono-dispersed water droplets [39]. one

captured hologram is shown in Fig. 5:(a). The droplets were generated by a piezoelectric

jetting device manufactured by MicroFab Technologies. This injector produces close to mono-

dispersed droplets with radii of 31 µm ± 0.5 µm. The other experimental parameters are the

same as for the simulations except for the SNR(≈ 6). To process these holograms we us a

range of [27.5 32.5] µm for radii. The qualitative assessment of results shows low residuals in

the cleaned holograms (see Fig. 5) and the quantitative performance assessment was carried

on to validate the pyramidal multi-scale algorithm. As for the simulated holograms, the

accuracy of estimation for multi-scale algorithm was the same order of magnitude as for the

single-scale inverse problems approach i.e., the discrepancy between estimation with single-

scale and multi-scale was smaller than the achievable accuracy (10−8 m for x and y, 10−6 m

for z and 10−8 m for r)). In this case, the time gain using multi-scale algorithm (Fig. 2) was

a factor of 3.
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(a)

(b) (c)

Fig. 5. (a) Experimental hologram of six spherical micro-particles in the field

of view of sensor, (b) cleaned hologram with FAST (Fig. 2) for kmax = 2, (c)

cleaned hologram with FAST (Fig. 2) for kmax = 0 (single-scale approach). In

the captured holograms, the magnitude of signal remains high after cleaning

of in-the-field particles. This is due to the signature of out-of-field particles

which are close to the borders.
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algorithm

accuracy running time

(RMS error, in µm) (in seconds)

x y z r first steps last step total

single-scale
0.054 0.040 4.8 0.032 129 (79%) 34 (21%) 163

(kmax = 0)

multi-scale
0.053 0.041 5.0 0.032 12 (32%) 26 (68%) 38

(kmax = 2)

Table 1. Accuracy and computational time when going from a single scale to

a pyramid with 3 scales. Accuracies are computed based on numerical simu-

lations and are thus higher than what would be achievable on real data with

imperfect modeling of the setup (see Sec. 4.A). Accuracies are comparable in

both cases while the multi-scale method was about 4 times faster. We give the

time required for the last (fine scale) parameter refinement compared to the

first steps (either a single exhaustive search on the finest scale when kmax = 0

or an exhaustive search on the coarsest scale followed by successive refinements

on finer scales).
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5. Discussion and Conclusion

The inverse problems approach introduced in [19, 22, 31] is the optimal digital hologram

reconstruction method in terms of accuracy. To mitigate its time costs, we have introduced

a multi-scale algorithm which preserves the optimality of the inverse problems approach

over classical approaches (e.g., hologram diffraction based methods). The main feature of

this algorithm is to replace the computationally intensive exhaustive search by a coarse-to-

fine processing. We analyzed the maximum down-sampling that is possible while avoiding

erroneous particle localization. We have validated our algorithm using a collection of 100

simulated holograms and real holograms. The results indicate a factor of four increase in

speed for a three layers multi-scale pyramid. This improvement makes it feasible to use inverse

problems approaches to track parametric objects in videos of holograms (e.g., spherical

particles time-resolved tracking in 3D with radius monitoring).

Choosing the sampling step sizes along z and r dimensions for the exhaustive search is

often done in an over-conservative manner. The solution followed in this study was to use

the shape of the cost function. Assuming that the size of the main basin of the cost function

and its curvature change accordingly, one can estimate the minimum basin size from the

value of parameters leading to the narrowest cost function (i.e., smallest CRLB). We chose

the sampling step size such that the smallest basin gets 3 samples.

The time gain achieved by the multi-scale algorithm depends on the application. The algo-

rithmic complexity of FAST is O(N/T 2
kmax

(log2N − 2log2(Tkmax
)) ·nz ·nr +C ·N), number of

samples in z and r dimensions respectively and C a constant of order log2(N). Computation

of down-sampled versions of the hologram is negligible compared to the other steps of the

algorithm (averaging followed by down-sampling is done in O(N)). Thus for a wide range of

z and/or r (i.e., larger parameter search space), the time cost of exhaustive step is the most

significant one resulting in higher time gain of algorithm FAST.

The multi-scale algorithm results in faster particle detection and estimation only for parti-

cles located in the field of view of the camera, for the out-of-field particles’ signatures contain

only high frequencies which would be filtered out during the down-sampling step. This limits

the use of the multi-scale algorithm to in-the-field detection.

In this study, we considered only average filters to build the multi-resolution pyramid for

two reasons: (i) after down-sampling, the noise is left uncorrelated; (ii) the expression of

average filters in direct and Fourier domain are simple and fast to compute. Other low-pass

filters with smaller frequency support (e.g., B-splines [41]) could also be considered, provided

that adequate changes to the modeling (and consequently the calculation of CRLBs) are

done and conditions (i) and (ii) are fulfilled. A trade-off must be found between the noise

reduction, the aliasing prevention, and the preservation of high frequency content (below

Nyquist frequency) for an accurate estimation. Determination of an optimal filter for the
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pyramid construction is left as further work.

Thanks to the successive refinement steps, the proposed coarse-to-fine approach provides

an early estimation of parameters with additional accuracy after each refinement step.

These coarse results can provide a quick feedback for huge stacks of holograms generated by

high-speed cameras while off-line processes can refine the estimations using the finer scales.

Appendix A

In this appendix we introduce an upper bound on the maximum period of down-sampling

(Tkmax
) and height of pyramid (kmax) using criteria on the number of preserved fringes on the

down-sampled hologram. The low-pass filtering which is performed before down-sampling

acts as a multiplication of two cardinal sine functions (on lateral dimensions X and Y) in

the spatial domain. To keep q fringes on the down-sampled hologram, the first zero of these

cardinal sine functions should appear after q maxima of the sine function of the model. The

radial coordinate ρq corresponding the the qth fringe is given by:

πρ2q
λz

= q2π + π/2

The x-coordinate x0 of the first zero of the cardinal sine functions of filtering in the x

direction is given by:

πx0Tkκ

λz
= π

where κ is the pixel size. Therefore to have more than q fringes at x0, ρq should be less

than x0:

√
(2q + 1/2)λz <

λz

Tk

Thus the maximum down-sampling period Tkmax
and height of the pyramid are :

Tkmax
=

⌊
1

κ

√
λzmin

2q + 1/2

⌋
, kmax = ⌊log2(Tkmax

)⌋
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where the brackets represent the floor function.

Appendix B

In this appendix we deduce a simplified formulation of the convolution of the Fresnel

function with a real symmetric filter (e.g., object’s aperture). Considering hz as the Fresnel

function and f as a symmetric filter with bounded support, the convolution of this filter

with the Fresnel function is given by:

[hz ∗ f ] (x, y) =
1

iλz

∫ ∫
f(ξ, η)hz(x− ξ, y − η)dξdη

with

hz(x, y) =
1

iλz
exp

(
iπ(x2 + y2)

λz

)
.

Developing the phase of the Fresnel function gives

[hz ∗ f ] (x, y) =
1

iλz

∫ ∫
f(ξ, η) exp

(
iπ

λz

[
x2 + ξ2 + y2 + η2 − 2xξ − 2yη

])
dξdη.

If the filter support satisfies the following

π||ξ2 + η2||max

λz
<< π (16)

then :

[hz ∗ f ] (x, y) ≈
1

iλz
exp

(
iπ

λz

[
x2 + y2

])∫ ∫
f(ξ, η) exp

(
−2πi

[ x

λz
ξ +

y

λz
η
])

dξdη

which implies

[hz ∗ f ] (x, y) ≈ hz(x, y) ·F x
λz

,
y

λz
{f} (17)

with F {f} representing the Fourier transform of f . According to Eq. 17 the convolution

of the Fresnel function with a real symmetric filter is simplified to the inner product of

the Fresnel function and the Fourier transform of the filter. The filter could be objects’

apertures or the sensitive area of the pixel to model the pixel integration. Consequently
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Eq. 17 can be used to simplify the analytical hologram model.

Appendix C

Simplification of Appendix B forces an upper bound on the size of filter f . It can be refor-

mulated considering maximum aperture of objects (maximum radius) as rmax and maximum

width of filter as T . The resulting filter has the length rmax+Tκ/2 on each direction where κ

is the pixel width (pixels are assumed to be square on the sensor). To ensure the satisfaction

of << in Eq. 16, the following inequality should stand :

10π(rmax + Tκ/2)2

λzmin
< π (18)

To have an order of magnitude for zmin we take minimum z such that the diffraction

patterns obey the Nyquist theorem [11]:

zmin = zNyquist =
Lκ2

λ
(19)

where L is the width of the sensor in pixels.

Finally using Eq. 18 and Eq. 19 an upper bound on the size of the filter in pixels could be

found as:

T < 2(

√
L

10
−

rmax

κ
).

Thus the maximum down-sampling period Tkmax
and height of the pyramid kmax are :

Tkmax
=

⌊
2

(√
L

10
−

rmax

κ

)⌋
, kmax = ⌊log2(T )⌋

where the brackets represent the floor function.

References

1. J. Sheng, E. Malkiel, and J. Katz, “Buffer layer structures associated with extreme wall

stress events in a smooth wall turbulent boundary layer,” Journal of Fluid Mechanics

633, 17–60 (2009).

2. L. Huang, K. Kumar, and A. S. Mujumdar, “Simulation of a spray dryer fitted with

a rotary disk atomizer using a Three-Dimensional computional fluid dynamic model,”

Drying Technology 22, 1489–1515 (2004).

21



3. J. Reveillon and F. Demoulin, “Effects of the preferential segregation of droplets on

evaporation and turbulent mixing,” Journal of Fluid Mechanics 583, 273–302 (2007).

4. T. J. Pedley and J. O. Kessler, “Hydrodynamic phenomena in suspensions of swimming

microorganisms,” Annual Review of Fluid Mechanics 24, 313–358 (1992).

5. Ellero, “Viscoelastic flows studied by smoothed particle dynamics,” Journal of NonNew-

tonian Fluid Mechanics 105, 35–51 (2002).

6. F. Toschi and E. Bodenschatz, “Lagrangian properties of particles in turbulence,” Annual

Review of Fluid Mechanics 41, 375–404 (2009).

7. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dy-

namics,” Annual Review of Fluid Mechanics 42, 531–555 (2010).

8. Y. Choi and S. Lee, “Holographic analysis of three-dimensional inertial migration of

spherical particles in micro-scale pipe flow,” Microfluidics and Nanofluidics 9, 819–829

(2010).

9. E. Malkiel, J. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field

generated by a feeding calanoid copepod measured using digital holography,” Journal of

Experimental Biology 206, 3657 –3666 (2003).

10. S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle

field characterization by digital in-line holography: 3D location and sizing,” Experiments

in Fluids 39, 1–9 (2005).

11. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-

VCH, 2005), 1st ed.

12. C. Fournier, L. Denis, E. Thiebaut, T. Fournel, and M. Seifi, “Inverse problem approaches

for digital hologram reconstruction,” in “Proceedings of SPIE,” , vol. 8043 (2011), vol.

8043, p. 80430S.

13. Murata, “Potential of digital holography in particle measurement,” Optics Laser Tech-

nology 32, 567–574 (2000).
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