
HAL Id: ujm-00763142
https://ujm.hal.science/ujm-00763142

Submitted on 10 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two IP Protection Schemes for Multi-FPGA Systems
Lubos Gaspar, Viktor Fischer, Tim Guneysu, Zouha Cherif

To cite this version:
Lubos Gaspar, Viktor Fischer, Tim Guneysu, Zouha Cherif. Two IP Protection Schemes for Multi-
FPGA Systems. ReConFig’ 12, Dec 2012, cancun, Mexico. pp.2568809. �ujm-00763142�

https://ujm.hal.science/ujm-00763142
https://hal.archives-ouvertes.fr

Two IP Protection Schemes for Multi-FPGA Systems

Lubos GASPAR, Viktor FISCHER

University of Lyon

Laboratoire Hubert Curien, CNRS

42000, Saint-Etienne, France

Email: {lubos.gaspar, fischer}@univ-st-etienne.fr

Tim GÜNEYSU

Horst Görtz Institute for IT Security

Ruhr University Bochum

44780, Bochum, Germany

Email: gueneysu@crypto.rub.de

Zouha CHERIF JOUINI

TELECOM ParisTech

CNRS, LTCI

75634, Paris, France

Email: cherif@telecom-paristech.fr

Abstract—This paper proposes two novel protection schemes
for multi-FPGA systems providing high security of IP designs
licensed by IP vendors to system integrators and installed re-
motely in a hostile environment. In the first scheme, these useful
properties are achieved by storing two different configuration
keys inside an FPGA, while in the second scheme, they are
obtained using a hardware white-box cipher for creating a
trusted environment. Thanks to the proposed principles, FPGA
configurations coming from different IP owners cannot be
cloned or reverse-engineered by any involved party, including
system integrator and other IP owners. The proposed schemes
can be directly implemented in recent FPGAs such as Xilinx
Spartan 6 and Virtex 6.

Keywords-IP protection schemes; white-box cipher; licensing;

I. INTRODUCTION

The advent of Field Programmable Gate Arrays (FPGA)

started a new era in the domain of integrated circuits.

The high demand for common hardware functions (e.g.,

complex data processing or cryptographic functions) led to

creation of a new Intellectual Property (IP) market, where IP

Owners (further IPOwner) could distribute and license their

IP designs to system integrators. This raised a question about

the security of IP designs in SRAM-based FPGAs.

To prevent an adversary from cloning FPGA configura-

tions, many FPGAs embed a circuit to support configuration

bitstream encryption. This way, only the system integrator

(further Integrator) with access to the encryption key can

access/modify the configuration bitstream. However, if an

IPOwner licenses an IP to the Integrator, both parties need

to protect their secret from each other as well as from

external adversaries. Unfortunately, current FPGAs provide

no hardware means to protect IP designs from reverse-

engineering or duplication by Integrators.

Previous Work: The easiest way for implementing an

IP function as a part of a larger FPGA design is by importing

it to an EDA tool and synthesizing the project as a whole.

The IP can be protected by a private key, but this key must

be present in the EDA tool and can be thus recovered if the

tool is disassembled [1].

An interesting solution is proposed in the SeReCon sys-

tem [2], which provides IPs protection, even if the FPGA

configuration is stored or changed remotely. However, the

SeReCon system requires a trusted authority for certifying

its public key and the party that installs the SeReCon system

(Integrator) must be trusted. Another protection scheme

based on an FPGA personalization module can effectively

protect the IP installed in a remote FPGA environment [3],

but it necessitates some features that are not available in

current FPGAs. Clearly, no satisfactory solution exists to

protect IP designs even in the most recent FPGA devices.

Our Contribution: In this paper1, we propose two

novel protection schemes for IP configuration bitstreams

implemented on multi-FPGA systems. The scheme provides

IP vendors with means to license each IP bitstream on

a per-FPGA basis without a need for additional hardware

components or modifications of recent FPGA technology.

Each FPGA can contain one IP function.

The two schemes are aimed at an automotive market,

where car manufacturers (Integrators) are assumed to buy IP

bitstreams from third-parties (IPOwners) and install them in

car functional units, each containing one FPGA. The ability

to upload the system integrator’s bitstream prior to uploading

the IP bitstreams facilitates remote updates and integrity

verifications of the IP bitstreams by IPOwners. This new

security structure prevents the Integrator and other IPOwners

from reverse-engineering the IP bitstream or installing it

on more FPGAs than licensed. Moreover, the protocols

support a shared secret to be established in all FPGAs,

in order to make further cryptographic services, such as

authenticated key exchange protocols and confidential inter-

chip communication available. The new protection scheme

is suitable for both low-cost and high-end FPGA devices.

Outline: The paper is organized as follows. In Sec-

tion II we provide some theoretical background. Section III

presents two novel protection schemes for IP designs in

multi-FPGA systems. The implementation details are pro-

vided in Section IV. The results from Section V are dis-

cussed in Sec. VI. Finally, Section VII concludes the paper.

1The work presented in this paper was realized in the frame of the
SecReSoC project number ANR-09-SEGI-013, supported by the French
National Research Agency (ANR).

II. THEORETICAL BACKGROUND

In this section, we introduce the parties participating in the

system and explain relevant terms and system components.

A. Participating Parties

The protection scheme involves two parties: the integrator

and the group of IPOwners. The integrator designs a multi-

FPGA system (the System). The System is composed of

N application-specific nodes. Each node comprises one

volatile FPGA device, a non-volatile configuration memory

(ConfMem) and other auxiliary units. We denote the FPGA

and ConfMem belonging to an i− th node as FPGAi and

ConfMemi, respectively.

The IPOwners offer their logic designs aimed at specific

applications. An IPi, designed by the IPOwneri, is synthe-

sized as a configuration bit file for the FPGAi. The inten-

tion of the IPOwneri is to distribute its IPi configuration

file using a node-locked licensing model. This way, each

IPOwner can control the number of Systems in which its IP

is installed, and thus prevent the Integrator or third parties

from cloning or reverse-engineering the IP (see [4]).

B. Required Cryptographic Algorithms

The following components are essential for achieving

protected FPGA designs.

1) Symmetric Ciphers: To prevent the IP theft, each IP

configuration bitstream needs to be encrypted. The AES

standard [5], is a commonly adopted solution for IP bit-

stream protection.

Another symmetric block cipher that we consider is

Noekeon [6], because it can be very efficiently decomposed

to small look-up tables (LUTs).

2) Message Authentication Codes: The Message Authen-

tication Code (MAC) is usually based on block cipher

algorithms (i. e. CMAC [7]) or cryptographic hash functions

(i. e. HMAC [8]). The MAC functions can be used for an

IP bitstream authentication.

3) White-Box Cryptography: The goal of the white-box

cryptography is to embed and protect secret keys inside a

block cipher while all its internal states can be inspected

by an attacker. This goal is reached by introducing a

high level obscurity, which is achieved by representing the

cipher as a very complex network of LUTs. These LUTs

incorporate external encoding bijections to hide the structure

of the cipher and the secret key. The white-box cipher with

an embedded key represents a one-way function, which

transforms input plain-text data into output cipher-text data.

White-box implementations together with security analyses

can be found in [9]. Even though some theoretical attacks

were proposed, they require a lot of computational power

and time. In our solution, the white-box cryptography is used

to protect IPOwners from cloning and reverse engineering

by Integrator and not by external thefts. This lowers consid-

erably security requirements. Unfortunately, white-box AES

implementations are too expensive on FPGAs [10]. Unlike

AES, the straightforward decomposition of the Noekeon ci-

pher to small LUTs facilitate the implementation of external

encoding bijections. The mapping of these small LUTs into

an FPGA results in a very compact white-box solution [11].

C. FPGA Features

1) Bitstream Protection: Effective protection of private

designs can be achieved only if their bitstreams are en-

crypted when stored in a Configuration Memory. During

configuration of the FPGA, bitstreams are decrypted by a

dedicated hardwired decipher unit using secret keys, which

are stored in the device in a volatile or non-volatile key

memory (KeyRAM or KeyROM, respectively).

Some high-end FPGAs also support the bitstream au-

thentication for tamper detection. But this cannot prevent

attackers from cloning a device configuration. To solve this

issue, it is essential to bind an IP design to a unique FPGA

identifier (ID).

2) Multi-Boot Feature: A multi-boot feature allows FP-

GAs to switch between several configuration bitstreams

stored in the configuration memory. After power-up, the

FPGA loads an initial configuration (e.g., provided by the

Integrator) stored in the beginning of the configuration mem-

ory. This initial configuration can select other configurations

(IP modules) stored in the memory and start FPGA reconfig-

uration with the selected bitstream. If reconfiguration fails,

a fall-back bitstream can be loaded instead.

3) Partial Reconfiguration: This technology allows to

modify a part of the FPGA fabric while the rest (a static

part) stays intact and continues working. If a partial bit-

stream is supplied using an internal reconfiguration port, it

can be protected by hardwired FPGA cryptographic units.

Otherwise, a decryption unit aimed at the partial bitstream

decryption must be implemented in the static area.

D. Prerequisites and Assumptions

In our protection scheme, we assume the following pre-

requisites.

P1: Trusted and Untrusted Parties: We assume that the

FPGA hardware manufacturer is a trusted party. It is his

intention to support protected FPGA configurations and he

will not share any secret or other critical information with

other parties. However, all other parties are regarded as

untrusted and may try to cheat.

P2: Communication Secrecy: The communication be-

tween the Integrator and any IPOwner is assumed to be

secure against any type of attack. On the contrary, the remote

communication between the Integrator and the System is

not secured and requires an additional protection layer. The

communication buses between different System nodes and

each ConfMemi and FPGAi are unprotected.

P3: Cryptographic Algorithms: We assume that all cryp-

tographic algorithms are computationally secure, such that

the secret key cannot be recovered using practical amount

of computational power in a reasonable amount of time.

Moreover, all implementations used in the protection scheme

are assumed to be fault-tolerant and sufficiently secure

against side-channel attacks even over multiple executions.

P4: Security Platform: Protection is offered for two

different FPGA platforms. For the low-cost FPGAs, system

cost and security of third-party IPs are of utmost importance.

For the high-end FPGAs, the flexibility of the system solu-

tion as well as the protection of third-party IPs is primarily

considered.

For our protocols, all FPGAs must feature a bitstream

decryption unit and both volatile and non-volatile key mem-

ories. It must be also possible to read a unique device

ID from inside the FPGA. The multiboot feature is also

essential for our system. Moreover, two bitstreams located

in the configuration memory can be protected using two

different keys. For example, one key may be stored in the

KeyRAM and the other in KeyROM. For this reason, it must

be possible to specify the key placement in the bitstream

header. If the configuration fails, the FPGA must be able to

load a fall-back bitstream. Note that all these features are

supported by the low-cost Xilinx Spartan-6 family starting

from the LX75/T device.

In addition to the requirements mentioned above, high-end

FPGAs must support the partial reconfiguration technology

and bitstream authentication. The Xilinx Virtex-6 is very

convenient for this application.

III. IP PROTECTION SCHEMES

The goal of the protection scheme is to enable the secure

integration of IP designs, potentially from different IPOwn-

ers, in different system nodes. Since only two configuration

keys can be stored in an FPGA at a time, we assume only

one Integrator bitstream and one IPOwner’s bitstream to

be used per FPGA. Despite this limitation, IPs in different

nodes need to be able to communicate with each other in

a secure way. This can be possible only if a shared secret

(SystemKey) is distributed by the Integrator to all nodes.

Moreover, the Integrator should maintain its control over the

system and provide remote configuration updates. This can

be possible only if he installs first a proprietary configuration

(Initial Configuration) in all FPGAs. The Initial Configu-

ration bitstream must be protected from all participating

parties as well as external adversaries. At the same time,

it does not allow the Integrator to copy or tamper the IP

bitstream present in the same configuration memory.

Fig. 1 illustrates the relationship between the participating

parties, organization of the multi-FPGA system and the

composition of a system node.

Next, we present two different protection schemes to

Multi-FPGA
system

FPGAN

ConfMemN

Other
circuits

Node1

Node2

NodeN

Integrator

IPOwner1

NodeN

IPOwnerN

IPOwner2

Figure 1. Relationship between parties and structure of the multi-FPGA
system

install and maintain the Initial Configuration and the node-

specific IP configurations in each system node.

A. IP Protection for Low-Cost Multi-FPGA Systems

The system setup and IP installation protocol are illus-

trated in Fig. 2. Before the System is assembled, each

IPOwner must store its IP bitstream key in the KeyROM

and send the FPGA to the Integrator (Steps 1, 2). Alter-

natively, the trusted FPGA manufacturer can have mutual

agreement with an IP Owner and prestore his key in the

respective FPGA device. This way the necessary IPOwner

secret is present in every FPGA. The Integrator assembles

the System, writes his key (IntegratorKey) to every FPGA

KeyRAM (Step 3) and stores the Initial Configuration (in-

cluding the SystemKey) protected by the IntegratorKey to

all Configuration Memories (Step 4). All other operations

can be performed in an insecure environment.

After power-up, the FPGAi loads and decrypts the Initial

Configuration (Step 5). This configuration verifies if the IPi

configuration is present in the ConfMemi by searching for

the header (SYNC word) and footer (DESYNC word) in the

bitstream (Step 6). If confirmed, the Initial Configuration

initiates the multiboot and the FPGA loads and deciphers

the IPi configuration protected by the IPKeyi (step 12).

However, if the IPi is not present in the ConfMemi or

is corrupted, the Initial Configuration establishes a secure

communication (protected by the CommunicationKey) with

the Integrator and reports the IPi issue (Step 7).

The Integrator receives the FPGA IDi and SystemKey

and can now acquire a license by securely sending both to

the IPOwneri (step 8). The IPOwneri generates an IDi-

locked IPi (containing the SystemKey), enciphers it with

the IPKeyi and sends it back to the Integrator (step 9).

The inclusion of SystemKey in the IPi is very important,

because it permits the IPi to securely communicate with

other IPs in other System nodes. The Initial Configuration

receives the encrypted IPi from the Integrator and stores

it in the ConfMemi (Steps 10 and 11). In the last step,

the Initial Configuration initiates the multiboot and FPGAs

load and decipher the IPi (Step 12). If the IPi configuration

fails, the FPGA loads the Initial Configuration as a fall-back

configuration.

B. IP Protection Scheme for High-end Multi-FPGA Systems

In the previous protocol, the IP configuration was regarded

as one static design and it was necessary to protect it with

1. IPOwneri

2. IPOwneri

3. Integ

4. Integ

FPGAi

FPGAi, KeyROM

Integ

FPGAi, KeyRAM

ConfMemi

 IPkeyi

 FPGAi

IntegKey

 {InitConf|SysKey}IntegKey

 5. ConfMemi

 6. InitConf: is IPi in ConfMem?

{InitConf|SysKey}IntegKey

no

yes

S
E

T
U

P

(s
e
c
u
re

 a
re

a
)

 {IDi|SysKey|NO_IP!}ComKey

 {IPi(IDi)|SysKey}IPkeyi

 IDi, SysKey

7. InitConf

8. Integ

9. IPOwneri

10. Integ

11. InitConf

{ {IPi(IDi)|SysKey}IPkeyi }ComKey

Integ

IPOwneri

Integ

InitConf

ConfMemi
{IPi(IDi)|SysKey}IPkeyi

 12. ConfMemi
{IPi(IDi)|SysKey}IPkeyi FPGAi

V
E

R
IF

IC
.

(r
e

m
o

te
)

L
IC

E
N

S
IN

G
(r

e
m

o
te

)
IN

S
T

A
L

L
.

(r
e

m
o

te
)

O
P

E
R

.

Figure 2. IP protection scheme for FPGAs without partial reconfiguration.
The Integrator (Integ) installs the Initial Configuration (InitConf) protected
by the IntegratorKey (IntegKey). Communication between the Integrator
and the Initial Configuration is protected by the CommunicationKey
(ComKey). Afterwards, the IP protected by the IPKey is licensed and
installed. IP contains the SystemKey (SysKey) which serves as a shared
system secret.

the IPKey. When considering implementation in partially

reconfigurable FPGAs, each IP can consist of two parts:

1) a static IP establishment module (StaticModule); 2) re-

configurable IP module (ReconfModule). The static module

is an instrument of the IPOwner used for establishing a

secure environment inside the FPGA. Interestingly, the static

module does not have to be protected by the IPOwner,

because it contains the Noekeon white-box cipher. A strong

obfuscation achieved by the white-box implementation pro-

vides sufficient security for the embedded IPKey. The static

module also defines the reconfigurable area borders inside

the FPGA. The Noekeon cipher is then used to decipher

the reconfigurable module (protected by the IPKey) and to

upload it to the reconfigurable area via the reconfiguration

port. As an additional layer of protection, the static module

is protected by the FPGA hardwired circuitry using the

IntegratorKey to thwart all external attacks.

The protocol for high-end partially reconfigurable FPGAs

is illustrated in Fig. 3. Unlike in Section III-A, the FPGA

does not have to be initialized with the IPKey, but can

be directly embedded in the System. When the System

is assembled, the Integrator writes the IntegratorKey to

KeyRAM of all FPGAs (Step 1) and stores the Initial

Configuration (including the shared SystemKey) protected

by the IntegratorKey to all ConfMems (Step 2). Only these

two steps must be performed in a secure environment.

After power-up, the FPGAi loads, decrypts and authen-

ticates the Initial Configuration (Step 3). The Initial Con-

figuration verifies if the IPi configuration is present in the

ConfMemi (Step 4). If confirmed, the Initial Configuration

initiates the multiboot and FPGAs load and decipher the

IPi configurations (Steps 10-12). However, if the IPi is not

present in ConfMemi or is corrupted, the Initial Configu-

ration establishes a secure communication (protected by the

CommunicationKey) with the Integrator and reports the IPi

1. Integ

2. Integ
FPGAi, KeyROM

ConfMemi

IntegKey

 {InitConf|SysKey}IntegKey

FPGAi 3. ConfMemi

 4. InitConf: is IPi in ConfMem?

 {InitConf|SysKey}IntegKey

 {IDi|SysKey|NO_IP!}ComKey

 StModi, {RcModi(IDi)|SysKey}IPkeyi

 IDi, SysKey

5. InitConf

6. Integ

7. IPOwneri

8. Integ

9. InitConf

Integ

IPOwneri

Integ

InitConf

ConfMemi

{StModi,{RcModi(IDi)|SysKey}IPkeyi }ComKey

 StModi,{RcModi(IDi)|SysKey}IPkeyi

 10. ConfMemi

 11. ConfMemi

 12. StModi

 StModi FPGAi

StModi

FPGAi,RcfgArea

 {RcModi(IDi)|SysKey}IPkeyi

 RcModi(IDi)|SysKey

V
E

R
IF

IC
.

(r
e

m
o

te
)

L
IC

E
N

S
IN

G
(r

e
m

o
te

)
IN

S
T

A
L

L
.

(r
e

m
o

te
)

S
E

T
U

P

(s
e

c
.
a

re
a

)
O

P
E

R
A

T
.

(r
e

m
o

te
)

no

yes

Figure 3. IP protection scheme for partially reconfigurable FPGAs. Static
IP establishment module (StMod) is used to configure the IP reconfigurable
module (RcMod) into the reconfigurable area (RcfgArea) in a secure way.

absence (Step 5).

The Integrator receives the FPGA IDi and SystemKey

and initiates the licensing process by sending them se-

curely to IPOi (Step 6). The IPOwneri generates a

StaticModulei and IDi-locked ReconfModulei (containing

the SystemKey), deciphers the ReconfModulei with the

IPKeyi and sends both IPi parts to the Integrator (Step

7). The Integrator enciphers the StaticModulei with the

IntegratorKey to enable its configuration to the FPGAi

and sends both IPi parts to the Initial Configuration. The

Initial Configuration receives and stores the StaticModulei
(encrypted by the IntegratorKey) and ReconfModulei (pro-

tected by the IPKeyi) in the ConfMemi (Steps 8, 9) and

initializes the multiboot.

The FPGAi loads, deciphers, authenticates and configures

the ReconfModulei into its static logic area (Step 10). This

way, the reconfigurable area is created in the FPGAi too.

The StaticModulei fetches the ReconfModulei from the

ConfMemi (step 11). The ReconfModulei is deciphered

(in CBC mode) and authenticated (in CMAC mode) by the

Noekeon cipher and configured into the reconfigurable area

via the partial reconfiguration port.

Readers may have noticed that the Noekeon cipher is used

in the opposite order to achieve confidentiality: plaintext

is transformed to ciphertext by the decryption (IPOwneri
domain) and then ciphertext is transformed back to plaintext

by encryption (StaticModulei FPGA domain). Interestingly,

the Noekeon cipher in the StaticModulei can execute the

CMAC authentication algorithm at the same time. This way,

only one shared cipher providing confidentiality and authen-

ticity is necessary. This results in a smaller implementation.

IV. IMPLEMENTATION OF A MULTI-FPGA SYSTEM

A. Target FPGA devices

The low-cost Multi-FPGA System can be implemented

using Xilinx Spartan-6 FPGAs. Both volatile and non

volatile key memories are available. The large FPGA devices

contain an AES bitstream decryption circuit with 256-bit

keys, i.e., both IntegratorKey and IPKeyi are 256 bits long.

Processor

ICAPi

DNAi

port

Instruction

memory

ConfMem

controller

Crypto-

coprocessor

ConfMem interface

IDi

SysKey

ComKey

Initial

Configuration

AXI

FSL

System

inteface

S
y
s
te

m
 b

u
s

Figure 4. Structure of the system integrator module

The 57-bit ID can be read out from the DNA PORT prim-

itive. Multi-boot and readback can be controlled using the

Internal Configuration Access Port (ICAP), which allows to

access FPGA configuration registers. Although the bitstream

authentication is not supported, its integrity can be verified

by the CRC check. A fall-back bitstream can be selected via

the ICAP.

The high-end system nodes can consist of Xilinx Virtex-

6 FPGAs. In addition to the features available in Spartan-6,

Virtex-6 supports partial reconfiguration via the ICAP, and

an HMAC unit for bitstream authentication. No extra key

register is required for HMAC, because the key is included

in the bitstream.

B. Initial Configuration Structure

An example of the Initial Configuration structure is de-

picted in Fig. 4. The Initial Configuration is based on a

MicroBlaze – crypto-coprocessor system presented in [12].

The processor firmware is stored in an instruction memory.

All key registers are protected inside the crypto-coprocessor.

The Initial Configuration can communicate with other nodes

using the system bus and access the configuration memory

using the memory controller. ICAP and DNA ports are

FPGA-specific primitives.

C. IP Establishment Module - Static Module

The structure of the static module is given in Fig. 5. The

most important part is the Noekeon cipher, which involves

IPKeyi). The bitstream data are decrypted in CBC mode.

For the sake of simplicity, the CBC initialization vector is

fetched with the bitstream and deciphered in ECB mode

before data decryption. The ReconfModulei bitstream is

loaded from the ConfMemi using the memory controller.

The CBC mode provides bitstream confidentiality, but also

bitstream authenticity when used as a CBC-MAC. In CBC

mode, temporary results are stored in the mode register (M)

and plain bitstream register (P). Data from the P register is

shifted out to the reconfiguration port RP (ICAP) and used

to configure the reconfigurable area. A comparator (CMP) is

used to detect the end of the bitstream (desync word) and to

compare the last ReconfModulei word (fingerprint) with the

CBC-MAC result. If both are matching, the ReconfModulei
is activated. Otherwise, the control unit reports the error and

directs the multi-boot to load the fall-back configuration (i.e.

the Initial Configuration) via partial reconfiguration port.

Cip
WB P

M

ConfMem
controller

Ctrl
unit

R

P
16/
128

128

Static FPGA area

R
e
c
o
n
fig

u
ra

b
le

 a
re

a

C
o
n
fM

e
m

 in
te

rfa
ce 8IPKeyi

S
y
s
te

m
 b

u
s

CMP

+

DESYNC

Figure 5. Structure of the IP establishment module (StaticModule)

Table I
IMPLEMENTATION RESULTS FOR ONE SYSTEM NODE

Low-cost node High-end node

Spartan-6 Virtex-6 Virtex-6

Slices RAM (kb) Slices RAM (kb) Slices RAM (kb)

SIM 2062 630 1978 1224 1978 1224

IP (IPE) 1494 603 1438 1206 1740 (294) 1206 (0)

D. Example of an IP Module

To prove the concept, the IP module is based on the

HCrypt crypto-processor [13], which uses the SystemKey

as a master key. HCrypt is activated only if the pre-stored

IDi matches the DNA port value.

V. IMPLEMENTATION RESULTS

One low-cost system node and one high-end system

node were implemented in VHDL and synthesized using

Xilinx ISE 12.4 for Spartan-6 XC6SLX75T and Virtex-

6 XC6VLX240T. The latter configuration was successfully

tested in the ML605 evaluation board. Since we did not have

a card featuring the Spartan-6 device at our disposal, we

performed the low-cost system node tests using the ML605

evaluation board, too. A hardware module including the

Cypress USB device CY7C68013A was connected to the

evaluation board for data transfers from/to the PC. All tests

were successful. The results are summarized in Tab. I.

The ReconfModulei bitstream was generated, the IDi was

updated using the data2mem tool and decrypted by Noekeon.

To verify the protection schemes, three applications were

developed. The first represented a communication scenario

between the FPGA node and the IPOwner on behalf of

the Integrator. The second handled IPOwner’s tasks: it

communicated with the Integrator and generated the ID-

locked IPs. In order to test communication between nodes,

one node was implemented in the FPGA and the other was

emulated by the third application on the PC. All tests were

carried out for both low-cost and high-end system nodes.

VI. DISCUSSION

The number of slices required for the Initial Configuration

is very similar for both FPGA devices, because the slice

structure is almost identical. Since Virtex-6 Block-RAMs

are twice the size of those in Spartan FPGAs, they are not

efficiently utilized by the Initial Configuration, and so the

memory size doubles (Initial Configuration: 1224 vs 630

kb, IP: 1206 vs 603 kb). The IP design for the high-end

system is bigger (1740 vs 1438), because it contains also

the StaticModule (294 slices).

Our first protocol assumes that the IPKey is written to

the KeyROM in the IPOwner’s secure environment and the

IntegratorKey to the KeyRAM in the Integrator’s secure

environment. Thus, the total system costs must include

FPGA transportation costs from IPOwners to Integrator.

Moreover, in case of a battery failure, the IntegratorKey is

lost and cannot be restored remotely. Thus, the whole device

must be returned to the Integrator, which results in additional

transportation overhead. Despite these disadvantages, the

first scheme remains the most suitable solution for multi-

FPGA systems based on low-cost FPGAs.

The transportation cost issues are solved in the second

scheme. The IntegratorKey is stored in the KeyROM and the

white-box cryptography provides a unique and secure way

to embed IPKeys in FPGAs without any pre-stored IPOwner

secret. Furthermore, several ReconfModules can be stored in

the ConfMem and the StaticModule can upload the one that

is required.

As mentioned in Sec. I, the two schemes are aimed at

the use in the automotive market. The car manufacturer

(Integrator) assembles a car containing multiple functional

units (nodes) and installs his private initialization bitstream

in each node. The manufacturer can buy IPs for individual

nodes from different IPOwners and install or update them

remotely. At the same time, IPOwners would like to license

their IPs and protect them against cloning and reverse

engineering.

Many other applications of the high-end multi-FPGA sys-

tems and the corresponding protection scheme can be found.

The simplest one is a cluster of FPGAs, where different

customers (IPOwners) would like to rent some computation

time without delivering their IP bitstreams to third parties

or the cluster provider (in the role of an Integrator). Other

applications could be a trusted computer platform offered

by a certification authority (Integrator). This platform can

contain only certified modules (nodes). Uncertified modules

cannot posses the common shared secret and are excluded

from any confidential communication with other modules.

The system is convenient for all these applications and its

protection scheme can provide security for all participating

parties and their intellectual properties.

The proposed protection schemes could be significantly

improved if the KeyRAM could be programmed from inside

the FPGA. Moreover, the SystemKey could be exchanged

directly between the Initial Configuration and IP configu-

rations if a secure non-volatile user storage was embedded

in the FPGA. Current FPGAs can store only two different

configuration keys. However, if more keys could be stored,

more IP from different IPOwners could be implemented in

a single FPGA.

VII. CONCLUSION

We proposed two novel protection schemes for IP bit-

streams implemented on multi-FPGA systems. The first

scheme is targeting low-cost FPGAs and provides a license

scheme for IP owners to offer their products to system

integrators in a secure way. The scheme uses a volatile

and a non-volatile key storage of recent (Xilinx Spartan-

6) FPGA devices to store both system integrators’ and IP

owners’ keys. The appropriate key register is selected by the

bitstream itself.

The second unique scheme is provided to high-end par-

tially reconfigurable FPGAs and enables IP owners to re-

motely install their IPs in an untrusted FPGA environment

without having any pre-stored secret. These properties are

achieved by hardware white-box cryptography.

REFERENCES

[1] Synplicity Inc., “An Open IP Encryption Flow permits
industry-wide interoperability,” 2006.

[2] K. Kepa, F. Morgan, K. Kosciuszkiewicz, and T. Sur-
macz, “SeReCon: a secure reconfiguration controller for self-
reconfigurable systems,” International Journal of Critical
Computer-Based Systems, vol. 1, no. 1, pp. 86–103, 2010.

[3] T. Guneysu, B. Moller, and C. Paar, “Dynamic intellectual
property protection for reconfigurable devices,” in FPT’07.
IEEE, 2007, pp. 169–176.

[4] S. McNeil, “Solving today’s design security concerns,” Xilinx
Corporation, 2012.

[5] FIPS-197, “Advanced Encryption Standard (AES),” 2001.

[6] J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen,
“Nessie proposal: Noekeon,” in 1

st NESSIE Workshop, 2000.

[7] NIST800-38B, “The CMAC Mode for Authentication,” 2005.

[8] FIPS-198, “The Keyed-Hash Message Authentication Code,”
2002.

[9] W. Brecht, “White-box cryptography: hiding keys in soft-
ware,” NAGRA Kudelski Group, 2012.

[10] S. Chow, P. Eisen, H. Johnson, and P. Van Oorschot, “White-
box cryptography and an AES implementation,” in Selected
Areas in Cryptography. Springer, 2003, pp. 250–270.

[11] Z. Cherif, F. Flament, J. Danger, S. Bhasin, S. Guilley,
and H. Chabanne, “Evaluation of white-box and grey-box
Noekeon implementations in FPGA,” in ReConFig’10, 2010,
pp. 310–315.

[12] L. Gaspar, V. Fischer, L. Bossuet, and M. Drutarovsky,
“Cryptographic extension for soft general-purpose processors
with secure key management,” in FPL’11, 2011, pp. 500–505.

[13] L. Gaspar, V. Fischer, F. Bernard, L. Bossuet, and P. Cotret,
“HCrypt: A Novel Concept of Crypto-processor with Secured
Key Management,” ReConFig’10, pp. 280–285, 2010.

