N

N

Secure extension of FPGA general purpose processors
for symmetric key cryptography with partial
reconfiguration capabilities
Lubos Gaspar, Viktor Fischer, Lilian Bossuet, Robert Fouquet

» To cite this version:

Lubos Gaspar, Viktor Fischer, Lilian Bossuet, Robert Fouquet. Secure extension of FPGA gen-
eral purpose processors for symmetric key cryptography with partial reconfiguration capabilities.
ACM Transactions on Reconfigurable Technology and Systems (TRETS), 2012, 9 (4), pp.27.
10.1145/2362374.2362380 . ujm-00755152

HAL Id: ujm-00755152
https://ujm.hal.science/ujm-00755152

Submitted on 20 Nov 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://ujm.hal.science/ujm-00755152
https://hal.archives-ouvertes.fr

Secure extension of FPGA general purpose
processors for symmetric key cryptography with
partial reconfiguration capabilities

LUBOS GASPAR, VIKTOR FISCHER, LILIAN BOSSUET and ROBERT
FOUQUET

Hubert Curien Laboratory, Jean Monnet University, member of University of Lyon

Abstract. In data security systems, general purpose processors (GPPs)
are often extended by a cryptographic accelerator. The paper presents
three ways of extending GPPs for symmetric key cryptography appli-
cations. Proposed extensions guarantee secure key storage and manage-
ment even if the system is facing protocol, software and cache memory
attacks. The system is partitioned into processor, cipher, and key mem-
ory zones. The three security zones are separated at protocol, system,
architecture and physical levels. The proposed principle was validated on
Altera NIOS II, Xilinx MicroBlaze and Microsemi Cortex M1 soft core
processor extensions. We show that stringent separation of the cipher
zone is helpful for partial reconfiguration of the security module, if the
enciphering algorithm needs to be dynamically changed. However, the
key zone including reconfiguration controller must remain static in order
to maintain the high level of security required. We demonstrate that the
principle is feasible in partially reconfigurable field programmable gate
arrays (FPGAs) such as Altera Stratix V or Xilinx Virtex 6 and also to
some extent in FPGAs featuring hardwired general purpose processors
such as Cortex M3 in Microsemi SmartFusion FPGA. Although the three
GPPs feature different data interfaces, we show that the processors with
their extensions reach the required high security level while maintaining
partial reconfiguration capability.

Keywords: Security, Cryptosystems, Hardware security, Crypto-processor,
FPGA, Soft-core processors, NIOS II, MicroBlaze, Cortex, Partial reconfigu-
ration

The work presented in this paper was realized in the framework of SecReSoC
project number ANR-09-SEGI-013, supported by the French National Research
Agency (ANR). Authors’ addresses: L. Gaspar, V. Fischer, L. Bossuet and R.
Fouquet, Department of Computer Science, Telecommunications and Image Pro-
cessing, Laboratoire Hubert Curien, Jean Monnet University, member of Uni-
versity of Lyon, 42000 Saint-Etienne, France.

1 Introduction

Data security systems often implement computationally extensive parallel cryp-
tographic functions and complex sequential algorithms. Sequential algorithms
are mostly implemented by general purpose processors (GPP), while parallel
functions are implemented by the coprocessor placed inside the same crypto-
graphic module or logic device. This approach is frequent in asymmetric key
cryptography [20], [17], and also in symmetric key cryptography [7], [11]. Some
embedded systems that use a processor — coprocessor approach implement both
symmetric and asymmetric key algorithms in the same device [14].

General purpose processors offer flexibility, but at the same time, they weaken
the security of all the above mentioned solutions. In order to resist side-channel
attacks [22], the keys must be changed /manipulated regularly using a key man-
agement protocol. When a general-purpose processor manipulates confidential
keys, the keys are saved in clear in processor registers or in the cache memory
and may thus be exposed to software attacks.

Bangerter et al. showed in [5], that small malicious software can monitor
the cache memory during enciphering and the key can be recovered remotely
within a few minutes. In order to counter software attacks, the authors in [4]
used two processors executing different tasks at different security levels. They
created two virtual zones inside the physical memory: a protected memory zone
for private key storage and an unprotected zone for public data. However, as
both zones were located in the same physical memory, certain types of attacks,
such as protocol attacks [2] or timing violation attacks, were still possible.

It is clear that software attacks targeting confidential keys can be countered
only if enciphering is performed independently of the GPP, e.g. in a hardware
cipher, while the keys must be stored in a dedicated memory. However, if the keys
pass to the cipher via processor in clear, they are vulnerable to attacks. In the
solution proposed here, the processor can manipulate the keys only indirectly:
they are read/written from/to the key memory via a cipher and the processor
can never read them in clear.

Flexible cryptographic hardware can be useful for several reasons: 1) hard-
ware systems must follow the evolution of cryptographic standards; 2) security
services must ensure compatibility between institutions and countries that use
different cryptographic protocols and primitives; 3) as new attacks appear, corre-
sponding countermeasures must be implemented [8]. One of the most promising
emerging technologies is partial reconfiguration, which is supported by some
Xilinx [23] and Altera [1] field-programmable gate arrays (FPGAs).

For security reasons, the partial bitstream must be enciphered and authen-
ticated. This concept was proposed by Bossuet et al. [6], Parelkar et al. [19] and
Drimer [10]. Improved bitstream authentication using a physically unclonable
function (PUF) was proposed by Simpson et al. [21]. Another system enabling
reconfiguration of processor peripherals after deciphering and authenticating bit-
stream was proposed by Kepa et al. [16]. In [9], Devic et al. proposed a protocol
to ensure the protection of device reconfiguration against reply attacks.

None of the above-mentioned works considered secure key management and
storage. In this paper, we present a novel concept of GPP extension for sym-
metric key cryptography with partial reconfiguration capability of the security
module while keeping secret keys safe. It is an extended version of the conference
paper [13].

The paper is organized as follows: In Section 2, we describe and discuss the
creation of hardware security zones aimed at secure key management in con-
junction with GPPs. In Section 3, we describe the novel principle of the security
extension with indirect key management. In Section 4, we analyze the feasibility
and security of partial device reconfiguration in the context of created security
zones. In Section 5, we analyze and illustrate three basic ways of interfacing
the security module with common GPPs in NIOS II, MicroBlaze and Cortex
M1 processors. We present the results of implementations of the three architec-
tures including partial reconfiguration capability in Section 6 and discuss them
in Section 7. In Section 8 we present our conclusions.

2 Principle of separation of protected and unprotected
zones

In the previous section, we explained that to resist software attacks on embedded
systems using GPPs, the processor should not have access to confidential keys
in clear. It is thus necessary to isolate it from the key memory at several levels.

2.1 Separation at protocol level

A cryptographic protocol aimed at data exchange in cryptographic applications
must be robust against attacks. The keys to be exchanged must be encrypted
and authenticated. If the received keys were deciphered in the processor, they
could be exposed to software attacks. Therefore, they should be deciphered out-
side the processor in a dedicated unit and never leave the unit in clear. Once
the keys are deciphered and authenticated, they can be used for data encipher-
ing/deciphering and authentication, but still outside the processor. However,
enciphered /deciphered data blocks can be processed directly by the processor,
e.g. when performing cipher mode operations.

It is the protocol that has to clearly separate key management and data
processing tasks and to define how and by which blocks the tasks are performed.
The protocol must also define the structure of the keys. If a hierarchical key
structure is used, higher-level keys are used to encipher and authenticate lower-
level keys. The low-level session keys are used for data enciphering, deciphering
and authentication.

2.2 Separation at system level

The principle of the separation at system level is illustrated in Fig. 1. This
principle is based on the creation of three zones: a processor zone, a cipher zone

and a key zone. The processor exchanges data with the cipher across the data bus
(large bus in black in Fig. 1). Encrypted session keys are also transported through
this data bus when being exchanged with other communication counterparts.

Keys are stored in clear in a dedicated memory situated in the key zone.
The key memory has a hierarchical structure and is separated from the GPP by
the cipher. All the keys are transferred between the cipher and the key memory
via the key memory bus (in gray in Fig. 1), except for master keys, which are
introduced into the memory via a separate input during device initialization.
The key initialization bus must be separated from the data bus (in black) that
connects the GPP with the cipher. It is crucial that no paths that allow secret
keys to pass in clear from the key memory bus to the data bus exist. This
condition is very important for security because it guarantees separation of the
key and processor zones.

Before enciphering/deciphering data blocks and keys, the cipher is initialized
with the selected key (session key or higher level key) via the cipher key bus (in
white in Fig. 1). Key selection is controlled by the processor through a control
bus. The key address space must be completely covered — no unused key address
can remain.

The principle of creating security zones is independent from the type of enci-
phering algorithm — any symmetric key block cipher with or without side channel
attack countermeasures can be used. Furthermore, the fence separating the key
zone from the cipher and processor zones can be used during partial reconfigura-
tion of the system when updating the processor or the cryptographic algorithm,
while maintaining the key memory contents unchanged.

«Physical separation fences— Cipher key bus
Key %
bus m%mory 'g
. us
General-purpose CIPHER/TRNG KEY STORAGE £
processor >
=
} Master|| 3
key |\
1. Processor zone 2, Cipher zone 3. Key zone input

Fig. 1. Separation at system level

2.3 Separation at architectural level

To achieve efficient separation of the security zones, the data bus, key memory
bus and cipher key bus cannot cross more than one security fence. Bus multi-
plexers directing the flow of data must be placed in such a way that, even if their
control is violated, no physical path can be created for keys to escape from the
key zone.

Interfaces between partitions must be designed to respect special constraints:
data buses must be unidirectional and the communications must be controlled
only by one module (GPP in our case). A straightforward interface design sim-
plifies implementation of bus macros in partial reconfiguration design flow.

2.4 Separation at physical level

According to NSTISS guidelines [18], physical separation of security zones min-
imizes the possibility of the loss or corruption of secret keys by residual electro-
magnetic radiation from the protected zone (the key zone) to the unprotected
zone (the processor zone). This guideline is followed in Xilinx Single Chip Crypto
(SCC) design tools [24]. SCC tools require creation of an empty area (insulation
fence) at the border of security zones (see Fig. 1). Only selected signals can cross
the fence.

The SCC design flow is similar to that of partial reconfiguration: the design is
divided into partitions, all partitions are compiled as top level entities, interfaces
between partitions use special bus macros, etc. [24].

3 Implementation of the security module

The implementation of the security module is illustrated in Fig. 2. Three zones
(the processor interface, the cipher, and the key zone) can be clearly distin-
guished. Three buses are used: a data bus (in black), a key memory bus (in
gray) and a cipher key bus (in white). Separation rules are strictly applied: key
buses never pass through the processor interface zone and data buses never pass
through the key zone. Secret keys can never leave the key zone without passing
through the cipher.

As presented in Sec. 2, any enciphering algorithm can be used in the se-
curity module. In order to validate the system architecture, we use a 128-bit
Advanced Encryption Standard (AES) because it is the most common currently
used algorithm.

Keys are organized in two hierarchical levels. High-level master keys for ses-
sion key enciphering and authentication are stored in the master key register.
These keys are initialized via a dedicated key input during system initialization
by the trusted entity. Session keys are generated inside the module by a true
random number generator (TRNG) and post-processed by the decipher core
or received from the processor and deciphered and authenticated using mas-
ter keys. Again, any TRNG principle can be used. Session keys are used only
for data enciphering/deciphering (using cipher modes) and authentication (e.g.
using CBC-MAC mode).

Since the security module complies with stringent separation rules, it is se-
cure by design, and no software or protocol attacks can result in disclosure of
secret keys. For this reason, any protocol can be implemented, while the key
protection remains the same. Of course, the proposed solution will not resist
protocol attacks that do not target secret keys, such as service denial attacks.

These should be dealt with at software level, which is beyond the scope of this
paper.

DECIPHER

g

2 b ciPHER |
IAH

= CTRL]

Session || Master
key key
memory | | memory
A

—= Cipher key bus MKin

I Data bus s Key memory bus

Fig. 2. Security module implementation

3.1 Example of a communication protocol

The cryptographic protocol for communication between A and B (see Fig. 3)
illustrates the efficiency of the proposed structure. In practice, any other common
cryptographic protocol can be implemented. Tasks 1, 2, 3, 8 and 9 are performed
only by the security module, Tasks 5, 6, 7 are executed only by the GPP. Tasks 4
and 10 represent iterative implementation of encryption modes (EM) performed
by the GPP (registering and xor-ing subsequent data blocks) and by the security
module (enciphering E and deciphering E™1). In this protocol, we assume that
both devices were initialized by a trusted entity T E using the same enciphering
(MK) and authentication (AM K) master keys. First, the device starting the
communication (A), generates a new session key SK: the unprocessed session
key is generated by the TRNG, post-processed cryptographically in the decipher
using the M K master key and saved in clear in the session key memory (Task
1 in Fig. 3). Next, the session key SK is enciphered using master key MK and
read by the processor (Task 2). Finally, a digital fingerprint F'Py4 is generated
by enciphering SK using the authentication master key AM K (Task 3).

When both the session key SK and its fingerprint F' P4 are generated, Task
4 can be executed in a loop: data blocks (DATA;) are sent by the GPP to
the cipher module, which enciphers them using SK and sends them back to the
GPP as CDATA;. The GPP combines input and output blocks according to the
encryption mode algorithm (EM) and computes M CDAT A;. Finally, it creates
the packet P containing the enciphered session key CSK, its fingerprint F' Py,
and enciphered data blocks MCDAT A; (Task 5). The packet is sent to device
B (Task 6).

The processor in B receives the packet P (Task 7) and extracts the enciphered
session key C'SK and its digital fingerprint F'P4. The key is then sent to the
security module, where it is deciphered using the master key M K and stored in
the session key memory (Task 8). The security module generates a fingerprint

FPg of the session key SK using the master authentication key AM K (Task
9) and sends it back to the processor, which compares it with the received
fingerprint FP4 (Task 10). If FP4 and FPg are the same, the session key
is authenticated and can be used for data enciphering/deciphering (the loop in
Task 10).

Side A Side B
1. SK = E"y(TRNG(*)) 5.P={CSK l_% 7. RECEIVE(P) 10. IF FP, = FP, THEN
2. CSK = Ey(SK) 6. SEND(P) 6 SK oSk Loop {
3 [P~ EandSH) _ CDATA = EM'(MCDATAY);
4. Loop { CDATA,= Esc(DATAY); 9. FPs = Enu(SK) ol LA
MCDATA,= EM(CDATAY, } 1= E sk)

Fig. 3. Communication protocol between two devices (symbol | represents concatena-
tion of blocks of data, E means encryption, EM means encryption mode, SK represents
session key, MK master key, CSK enciphered session key, AMK authentication master
key and FP is the fingerprint)

4 Reconfiguration of the security module

Upgrading the hardware is of particular interest in many cryptographic applica-
tions. Next, we analyze the benefits and implications of full and partial recon-
figuration.

4.1 Total reconfiguration versus partial reconfiguration of the
device

Cryptographic modules based on symmetric key cryptography must share the
same cryptographic key. If the device has been totally reconfigured, the key must
be reinitialized. This must be done in a secure environment. Remote key initial-
ization is very dangerous, because the key cannot be enciphered without the
other key and must consequently be transferred in clear. The initialization key
cannot be included in the reconfiguration bitstream, because compromising one
device would compromise the whole set of devices. Partial device reconfiguration
is a better solution for single chip cryptographic applications: the master key can
be initialized once in a protected environment and then stored in a static logic
partition. During device upgrades, the key is kept the same and only partially
reconfigurable blocks and the GPP software are allowed to be changed.

When dividing the system into static and reconfigurable partitions, the ap-
proach proposed in Sec. 2 for separating buses, key memory, cipher and proces-
sor zones is very useful, because communication interfaces between future static
and reconfigurable partitions can be easily managed. There are two solutions
to partitioning cryptographic system in Fig. 1: a) the key zone and processor
zones are static and only the cipher zone is reconfigurable; b) the key zone (or

1. Proc. zone 2. Cipher zone 3. Key zone 1. Proc. zone 2. Cipher zone

3. Key zone

Static area Static area Reconfig. area

Data |
bus :

iReconfig. area |

Data Cip-—
bus

Security module

area

iHard-wired

key la
fl—

BB

Fig. 4. Separation principle including partial reconfiguration capability with reconfig-
uration of the cipher zone only (left) and reconfiguration of the processor, cipher and
key zone (right)

at least master key memory) is kept static and the remainder of the device is
dynamically reconfigurable. In both solutions, the cipher zone belongs to the re-
configurable partition and can thus reflect the required algorithm changes. The
static area containing confidential keys must be handled with special care to
avoid unauthorized access to confidential keys after device reconfiguration by
fake reconfiguration data.

4.2 Validation of the principle of security module partial
reconfiguration in SRAM FPGAs

The first solution from the previous section can be implemented in partially
reconfigurable Xilinx FPGAs such as Virtex 5 and 6 and recently also in Altera
FPGAs (starting from the Stratix V family) as shown in the left part of Fig.
4. We selected the Xilinx Virtex 6 FPGA family for our tests, because software
tools for partial reconfiguration for Altera technologies were not available.

In order to validate the separation concept, we propose three types of recon-
figurable modules: A) one containing the AES cipher and decipher; B) the second
one containing the DES cipher and decipher (note that the cipher and decipher
must be separate, while in the DES algorithm, ciphering and deciphering can
be performed by the same piece of hardware); C) the third one representing an
empty black box module.

As required, reconfigurable modules A, B and C have the same interfaces
with the surrounding static partition (containing GPP and key memory). The
dimensions of the reconfigurable partition must be set to meet the requirements
of the biggest module (the one containing the AES cipher/decipher in our case).

The reconfiguration of the reconfigurable logic area is controlled by the re-
configuration control unit (RCU) placed in the static partition. It is in charge
of transferring new logic to the reconfigurable area via a partial reconfiguration
port (PRP). The partial bitstream is transferred to the RCU via the partial
bitstream bus (PBB). Since the RCU must also ensure (by verifying bitstream
integrity and authenticity) that the reconfigurable partition was not modified
by an unauthorized person, its implementation is crucial for security. Additional

Security module

techniques can be used to increase security (e.g. zeroization of all flip-flops and
configuration bits in the reconfigurable area by the PRP before being configured
using the new partial bitstream [15]). RCU can be implemented using another
GPP, a dedicated processor or a state machine, but the reconfiguration con-
troller must be strictly separate from the GPP controlling the communication
channel. The executable code of the RCU must be write protected to resist soft-
ware attacks. Since our objective was to demonstrate the separation concept, in
this first case, we only implemented a simple reconfiguration controller (state
machine) placed in the static logic area.

4.3 Reconfiguration of security modules in FPGAs containing
hardwired GPPs

Many FPGAs are not partially reconfigurable. For devices containing hardwired
GPPs featuring a non-volatile memory (e.g. MicroSemi SmartFusion FPGA),
we propose another solution that combines the possibility of hardware upgrades
with secure key management (see right part of Fig. 4). The hardwired GPP can
serve as a reconfiguration controller and confidential keys (or at least master
keys) can be saved in its non-volatile memory — secure key flash memory (SKF).
In this case, the entire programmable logic fabric can serve as a reconfigurable
area containing all the system blocks (including the second GPP) except for
the reconfiguration controller and the confidential key memory. The bitstream is
transferred into RCU via the bitstream bus (BB) and the logic area is configured
via the reconfiguration port (RP).

Note that all security zones and especially processor and cipher zones must
remain separate as required in Sec. 2. It is also of paramount importance that
the use of the hardwired GPP should be strictly limited to reconfiguration tasks.
In particular, it must not be connected to the data bus of the second GPP that
is in charge of data processing, i.e. the separation principle must be maintained.

Although this solution is less flexible and slower than the one discussed above,
it still offers secure key management and high-level protection of confidential
keys. However, the use of the powerful hardwired processor for device reconfigu-
ration will exclude it from other tasks (and especially from communication with
the cipher and from key management). Another GPP will have to be used and
implemented in the reconfigurable zone, what makes this solution less attractive.
For this reason, we did not implement it in hardware.

5 Interfacing embedded processors with the security
module

There are three possible ways to connect the security module with the embedded
processor: 1) the security module can be included in the processor’s data path; 2)
the security module can be accessible via the internal register file of the processor;
3) the security module can be accessible as a peripheral via the peripheral bus. In
each case, the security module remains the same and it is completed by a wrapper

that is compatible with the processor’s interface. The wrapper translates control
commands and converts the bus width.

5.1 Including security module in the processor’s data path

In this case, security module operations are implemented as custom instructions
of the processor. Since the module is included in the processor’s data path,
it affects its maximal clock frequency. This kind of GPP and security module
interconnection was implemented in Altera NIOS II processor, as illustrated in
the left part of Fig. 5.

Because of the use of custom instructions, the NIOS II control unit directly
drives the operation of the security module, thus avoiding unwanted latency
increase. The point-to-point connection between the processor and its security
module ensures that the communication is secure (it cannot be eavesdropped by
some other peripheral).

ctrl

Master Key |

Fig. 5. Interfacing NIOS II (left) and MicroBlaze (right) with the security module

5.2 Interconnecting GPP with the security module using the
processor’s register file

In contrast with the previous solution, the instruction set does not need to be
customized if the security module is connected to the processor’s register file
via a dedicated internal bus. However, this operation requires execution of an
additional instruction in the program code. This slows down code execution and
data exchange between the processor and the security module. On the other
hand, in this case, the security module is not included in the processor’s critical
path, so the clock frequency of the processor is not affected. The point-to-point
connection via the dedicated bus ensures a high level of security for bus com-
munications. This kind of interfacing between the GPP and the security module
could be applied to the Xilinx MicroBlaze processor, as shown in the right part
of Fig. 5.

|Control uniti
Data Module wrapper o -
registers ‘ i 32[32bt0]' % N nstr
A 4 : _.E"’ 128b |! ' Security
= LS 1786 module
(22} i 2} ‘_ ouT)
o ; to 32b|Y MKin
z wour ™ i Module wrapper
R, 3 Master Key

The MicroBlaze architecture features the high-performance 32-bit Fast Sim-
plex Link (FSL), aimed at interfacing external modules with processor registers.
Unfortunately, the FSL standard does not define the control interface, so before
each operation, a 32-bit control instruction has to be sent to the module via
the FSL FIFOs. Despite the fact that FIFOs insert additional latencies, they
separate the processor and security module clock domains, so that the security
module can run at a higher clock frequency than the processor.

5.3 Accessing the security module as a peripheral

The most widely applicable solution for interfacing GPP with the security mod-
ule is to access the module via a point-to-multipoint peripheral bus. This com-
munication is less secure than the discussed point-to-point communications, but
it is available for all GPPs. For example, this is the only solution that can be
applied in Microsemi FPGAs featuring Cortex processors and AHB bus [3] as
illustrated in Fig. 6.

Although the AHB bus does not include a control interface, the address bus
can be used to pass commands to the security module in parallel with data. On
the other hand, the AHB bus is shared among several bus slaves (program flash
memory, RAM, etc.), therefore the data exchange rate with the security module
is slowed down.

Module wrapper

i Cortex M1 .| Program RAM
: i| (FLASH) (SRAM) 7] pw— 128
| 3 i S 128b IN
ow 3% |M0: SO AHB S1¢ sal 2
i S " " n% " : t e y 3 ctrl Security
i| S Ie ; A Instr
i © E E 132 tSZ S3¢ m module
| 5 T 128b to
: i| . USB Ext. mem. ;I‘- 32b OUT MKin
* 4 interface ctrl 28 ——
\ 7 ‘
USB /0 316 Memory<§, LEGEND: MO — AHB bus master Master
BUS bus Sx — AHB slave peripherals (S0-S4) Key

Fig. 6. Interfacing Cortex M1 with the security module

6 Results

The three processors with their security extension modules were described in
VHDL and mapped to three FPGA families. The NIOS II system was mapped in
Stratix II EP2S60F672C5ES device (NIOS II evaluation board) using Quartus II
(ver. 9.2). The MicroBlaze system was mapped in Virtex 6 XC6VLX240TFF1156
device (Xilinx ML605 evaluation kit) using ISE (ver. 12.4). The Cortex M1
system was mapped in Fusion M1AFS1500-FGG484 device (Microsemi Fusion

Table 1. Utilization of FPGA resources by processors with the security module con-
taining the AES cipher

NIOS II Cortex M1 MicroBlaze Reconf. MBlaze
ALMs|RAM kb||Tiles RAM kb|(Slices| RAM kb||Slices| RAM kb
System total 2531 243.9 15053| 216.0 1954 | 1206.0 2619 1206.0
— Processor 1204 187.9 9433 104.0 1350 774.0 1350 774.0
— Sec. module|| 1327 56.0 5620 112.0 604 432.0 1269 432.0

Ext. overhead |[110.2%| 29.8% |(59.6%| 107.7% ||/44.7%| 55.8% 94.0% 55.8%

Table 2. Comparison of three versions of the reconfigurable module (RM) in an ex-
tended MicroBlaze system

Static|| Reconfigurable partition Total

part. ||[AES|DES|Empty black box||with AES RM
Slices 1976 643 | 442 264 2619
RAM kb|| 846 360 0 0 1206

embedded development kit) using Libero (ver. 8.5, SP2). A hardware module
including the Cypress USB device CY7C68013A was connected to evaluation
boards for data transfers from/to the PC.

The results of the implementation are given in Table 1. The area is repre-
sented by number of Adaptive Logic Modules — ALMs (for Altera), Slices (for
Xilinx) and Tiles (for Microsemi family). Unfortunately, the results cannot be
directly compared, because ALMs, Slices and Tiles have different internal struc-
ture, inputs and flip-flop counts.

Columns 8 and 9 in Table 1 list the resources of a partially reconfigurable
system based on MicroBlaze extended by the reconfigurable module with AES
cipher and TRNG. The reconfiguration overhead can be observed by comparing
the MicroBlaze system with the static and dynamically configurable security
module. Individual results for three different reconfigurable modules in the ex-
tended MicroBlaze system are listed in Table 2. Note that the size of the system
including both the static and reconfigurable partition containing AES in Table
2 is the same as the sum of resources occupied by the processor and the security
module in columns 8 and 9 in Table 1. However, the security module in column
8 of Table 1 occupies more slices (1269) than the reconfigurable AES module in
Table 2 (643), because the key memory and the wrapper of the second module
are included in the static partition.

The floor plan of the MicroBlaze GPP linked with the security module con-
taining the cipher zone and the key memory zone is depicted in Fig. 7. The three
regions are separated by large spaces (fences) according to the SCC requirements.

In order to compare throughput, the clock frequency of all three systems
was fixed to 50 MHz. The throughput was evaluated by transferring packets
from the PC to the FPGA (and vice versa) via a USB interface. Each packet
contained an encrypted session key, its digital fingerprint and five 128-bit payload
blocks. The communication protocol is explained in Sec. 3.1. When implementing

Fig. 7. Floor plan of the system containing three separate security zones: reconfigurable
cipher, key memory and MicroBlaze GPP

this protocol, the NIOS II-based system achieved an overall throughput of 25.1
Mb/s, the MicroBlaze-based system achieved 18.4 Mb/s and the Cortex M1
system achieved 12.2 Mb/s. Differences in throughput are mainly due to different
interfaces between the GPP and the cryptocoprocessor.

7 Discussion

In the Altera FPGA, the security module area is similar to that of the GPP
(1327 vs. 1204 ALMs giving 110%). In the Xilinx family, the security module
appears to be smaller (the area overhead is only 45%). This is due to the size
of the processor and not directly to that of the module. Implementation in the
Xilinx family appears to use much more memory. In the case of the security
module, it is because the RAM blocks are bigger than in the other two FPGA
families and they are not optimally utilized (i.e. two 8-bit S-boxes are mapped
into one 18-kbit block, but only use 2 kbits). The MicroBlaze processor’s memory
requirements are higher, because of the size of the MicroBlaze register file and
because of the use of FIFOs that must be used to connect the security module
with the FSL bus. In the Cortex M1 system, the security module area overhead
is 60%. In all three solutions, the cost of the GPP security extension is related to
the size of the cipher and memory modules. The cost of the isolation of security
zones is negligible.

For partial reconfiguration of Xilinx FPGAs, partition pins increase the oc-
cupied area. This effect can be observed if an empty reconfigurable block is
implemented. Note that five 128-bit buses and associated control signals must
cross the reconfigurable partition border and each slice can implement at most
four partition pins. Since not all slices are fully utilized, the number of slices
in the empty black box is higher than required. The system featuring partially
reconfigurable AES cipher is bigger than that using a fixed AES module, because
the separate design regions are compiled independently. This second effect can be

observed by comparing two versions of the extended MicroBlaze system (with or
without partial reconfiguration of the cipher zone): the area extension overhead
with the AES cipher is 94.0% versus 44.7%. Note that partial reconfiguration
also increases the latency of the system. However, we assume that reconfigura-
tion is only performed occasionally (e.g. if a new attack countermeasure has to
be applied). The timing overhead of the reconfiguration is thus negligible.

The MicroBlaze processor with its extension achieves 73% of the throughput
of the NIOS II. This is due to the FSL bus protocol, compared with the simple
custom instruction implementation in NIOS. This difference could be reduced
in the MicroBlaze system if data were transferred to the security module using
a DMA. The FSL bus would only be used for transporting instructions to the
security module. On the other hand, the Cortex M1 processor with its security
module extension achieves only 49% of the throughput of the NIOS II imple-
mentation. This is because of the nature of the AHB bus which is shared among
all communicating units.

It is clear that the architectures presented here could be further analyzed and
optimized from the point of view of performance, area and power consumption.
However, it is also clear that the security overhead due to the creation of isolation
fences and due to the application of separation rules is negligible.

The proposed solution does not provide protection against physical attacks
such as side channel attacks. We assume that such countermeasures will be
included in the cipher module. Indeed, one of the main advantages of the partial
reconfigurability of the device is that the cipher module can be updated by a new
cipher version implementing countermeasures against the most recent attacks.
This approach is not possible in hardwired architectures.

The principle presented in this paper can be extended to any GPP. One
of solutions would be to use an open source GPP and to include the security
module in the processor’s data path as was the case with the NIOS II processor.
This principle can be also applied to a specific-purpose processor such as that
published in [12].

8 Conclusion

In this paper, we propose a novel cryptographic extension of GPPs manipulat-
ing secret keys in a highly secure way. The principle is based on the creation of
separate processor, cipher and key zones. Separation is implemented at protocol,
system, architectural and physical levels, and guarantees that unencrypted keys
can never be transferred from the protected key zone to the unprotected proces-
sor zone. The only way to transfer the keys to the processor zone is to pass across
the cipher zone: the keys are enciphered before entering the processor zone and
must be deciphered when going in the opposite direction (i.e. when entering the
memory zone). The proposed solution substantially enhances security compared
with existing soft-core cryptographic extensions.

The separation principle was implemented in FPGAs and tested using NIOS
IT, MicroBlaze and Cortex M1 processors. The obtained throughput including

the processing of packets, key management and data enciphering/deciphering
and authentication was about 25, 18 and 12 Mb/s, respectively. This speed was
mainly limited by the processors and their data interfaces. The area of the system
was increased by 110% compared with the smaller NIOS II processor, by 44%
when the MicroBlaze processor was taken as a basis and by 60% when Cortex
M1 was extended using the security module.

A partially reconfigurable security module was proposed for the extended
MicroBlaze system. The system with a reconfigurable AES cipher is bigger than
that using a fixed AES module: the area extension overhead of the first type
of the module is 94.0% versus 44.7% of the second one. We also showed that
stringent security requirements can be met in partially reconfigurable system
only if the key zone is kept static.

References

1. Altera. FPGA Run-Time Reconfiguration: Two Approaches, 2010.
http://www.altera.com/.

2. R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov. Cryptographic processors
- a survey. Proceedings of the IEEE, 94(2):357-369, 2006.

3. ARM. AMBA Specification, rev. 2.0, 1999. http://www.arm.com.

4. A. Ashkenazi and D. Akselrod. Platform independent overall security architecture
in multi-processor system-on-chip integrated circuits for use in mobile phones and
handheld devices. Computers & Electrical Engineering, 33(5-6):407—424, 2007.

5. E. Bangerter, D. Gullasch, and S. Krenn. Cache games—Bringing access-based
cache attacks on AES to practice. Workshop COSADE, pages 215-221, 2011.

6. L. Bossuet, G. Gogniat, and W. Burleson. Dynamically configurable security for
sram fpga bitstreams. Reconfigurable Architectures Workshop (RAW), pages 146
154, 2004.

7. F. Crowe, A. Daly, T. Kerins, and W. Marnane. Single-chip FPGA implementation
of a cryptographic co-processor. In FPT’04, pages 279-285, 2004.

8. P. Davies. Flexibile Security. Thales e-Security, White Paper - Cryptography &
Interoperability, August 2003.

9. F. Devic, L. Torres, and B. Badrignans. Secure protocol implementation for remote
bitstream update preventing replay attacks on fpga. In FPL’10, pages 179-182,
2010.

10. S. Drimer. Authentication of fpga bitstreams: Why and how. In Applied Reconfig-
urable Computing, volume 4419 of LNCS, pages 73-84, 2007.

11. Y. Eslami, A. Sheikholeslami, P.G. Gulak, S. Masui, and K. Mukaida. An area-
efficient universal cryptography processor for smart cards. In 2006 IEEE Transi-
tions on VLSI systems, pages 43-56, 2006.

12. L. Gaspar, V. Fischer, F. Bernard, L. Bossuet, and P. Cotret. HCrypt: A Novel
Concept of Crypto-processor with Secured Key Management. ReConFig’10, pages
280-285, 2010.

13. L. Gaspar, V. Fischer, L. Bossuet, and R. Fouquet. Secure extensions of FPGA soft
core processors for symmetric key cryptography. ReCoSoC’11, In IEEE Xplore,
2011.

14. M.K. Hani, H.Y. Wen, and A. Paniandi. Design and implementation of a pri-
vate and public key crypto processor for next-generation it security applications.
Malaysia Journal of Comp. Science, 19(1):29-45, 2006.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

T. Huffmire, B. Brotherton, G. Wang, T. Sherwood, R. Kastner, T. Levin,
T. Nguyen, and C. Irvine. Moats and drawbridges: An isolation primitive for re-
configurable hardware based systems. IFEE Symposium on Security and Privacy,
pages 281-295, 2007.

K. Kepa, F. Morgan, K. Kosciuszkiewicz, and T. Surmacz. Serecon: a secure
reconfiguration controller for self-reconfigurable systems. International Journal of
Critical Computer-Based Systems, pages 86—103, 2010.

M. Machhout, Z. Guitouni, K. Torki, L. Khriji, and R. Tourki. Coupled
FPGA/ASIC Implementation of Elliptic Curve Crypto-Processor. International
Journal of Network Security & Its Applications, 2(2):100-112, 2010.

J. M. McConnell. TEMPEST/2-95. NSTISSAM, 1995.
http://cryptome.org/tempest-2-95.htm.

M.M. Parelkar and K. Gaj. Implementation of eax mode of operation for fpga
bitstream encryption and authentication. In FPT’05, pages 335-336, 2005.

K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede. Multicore curve-based
cryptoprocessor with reconfigurable modular arithmetic logic units over GF (2").
IEEE TC, pages 1269-1282, 2007.

E. Simpson and P. Schaumont. Offline hw/sw authentication for reconfigurable
platforms. In Workshop on Cryptographic Hardware and Embedded Systems
(CHES), pages 311-323, 2006.

F.X. Standaert, L. van Oldeneel tot Oldenzeel, D. Samyde, and J.J. Quisquater.
Power analysis of FPGAs: How practical is the attack? FPL’03, pages 701-711,
2003.

Xilinx. UG702: Partial Reconfiguration User Guide, 2010.
http://www.xilinx.com/.

Xilinx. XAPP1105: Single Chip Crypto Lab Using PR/ISO Flow with the Virtez-5
Family for ISE Design Suite 12.1, 2011. http://www.xilinx.com/.

