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Abstract—Self-timed rings are oscillators in which several
events can evolve evenly-spaced in time thanks to analog effects
inherent to the ring stage structure. One of their interesting
features is that they provide precise high-speed multiphase
signals. This paper presents a true random number generator
that exploits the jitter of events propagating in a self-timed ring
with a high entropy. Designs implemented in Altera Cyclone III
and Xilinx Virtex 5 devices provide high quality random bit
sequences passing FIPS 140-1 and NIST SP 800-22 statistical
tests at a high bit rate.

I. INTRODUCTION

Random Number Generators (RNG) are basic blocks of
cryptographic systems. They are used in many cryptographic
primitives to generate confidential keys, challenges, padding
values, to authentify protocols and even in coutermeasures
against attacks. They need therefore to fulfill very strict
security requirements because a weak RNG can jeopardize the
whole cryptographic system security. Ideal RNGs are mathe-
matical constructs that generate independent and uniformly
distributed random numbers. Real-world RNGs are classified
into Deterministic (DRNG) and True Random Numbers Gen-
erators (TRNG). DRNGs are based on complex deterministic
algorithms and cryptographic functions such that their output
cannot be predicted easily in a reasonable amount of time.
DRNGs usually provide high bit rate data sequences that pass
the standard statistical tests. However, they only guarantee
practical security and do not allow a proved assessment of
security. If its algorithm is known, the output of a DRNG
can be theoretically predicted. Even when the algorithm is not
known, but some of the generator output sequences have been
recorded, its behavior during the recorded sequence can be
used in future attacks. On the other hand, TRNGs usually rely
on physical random processes to generate random bit streams.
Their bit rate is limited by the spectrum of the underlying
physical process and by the entropy extraction technique. But
contrarily to DRNGs, TRNGs allow a mathematical assess-
ment of the security: a precise modeling of the random process
and the entropy extraction enable to compute the lower bound
of entropy per output bit. If the minimal entropy per output
bit approaches 1, then the TRNG is not manipulable and it
can be assimilated to an ideal RNG.

TRNGs use physical random processes to generate random
bits. Although physical random processes such as radioactive
decay and thermal agitation are not exploitable directly in
electronic devices, one of their consequences is the random
noise present in all electronic signals. Due to this noise, the
significant instants of a digital signal vary from their ideal
position in time. This phenomenon, called the jitter, can be
exploited to generate random numbers thanks to its random
properties. RAND Corp. exploited the random jitter in the
fifties for generating the well-known random numbers tables
used worldwide by the cryptographic community back then
[1]. Then, Fairfield et. al. were the first to propose a TRNG
embedded in dedicated hardware [2]. In their design, often
refered to as ”Coupled-oscillators TRNG”, a low frequency
jittery signal samples a high frequency jittery signal to gener-
ate random numbers. Since then, the principle of sampling a
jittery signal to generate random numbers have been widely re-
used and enhanced by the cryptographic community. Authors
of [3] use the tracking jitter of a PLL (Phase Locked Loop)
to generate provably random bits at a high bit rate. In [4],
Golic et. al. propose a hybrid RNG where a jittery oscillator
randomly samples the output of Galois and Fibonacci rings.
Sunar et. al. proposed a global approach for ring oscillator
based TRNGs [5]. Their design combines the jitter issued
from several inverter ring oscillators to enhance the entropy
harvesting.

This paper presents a novel TRNG using the jitter of events
propagating in a self-timed ring to generate random numbers at
a high bit-rate. First, Section 2 defines the jitter and explains
how to generate random numbers using it. Then Section 3
presents the self-timed ring based true random number genera-
tor (STRNG), its architecture and working principle. Sections
4 and 5 detail the self-timed ring architecture and temporal
behavior. Section 6 describes two designs implemented in
Xilinx Virtex 5 and Altera Cyclone III FPGAs and provides
jitter measurement results for each implementation. Section
7 evaluates the STRNG using the FIPS and NIST standard
statistical tests. Finally, Section 8 concludes the paper.

II. FROM JITTER TO RANDOM NUMBERS

Jitter is a phenomenon proper to any electronic circuit
involving a switching digital signal. It refers to the short-



term variations of a digital signal’s significant instants from
their ideal positions in time. Jitter is a consequence of several
phenomena: thermal noise, shot noise, power supply noise,
environmental fluctuations, etc. Jitter can be used to generate
random numbers as long as its source exhibits sufficiently
random properties. In fact, for randomness generation purpose,
two types of noise sources are the most important: local Gaus-
sian sources and global deterministic sources. Local Gaussian
noise sources generate a random noise at the transistor level
and are not influenced by external perturbations. They lead
to Gaussian timing distributions (propagation delay of an
inverter, oscillation period of a ring oscillator etc). This is
actually a direct consequence of the central limit theorem:
the distribution function of the sum of mutually independent
random variables is well-approximated by a normal density
function. A frequency analysis of the local random noise
underlines various sub-classifications with respect to the noise
frequency. The flat-band white noise represents the random
unbiased uncorrelated noise source that is the most suitable
for randomness generation. It comes mostly from thermal
noise, i.e. the random movements of the current carriers, for
example across a PN junction or at the collector or drain of
a transistor. Another kind of noise, the 1

F noise (also known
as the Flicker noise) is exploitable, but correlated due to its
frequency dependence. This frequency dependence is much
more notable for the 1

F 2 Brownian noise, making it hardly
usable for randomness generation. Global deterministic noise
sources refer to the non-random noise sources which affect
equally each component of a circuit, as for example: power
supply noise, environmental fluctuations (temperature, electro-
magnetic emanations ...). These noise sources are dangerous
and unwanted in TRNG design for many reasons. They can
be predicted and manipulated providing a back door for cryp-
tographic attacks. They can also dominate the local random
sources making their measurement difficult.

Fig. 1. Entropy harvesting using a jittery signal and a reference clock scheme

One way to generate random bits using a jittery clock
is to sample this clock at its edges. Considering a signal
edge arrival time as a random variable, let’s define the jitter
boundaries as the time interval around the mean arrival time
of a signal edge that bounds 99% of this random variable
draws. If the sampling happens between the jitter boundaries
as shown in Fig. 1, the obtained sample has a random value.
While the principle is relatively simple, its realization is not
straightforward because these jitter boundaries are often very
small compared to the oscillation period (usually less than
1%). The design has to meet precise timing requirements
(picosecond order) so that the sampling happens between the

jitter boundaries. It also needs to synchronize the sampling
clock and the jittery clock to prevent the sampling signal from
drifting out of the jitter boundaries.

To circumvent these issues, Sunar proposed to combine the
outputs of several identical inverter ring oscillators using a
XOR function [5]. The corresponding architecture is shown
in Fig. 2. His objective was to fill an oscillation period of
the resulting signal ψ with events. If the time lapse between
two successive events is sufficiently short compared to the
jitter boundaries, then sampling this signal ψ at any time
would provide a random bit. Even if the relative phases of
the oscillators (and thus the elapsed time between successive
events) are not controlled, the idea is that, statistically, if
enough ring oscillators are used, acceptable filling rates can
be achieved with high probabilities. From a model standing
point, the oscillation period is divided into N equally matched
time intervals called urns equal to or shorter than the jitter
boundaries of one ring output. The mean timings of events
are supposed to be selected randomly because no assumption
is made on the initial relative phases of the ring oscillators. The
number of needed oscillators to fill each of the N urns with
at least one event is computed using a probabilistic model:
the number of uniformly random selections of N urns such
that all urns are selected at least once can be approximated by
N log(N).

Fig. 2. Architecture of the core of the TRNG presented in [5]

The idea proposed by Sunar is certainly a major contribution
to the jitter-based TRNGs theory. Nonetheless, the proposed
design have been also one of the most commented by the
cryptographic community. Authors of [6] remark that the
generator relies mostly on the pseudo-randomness which is
introduced by the phase drift between the oscillators. They
demonstrate this fact using digital simulations: they show that
the combined signal issued from 18 ring oscillators having
slight frequency differences passes FIPS and NIST statistical
tests without incorporating jitter in their simulations. Another
important issue concerns the mutual dependence of rings.
In fact, a full independence of rings implemented in the
same single logic device is a theoretical construct that is not
generally achieved in real devices. Authors of [6] show that
up to 25% of a set of 118 ring oscillators can be mutually
locked in an Altera Cyclone III device. If the rings are not
fully independent, their mutual phases cannot be uniformly
distributed, which causes a lack of entropy at the output of
the TRNG.



In the following, we describe an easy way to uniformly
fill the time domain with events using one self-timed ring
oscillator where several events evolve evenly-spaced in time.
The proposed method allows to precisely control the relative
phase of the events. Locking phenomena cannot take effect
because only one ring oscillator is used.

III. SELF-TIMED RING BASED TRUE RANDOM NUMBER
GENERATOR

Self-timed rings are oscillators where several events can
evolve without colliding thanks to a handshake request and
acknowledgment protocol. Under certain conditions, they can
provide events which are evenly-spaced in time and distributed
over half an oscillation period of one ring stage output.
A self-timed ring provides L jittery synchronized signals
(Ci)1≤i≤L having the same period T and a constant mean
phase difference between them 4ϕ = T/2L as shown in
Fig. 3. A clock signal clk samples each ring stage output using
a flip-flop. (si)1≤i≤L, the obtained signals, are then combined
using a XOR function. ψ is the resulting combined signal.

ψ = s1 ⊕ s2 ⊕ ...⊕ sL

Fig. 3. Chronogram of the self-timed ring outputs

The entropy extraction principle is illustrated in Fig. 3.
Since each signal Ci is sampled with the same reference
clock clk, for any sampling instant t, there exists j such that
|t − tj | ≤ 4ϕ

2 , where tj is the switching time of the signal
Cj . If the jitter boundaries are larger than the phase difference
4ϕ, the signal Cj is sampled in its jitter boundaries as shown
in Fig. 3. The resulting sample sj has then a random value,
and hence the output of the XOR gate is also random. The
entropy of the output bit at the signal ψ is at least equal to the
entropy of the sample sj . The higher is the jitter magnitude
and the lower is the phase difference 4ϕ, the higher is the
entropy of the sample sj and at the output of the TRNG.

Figure 4 shows the architecture of the STRNG (Self-timed
ring based True Random Number Generator). The self-timed
ring provides the jittery signals which are evenly-spaced in
time. The output signals are re-indexed according to their mean
arrival time (Ci and Ci−1 are not adjacent stages). Sections

4 and 5 detail the architecture and behavior of the self-timed
ring. The entropy extractor consists of two elements: the flip-
flops which sample the output signals of the self-timed ring
using a reference clock clk, and the XOR tree which realizes
the XOR operation between the sampled outputs of the self-
timed ring.

Fig. 4. STRNG core architecture

Although the theoretical concept proposed here does not
require a jittery sampling clock, in practical designs, the jitter
of the sampling clock enhances the entropy at the output of
the TRNG. However, we do not take it into account while
sizing the design (i.e. choosing the phase resolution of the
self-timed ring according to its jitter magnitude). This way no
assumption or constraint is made on the sampling clock (worst
case scenario).

The proposed architecture suggests the potential for
metastability in the flip-flop outputs. The higher is the sam-
pling clock frequency, the higher is the probability that a flip-
flop output does not resolve to a fully driven value between
two successive samplings. Although this phenomenon is not
discussed in the paper, previous works suggest that it can be
exploited to harvest more entropy from noise ([8]), especially
if these not fully driven outputs are resampled at the output
of the XOR tree. However, this matter should be deeply
investigated in our upcoming works.

Finally, it can be noted that the design presented in [5]
relies on a probabilistic assumption: if enough ring oscillators
are used, it is possible to achieve acceptable filling rates of
the combined signal. On the contrary, in this design, the self-
timed ring allows to precisely adjust the mean elapsed time
between successive events. This time lapse can be set as short
as needed, it can be thus adjusted to the jitter magnitude of a
self-timed ring stage.

IV. SELF-TIMED RING OSCILLATOR

Self-Timed Rings (STR) are ripple FIFOs (First In First
Out memories) that have been closed to form a ring. These
ripple FIFOs feature an asynchronous handshaking protocol to
organize the data transfer across the structure. When closed,
the FIFO retains the handshaking mechanism that ensures
data ordering, but exhibits properties which are interesting for
providing high precision timing signals.



Fig. 5. Architecture of a self-timed ring

The self-timed ring structure is depicted in Fig. 5. It
corresponds to a ripple FIFO as proposed by I. E. Sutherland
in [7], which has been closed to form a ring of L stages.
Each stage is composed of a Muller gate and an inverter. For
the stage i, Fi is the forward input, Ri the reverse input,
and Ci is the output. Fig. 6 shows the ring stage structure
and its truth table. The forward input value is written to the
output if the forward and reverse input values are different,
otherwise previous output is maintained. The micropipeline
stages communicate using a two-phase handshake protocol as
described in [7]. In the first phase, a ring stage i sends a request
signal via its output Ci, signaling to the next stage i+ 1 that
data to be processed is available. In the second phase, the stage
i+1 latches the data and sends an acknowledge signal to the
previous stage i via its output Ci+1 signifying that the data
have been consumed. The same event at Ci+1 serves also as a
request signal from the stage i+1 to the stage i+2. Each 2-
phase request and acknowledgment signifies an event transfer
between interconnected stages. This way, data can propagate
in the ring without colliding thanks to the handshake protocol.
The tokens and bubbles concept is derived from the 2-phase
communication protocol described bellow:
• Stage i contains a bubble if its output Ci is equal to the

output of the previous stage Ci−1: Ci = Ci−1
• Stage i contains a token if its output Ci is different from

the output of the previous stage Ci−1: Ci 6= Ci−1

Fig. 6. Ring stage structure and truth table

A stage that contains a token is a stage which is currently
processing an event, while a stage that contains a bubble is
a free stage that is ready to process an event. Knowing the
stage truth table and the token and bubbles concept described
above, a token propagates from the stage i to the stage i+ 1
if and only if the next stage i + 1 contains a bubble. In the
same time, a bubble propagates from the stage i + 1 to the
previous stage i if and only if the previous stage i contains a
token. The condition for a token to propagate from stage i to
stage i+ 1 is expressed as follows:

Ci 6= Ci−1 and Ci = Ci+1

This way, tokens (or events) propagate in the ring as long as
there is at least one bubble and an even number of tokens in the
ring. In practice, the number of tokens NT and the number of
bubbles NB are chosen during the ring initialization by setting
the initial values of the ring stage outputs.

Independently of the initial disposition of tokens and bub-
bles in the ring, experiments on self-timed rings show that
after a transient state, events in the ring reorganize themselves
in time as the ring achieves a steady state. This steady state
exhibits two oscillation modes depicted in Fig. 7: an evenly-
spaced and a burst propagation mode. The evenly-spaced
mode occurs when the events spread evenly all-around the
ring and propagate with a constant spacing. The burst mode
occurs when the events get together to form a cluster that
propagates around the ring. Both these oscillation modes are
stable and depend on the static parameters of the self-timed
ring (e.g. the propagation delays of each ring stage). It can
be noted that digital simulations do not predict these two
behaviors: events propagate in a disordered manner depending
on the static propagation delays and their initial disposition
without necessarily clustering or spreading around the ring.
In fact, digital simulations do not take into account two
analog phenomena that determine the temporal behavior of
the self-timed ring: the Charlie and drafting effects. Temporal
behavior of self-timed rings have been widely studied in the
past ([9], [10] and [11]), the following section briefly describes
it and presents the features which are exploited in the STRNG
principle.

Fig. 7. Burst and evenly-spaced propagation modes in a self-timed ring

V. TEMPORAL BEHAVIOR OF SELF-TIMED RINGS

One of the major issues with ripple FIFOs was to study the
loss of performances due to data clustering behaviors. Ebergen
et. al. were the first to use Charlie diagrams as a tool for a
better understanding of data movement in ripple FIFOs [12].
Charlie diagrams are used to predict the timing behavior of a
Muller gate as a function of the separation time between the
events that drive this gate. Winstanley et. al. carry on the study
by closing the FIFO [9] and introducing another analog effect
that helps understanding the movement of tokens (called the
drafting effect).

A. The Charlie and Drafting Effects

The Charlie and drafting effect are both analog phenomena
which are inherent to the self-timed ring stage structure. The



Charlie effect describes the impact of the separation time
between input events on a Muller gate delay: the closer are the
arrival times of inputs, the longer is this propagation delay. The
drafting effect describes the impact of the elapsed time from
the last output commutation on the stage propagation delay:
the shorter is this time, the shorter is the stage propagation
delay. In [9], Winstanley et. al. implemented an experimental
circuit where the Charlie and drafting effects can be controlled
within the design. They highlighted how those effects affect
the event propagation across the ring: the Charlie effect fa-
vorizes the evenly-spaced propagation mode while the drafting
effect favorizes the burst propagation mode. Intuitively, the
Charlie effect causes two close events to push away from
each other due to the increased delay experienced by a ring
stage when driven by two events separated with a short time
lapse. The evenly-spaced propagation happens when the events
keep pushing from each other until they spread-out evenly
across the ring. The time lapses that separate successive events
converge to one final value corresponding to the working
point of a steady regime. Contrarily, the drafting effect causes
two close events to gather together because of the reduced
propagation delay of a ring stage when it switches at a higher
rate. The final state of the self-timed ring (evenly-spaced or
burst) and moreover, the working point of the evenly-spaced
mode depend on the following parameters of the design:
• The Charlie and drafting effects which depend on the ring

stage implementation and the used technology
• The propagation delays of a ring stage Dff and Drr as

represented in Fig. 6, or more precisely, their ratio Dff

Drr

• The ring occupancy, i.e. the ratio NT

NB
where NT is the

number of tokens and NB the number of bubbles
Thus, for a fixed design, the final state of a self-timed ring
depends only on its initial occupancy. The evenly-spaced mode
is achieved for a range of values of NT

NB
around Dff

Drr
. It is

automatically achieved when [11]:

NT

NB
' Dff

Drr
(1)

In practice, the higher is the Charlie effect magnitude, the
larger is the interval of NT

NB
around Dff

Drr
where the ring

achieves the evenly-spaced propagation mode. For example,
a 64-stage self-timed ring in Altera Cyclone III with Dff

Drr
' 1

exhibits the evenly-spaced mode for NT varying between
22 and 42 (NB = 64 − NT ). While the same 64-stage
configuration in Xilinx Virtex 5 achieves the evenly-spaced
mode for NT between 28 and 38 (which suggests a stronger
Charlie effect in the Cyclone III implementation).

B. Frequency

The frequency of a self-timed ring is a function of its
occupancy. Figure 8 shows the frequency curve of an L-stage
self-timed ring as a function of the number of initialized
events. Nmin and Nmax correspond to the limit where the
events start to bunch. N0 corresponds to the point described by
Equation 1. This point also separates the curve into two regions
(not necessarily symmetrical depending on Dff and Drr): the

token-limited region where NT

NB
<

Dff

Drr
and the bubble-limited

region where NT

NB
>

Dff

Drr
. In the token-limited region, the

frequency increases with the number of events as it could be
expected intuitively. The maximal frequency is achieved when
Equation 1 is satisfied. Then the frequency starts dropping with
the number of events in the bubble-limited region. This is due
to the fact that events have to wait for the acknowledgment
signals since most stages are already processing events. This
reduces the operating frequency of the ring.

Fig. 8. Theoretical frequency curve of an L-stage self-timed ring as a function
of the ring occupancy

C. Phase Distribution

In [10], Fairbanks describes design methods for using self-
timed rings as generators of signals with high timing precision.
Contrary to inverter ring oscillators, self-timed rings allow
phase resolutions which are fractions of the propagation delay
of one ring stage because several events evolve simultaneously
in the ring. Each event propagating in a self-timed ring stage
inverts its output. If N events spread evenly in the ring (across
its structure), then each stage exhibits a N

L × 180o phase
difference with its predecessor. Therefore, the phase difference
between 2 stages which are n stages apart is [10]:

ϕn = n× N

L
× 180o (2)

According to Equation (2), if the number of stages is a
multiple of the number of events, some stages may exhibit
the same absolute phase. But if the number of events and the
number of stages are co-prime, the self-timed ring exhibits as
many different equidistant phases as the number of stages. For
example, a 9-stage self-timed ring with 4 tokens and 5 bubbles
exhibits 9 different equidistant phases. An 18-stage self-timed
ring with 8 tokens and 10 bubbles also exhibits 9 different
equidistant phases since the ratio 8

10 can be reduced to 4
5 . A

self-timed ring where NT = NB and Dff = Drr exhibits 4
different equidistant phases no matter the number of stages.
If T is the oscillation period of a self-timed ring where the
number of events and the number of stages are co-prime, its
phase resolution expressed in the time domain is as follows:

4ϕ =
T

2L
(3)



On the other hand, the oscillation period in a self-timed ring
does not depend directly on the number of stages as it does
in inverter ring oscillators, but it is a function of the ring
occupancy (the ratio of the number of events to the number
of stages N

L ). This means that it is possible to enhance the
phase resolution 4ϕ without modifying the ring frequency by
increasing L while keeping the same ratio N

L . Subsequently,
the phase resolution of a self-timed ring can theoretically be set
as finely as needed. Elissati et. al. demonstrate the efficiency
of the method in [13] by implementing several designs where
they measure phase resolutions of the order of picoseconds.

D. Jitter

As explained before, self-timed rings are able to auto-
regulate timings between the events when locked in the steady
regime. One major consequence of this feature is that they
deliver a low jitter issued mainly from the local Gaussian noise
sources. To understand this fact, let’s consider an inverter ring
oscillator where one event propagates freely around the ring.
This event experiences variations in its significant timings due
to noise each time it crosses a ring stage. Since the event
propagation is unconstrained, this timing variation is transmit-
ted to the next stage and accumulates as the event propagates
in the ring. Jitter measurements show that the period jitter
of an inverter ring oscillators (which refers to the standard
deviation of a population of measured oscillation periods)
increases with the number of ring stages [14]. On the contrary,
an event propagating in a self-timed ring progressively loses
the carried jitter timing variation: its significant timings are
self-regulated as the separation time between successive events
converges to the working point of the steady regime and its
value does not depend on dynamic parameters such as noise in
the circuit. Jitter measurements show that the period jitter of
a self-timed ring does not increase with the number of stages
[14]. Moreover, the jitter measured at the output of a self-timed
ring is of the same order of magnitude than the measured
jitter of one single ring stage. This suggests that the jitter
generated locally in each ring stage does not propagate to the
other stages as it does in inverter ring oscillators. On the other
hand, global deterministic jitter affects each event in the same
manner. Subsequently, these deterministic timing variations
are strongly attenuated when we consider the separation time
between successive events. In conclusion, the jitter measured
at the output of a self-timed ring stage is mostly composed of
the random local jitter that originates from the concerned ring
stage.

VI. STRNG DESIGN AND MEASUREMENTS IN VIRTEX
XILINX 5 AND ALTERA CYCLONE III FPGAS

The STRNG principle relies on the setup of the self-timed
ring phase resolution according to the measured jitter mag-
nitude. This section details the STRNG implementation and
design constraints. It also provides jitter and phase resolution
measurements for different self-timed ring configurations in
Altera Cyclone III and Xilinx Virtex 5 FPGAs.

A. STRNG Implementation and design constraints

Muller gates are basic elements in asynchronous circuit
design. They can be implemented in FPGAs using Look-
Up-Tables (LUTs). Each self-timed ring stage (Muller gate
+ inverter) can be implemented using one LUT. At least 4
inputs are required: 2 inputs are used for the forward and
reverse inputs, 1 input is used to SET or RESET the stage,
and one input serves as the feedback-loop which is necessary
for maintaining the state value. SET and RESET allow to set
the initial number of tokens in the ring. We implemented two
kinds of self-timed ring stages: some cells with SET and other
cells with RESET. When connecting the stages and closing
the loop, one common INIT signal initializes the ring with
the correct number of tokens. The internal logic function of
a self-timed ring stage is realized using one LUT function
generator as shown in Table I (both Altera Cyclone III and
Xilinx Virtex 5 feature 4-input 1-output function generators).
I0 corresponds to the INIT input, I1 and I2 are the forward
and reverse inputs (F and R in Fig. 6) and I3 is the feedback
input connected to the output S (which refers to the output C
of the self-timed ring).

I0 I1 I2 I3 S
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 - - - 0

TABLE I
SELF-TIMED RING STAGE WITH RESET DESCRIPTION USING A 4-INPUT

1-OUTPUT FUNCTION GENERATOR (LUT)

Although the self-timed ring can support propagation delay
disparities between its stages, if one delay is much longer than
the others, the ring can exhibit a bottleneck: events gather at
the input of this ring stage and cannot be distributed evenly
in time. The self-timed ring frequency is then limited by
this long propagation delay. To avoid bottleneck effects, it is
recommended to choose a placement topology that guarantees
balanced delays between the ring stages. In particular, a
topology with a long feedback loop should be avoided. Fig. 9
illustrates an example of a ring topology that limits bottleneck
effects in Altera Cyclone III.

For a given number of stages and according to Equation 3,
the lower is the oscillation period of the self-timed ring, the
better is its phase resolution. As shown in Fig. 8, the maximum
frequency of the self-timed ring is achieved when the ratio NT

NB

is as near as possible to Dff

Drr
. The ratio NT

NB
needs also to be

irreducible to obtain as many different phases as the number
of ring stages. Considering the placement topologies in both
Virtex 5 and Cyclone III, the majority of ring stages have
equivalent forward and reverse propagation delays:

Dffmean

Drrmean

' 1 (4)



Fig. 9. Example of a self-timed ring (STR) topology for a 63-stage STR in
Altera Cyclone III device (each Altera Logic Array Block -LAB- contains 16
logic cells consisting of a LUT and a flip-flop)

This is also verified by the fact that the interval of tokens that
achieve the evenly-spaced mode is centered around NT ' L

2 .
In this case, one simple strategy is to choose first L odd,

then NT = L+1
2 and NB = L−1

2 = NT − 1. Thus, if L > 2
, L+1

2 and L−1
2 are relatively prime. Moreover, if L is high

enough, L+1
L−1 ' 1, this way the frequency is maintained at

its maximum while increasing the number of ring stages and
enhancing the phase resolution of the self-timed ring.

In order to guarantee a correct phase distribution at the flip-
flop inputs, connections between all self-timed ring stages and
corresponding flip-flops must remain the same. Fortunately,
the majority of recent FPGAs (including Xilinx Virtex 5 and
Altera Cyclone III) feature a hard-wired connexion between
LUTs and flip-flops that can be successfully used in the
STRNG design.

Finally, the XOR tree is implemented using 4-input LUTs
in Altera Cyclone III and 6-input LUTs in Xilinx Virtex 5.

B. Phase resolution and jitter measurements
1) Measuring the jitter: One main assumption of the

STRNG principle is the presence of an uncorrelated, unbiased
random jitter issued from the white noise. This can be obtained
in practice in digital circuits because of the unavoidable
thermal noise (due to random movements of the current
carriers). One major issue however is to precisely measure this
jitter magnitude independently from additional noise sources
in order to correctly set the phase resolution of the self-timed
ring. Fortunately, due to the high frequencies of self-timed
rings (' 400 MHz in FPGAs, a few GHz in ASICs), Flicker
and Brownian noises can be neglected. Nonetheless, a few
precautions must be taken when realizing this measurement:
• The surrounding logic (i.e. the flip-flops and XOR tree)

should not operate during measurements in order to limit
any deterministic effects that could result from its oper-
ation. This allows to measure the minimal (unavoidable)
jitter present at the output of the self-timed ring

• Linear voltage regulators should be used in order to
reduce the power supply noise

• Low Voltage Differential Signaling (LVDS) outputs in
conjunction with differential oscilloscope probes should
be used in order to reduce the impact of slow input/output
circuitry and parasitic effects of the output

The period standard deviation (σperiod) is obtained by ac-
quiring a significant number of successive oscillation periods.
According to [14], the jitter magnitude of a self-timed ring
stage can be estimated using the following equation:

σ ' σperiod√
2

(5)

2) Estimating the phase resolution: The phase resolution is
computed by measuring the mean oscillation period and using
Equation 3. However, contrarily to the jitter measurement, the
whole design must be operating in this case. In fact, the flip-
flops and XOR tree connected to the ring stages cause its
frequency to drop (the phase resolution can therefore be worse
than expected). It is thus more cautious to measure the phase
resolution in this case.

3) Results: Frequency and jitter were measured using a
wide band digital oscilloscope LeCroy Wavepro 735 ZI. We
used the LVDS (Low Voltage Differential Signaling) interface
of the device and an active differential probe with a 4 GHz
bandwidth. First, we implemented different configurations
of the self-timed ring in both devices and measured their
oscillation period and period jitter. The standard deviation of
the propagation delay of one self-timed ring stage is computed
using Equation 5 and the phase resolution of the self-timed
ring is computed using Equation 3. Figure 10 shows the period
distribution of a 127-stage self-timed ring with 64 tokens in
both Altera Cyclone III and Xilinx Virtex 5. As it can be
seen, both configurations exhibit a Gaussian jitter profile. Table
II gives the measured oscillation period (T ), the computed
phase resolution using Equation 3 (4ϕ) and the measured
jitter magnitude (σ). L is the number of ring stages, N is
the number of initialized events. Measured jitter magnitude
values vary around 2ps in Altera Cyclone III and 2.5ps in
Xilinx Virtex 5.

Device L N T 4ϕ σ

Altera Cyclone 3

63 32 2.07 ns 16.4 ps 2.1 ps
127 64 2.07 ns 8.2 ps 1.7 ps
255 128 2.08 ns 4.0 ps 1.7 ps
511 256 2.46 ns 2.4 ps 1.9 ps
1023 512 2.63 ns 1.3 ps 1.8 ps

Xilinx Virtex 5

63 32 3.44 ns 26.9 ps 2.7 ps
127 64 3.42 ns 13.5 ps 2.6 ps
255 128 3.72 ns 7.3 ps 2.8 ps
511 256 3.95 ns 3.9 ps 2.4 ps
1023 512 4.12 ns 2.0 ps 2.5 ps

TABLE II
OSCILLATION PERIOD (T ), PHASE RESOLUTION (4ϕ) AND JITTER PER

RING STAGE (σ) FOR DIFFERENT SELF-TIMED RING CONFIGURATIONS IN
ALTERA CYCLONE III AND XILINX VIRTEX 5

VII. STRNG STATISTICAL EVALUATION

For each self-timed ring configuration, we acquired 1.2
GBytes of data. In theory, the STRNG principle allows sam-
pling frequencies up to the self-timed ring frequency (a few



Fig. 10. Period distribution histogram of a 127-stage STR with 64 tokens:
(a) Altera Cyclone III (b) Xilinx Virtex 5

hundred Mhz). However, our USB transfer protocol limited
the output bit rate to 16 Mbit/s. In order to correctly evaluate
the entropy issued from the self-timed ring jitter, we used a
low-jitter 16 MHz quartz as a sampling clock. We applied
FIPS 140-1 statistical tests on 1000 sequences of 20000 bits
and NIST SP 800-22 statistical tests on 1000 sequences of 106

bits with a 0.01 confidence level. As it can be seen in Table
III, the TRNG output passes the FIPS and NIST tests starting
from L = 511 in Cyclone III (corresponding to 4ϕ ' 0.7σ).
The design passes the FIPS tests in Virtex 5 starting from
L = 511 (4ϕ ' 0.8σ), but does not pass the NIST tests due
to a higher bias (the majority of tests pass except the frequency
test). This table also shows that the principle does not work
when the number of events and the number of stages are not
co-prime as expected from Equation (2) (when L = 128 and
N = 64 in the table).

Parity filter STR configuration Cyclone III Virtex 5

none

L N FIPS NIST FIPS NIST
63 32 55% FAIL 14% FAIL
127 64 98% FAIL 1% FAIL
128 64 0% FAIL 0% FAIL
255 128 100% FAIL 99% FAIL
511 256 100% PASS 100% FAIL

8th

order

63 32 100% FAIL 100% FAIL
127 64 100% PASS 100% FAIL
128 64 0% FAIL 0% FAIL
255 128 100% PASS 100% PASS
511 256 100% PASS 100% PASS

TABLE III
STATISTICAL EVALUATION OF THE STRNG USING NIST SP 800-22 AND

FIPS 140-1 STANDARD TEST SUITS

If necessary, the designer can reduce the TRNG core area
at the cost of a reduced bit rate by compressing successive
bits using a parity filter. An nth order parity filter regroups
n successive bits using a XOR function to provide one bit
at the filter output, thus enhancing the entropy per bit (and
reducing the bias), but dividing the bit rate by n. We used
an 8th order parity filter and increased the sampling clock
frequency to 120 MHz in order to maintain the output bit-rate
at 16 Mbit/s. As shown in Table III, the parity filter corrects
most bias problems in Virtex 5 and enhances the tests passing
rates in both devices. Using the 8th order parity filter, only
127 stages are needed to pass the statistical tests in Cyclone
III (255 stages in Virtex 5).

VIII. CONCLUSION

This paper presented a novel TRNG design that uses the
jitter of events propagating in a self-timed ring to generate
random bits at a high bit rate. The self-timed ring allows

to adjust the time lapse between two successive events as
short as needed by simply increasing its number of stages
and adjusting its number of events. This time lapse can be
thus adapted to the jitter magnitude which depends on the
selected technology and device. Therefore, the design allows
to extract entropy from the jitter even if its magnitude is
extremely low. Moreover, the designer can precisely tune the
architecture based on his security, throughput, cost and power
consumption requirements with a very low design effort.
Future works will include a detailed stochastic model of the
entropy extraction allowing to compute the lower bound of
entropy per output bit. This model will be used along with
experimental measurements for selecting the number of ring
stages in order to achieve a sufficient entropy per output bit
of the TRNG.
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