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Abstract cretized into a visual vocabulary, which allows to représen
images as histograms over visual words. In such representa-
Color description is a challenging task because of large tions, color next to shape, was found to be an important cue
variations in RGB values which occur due to scene acciden-[16, 22]. In this paper we propose a new method to learn
tal events, such as shadows, shading, specularities,illum discriminative color descriptors.

nant color changes, and changes in viewing geometry. Tra-  cojor description is difficult due to the many scene ac-
ditionally, this challenge has been addressed by capturing cigental events which influence its measurement. These
the variations in physics-based models, and deriving iRvar  gyents include shadows, illuminant changes, variations in
ants for_the undesired \_/ar.|at|o_ns. The drawb_ack of th_l; ap- scene geometry and viewpoint, and acquisition device spec-
proach is that sets of distinguishable colors in the origina iications, This has sparked an extensive literature on pho-
color space are mapped to the same value in the photometyometric invariance which aims to describe color invasant
ric invariant space. This results in a drop of discrimin&iv ,iih respect to some of these variations]] Based on
power of the color description. _ _ reflection models0] or assumptions on the illumination

In this paper we take an information theoretic approach [ invariance with respect to shadow, shading, specularitie
to color description. We cluster color values together liase 54 jljuminant color can be obtained. However, photomet-
on their discriminative power in a classification problem. |- invariance is gained at the cost of discriminative power

The clustering has the explicit objective to minimize the Therefore, in designing color representations it is imgatrt
drop of mutual information of the final representation. We ¢, weight the gains of photometric invariance against the
show that such a color description automatically learns a |oss in discriminative power.

certain degree of photometric invariance. We also show ) - .

that a universal color representation, which is based on An alternative way of descr”?'”g .co'lor is by means of
other data sets than the one at hand, can obtain competingCOIOr names. Color names are linguistic labels humans use
performance. Experiments show that the proposed descrip-C communicate the colors in the world. Examples of color
tor outperforms existing photometric invariants. Further namesare forexample red’, black’ and ‘turquoise’. Van de
more, we show that combined with shape description these/Velier et al- P have proposed a method to automatically
color descriptors obtain excellent results on four chalen  |€arn the eleven basic color names of the English language

ing datasets, namely, PASCAL VOC 2007, Flowers-loz,from Google images. The result of this learning is a parti-
Stanford dogs-120 and Birds-200. tion of the color space into eleven regions. Then, an eleven

dimensions local color descriptor can be deduced simply

by counting the occurrence of each color name over a local
1. Introduction neighborhood. Analyzing the clusters of RQB values which

are appointed to a color name, let us consider 'red’ for ex-

Local-feature based image representations have beemmple, we note that these clusters possess a certain amount

successful in many computer vision applications, such asof photometric invariance. Multiple shades of red are all
object recognition, image matching, and image retrieval. mapped to the same color name 'red’. However, when mov-
In many of these applications the local features are dis-ing towards darker 'reds’, at a certain point the values will



be mapped to the color name 'black’ instead, and the photo-shown that for specular surfaces thee, another popular

metric invariance breaks down. Recently, color names werecolor descriptor, is invariant for specularitiels’].

found to compare favorably against photometric invariant  But one could wonder what the cost of photometric in-

descriptions on several computer vision applicationshsuc variance is. Mapping multiple RGB values to the same pho-

as image classificatiorif] and object detectionl]. These tometric invariance will potentially lead to a drop in dis-

results show that focus on photometric invariance which is criminative power. This aspect of photometric invariance

at the basis of many color descriptors might not be optimal. has received relatively little attention. Stability andig®

They further suggest that discarding discriminative power sensitivity where measured by Stokman et ai][ Geuse-

of the color representation will deteriorate final results. broek et al. [1] showed that with increasing invariances
We propose to learn color descriptors which have opti- fewer Munsell patches could be distinguished. Here we will

mal discriminative power for a specific classification prob- analyze the drop in discriminative power in a more princi-

lem. The problem of learning a color descriptor is equal to pled way by means of information theory.

finding a partition of the color space. Our approach relieson  We discretize our initial color space inta color words

the Divisive Information-Theoretic Clustering (DITC) alg W = {wy,..,wy,}. In our casem is equal tom =

rithm proposed by Dhilloret al. [6] to learn this partition. 10 x 20 x 20 = 4000 of equally spaced grid points in the

We adapt this algorithm to ensure that the final clusters areL*a*b* cube. Consider we have a data set witlslasses

smooth and connected. Considering all the values in theC' = {c1,...,¢;}. These classes are represented by his-

L*a*b* cube, we aim to join values in this L*a*b* cube tograms over the color words. The discriminative power

driven by the discriminative power of the final represen- of the color wordd? on the problem of distinguishing the

tation, the latter being measured using information theory classes” can be computed by the mutual information:

We distinguish two variations. Firstly, the specific coler d

scr_iptor which is optimized for_ a s_ingle_ data set. Se_corwlly, I1(C, W) = Z Zp (ci,wy) log p(ci, w) @)

universal color descriptor which is trained on multipleadat . 3 p(ci)p(we)

sets, thereby representing a wide range of real-world data

sets. The advantage of universality is that users can rurwhere the joint distribution (c;,w;) and the priorg (c;)

the learned mapping for an unknown data set without the andp (w;) can be measured empirically from the dataset.

effort of learning a data set specific color representation. ~ The mutual information measures the information that

In experimental results we will show that these discrimina- the wordsIV contain about the class€s. Now consider

tive color descriptors outperform purely photometric colo we join the wordsiV into k clustersW© = {W1, ..., W, }

descriptors, and that combined with shape description theywhich are invariant with respect to some physical variation

can obtain state of the art results on several data sets. Each clustetV; represents a set of words. Then Dhillon et
al.[6] proved that the drop of mutual information caused by

2. Photometric Invariance versus Discrimina- clustering a wordw; to clusteri¥/; (in our case based on
tive Power photometric invariance) is equal to:

Color feature design has been mainly motivated from Ai=m KL (p(Clw),p(C|W;)) 3)
photometric invariance perspective) 11]. It is based on

the observation that colors in the world are dependent on*Where the Kullback-Leibler (KL) divergence is given by

scene incidental events such scene geometry, varying illu- ()
mination, shadows, and specularities. To obtain invaganc KL (p1,p2) = Z p1 (x)log @) (4)
with respect to these effects, photometric invariant fiesstu zeX b2

can be derived. Often the dichromatic reflection modé] [

is used to derive these invariances: andm; = p (w) is the word prior.

The above Eq3 provides a way to assess for each color
1) value the drop in discriminative powéy: which is caused
by imposing photometric invariance. In Figutewe plot
wheref = (R, G, B) is the pixel value. The color of the the drop in mut.uelxl infqrmation which occurs when we look
body reflectance is given by, and the surface reflectance at & photometric invariant representation with respeat-o |
by ¢;, m, andm; are scalars representing the corresponding Minance. This is simply obtained by de_flnlng clusters as the
magnitudes of the body and surface reflectance. For object$€t Of bins of equala, b) values, computing the(C|W;) of

f=mpcp + mc;

with matte reflectance, for whichy; = 0, it can for ex- each cluster, and computirky with Eq.3. We plot the drop
le be sh that — 7 is invariant f d in mutual information as a function of lightnegsand sat-
ampie be shown N /’f ) IS Invanant forms an urationsat = /(a? + b2). The plot is based on the Flower

hence for shadow-shading variation. Similarly, it can be data set]9] but similar results were observed for other data



tion caused by clustering the words, using Bgis equal
to

AI=Y" > mKL(p(Clw),p(CIW;)). (5)

J w€W;

Hence the clusterd” which we seek are those which min-
imize the KL divergence between all words and their as-
signed cluster (weighted by the word prior). In our case the
words represent L*a*b* bins of the color histogram. This
color space is used because of its perceptual uniformity.
Minimizing Eq. 5 is equal to joining bins from the L*a*b*

cat S histogram in such a way as to minimize thd. L*a*b*

bins which have similap (C'|w,) are joined together.

Figure 1. Graph showing the drop in mutual information for the ~ An EM like algorithm is used to optimize the objective
flower data set caused by grouping bins with equal chromatic val- function5. The algorithm alternates between two steps.
ues @ andb). From the graph it can be seen that the drop of mutual
information is largest for low saturated points, especially with low
and high lightness (L).

1. Compute the cluster means with

s
p(CIW;) = Z ﬁp (Clwy) . (6)
wi €W wreW !
sets. The plot tells a clear story: the largest loss of discri

inative power is occurring for achromatic (or low saturated 2 Assign each word to nearest cluster according to
colors as is clear from the ridge &it = 0. Even though

these achromatic colors cannot be distinguished from a pho- w; =argmin KL (p (Clw),p(C|W;)). (7)
tometric invariance point of view (since they can be gener- !
ated from each other by viewpoint or shadow variations), The new cluster index for word, is given byw; .

this analysis shows that they contain discriminative power
This leads us to investigate an alternative approach to

color feature computations based on discriminative power, 1S We refer to g].. o
In the next section we outline our approach of discrimina- . _ 1€ DITC algorithm has been studied in the context of

tive color feature computation, which clusters color value 10ining color and shape features into so-called Portmantea

together based on discriminative power on a training dataV0cabuIari§s by Khan.et al1f]. In this paper, we use the
set. The expectance is that discriminative clustering will D!TC algorithm for a different purpose, namely to automat-

automatically lead to a certain amount of photometric in- ically learn discriminative color features. In additionew
variance: clustering values of similar hue together. How- Propose two adaptations to the DITC algorithm.

ever, in these regions — especially around the achromaticz 2 Compact Color Representations
axis — we expect additional clusters to arise, to reduce the

The algorithm is repeated until convergence. For more de-

drop in discriminative power caused by the clustering. ~ The original DITC clustering algorithm does not take
into account the position in the L*a*b* space of the words.
3. Discriminative Color Representations As a consequence, the algorithm can join non-connected

bins. It is known that photometric variations result in con-

In this section we discuss our discriminative approach nected trajectories?f]. Therefore when learning photo-
to color representations learning. We first explain divdsiv.metric invariants we expect them to be connected. In ad-
information-theoretic feature clustering (DITC) propdse dition, connectivity has several conceptual advantages: i
by Dhillon et al.pj]. Next, we adapt the algorithm to find  allows for comparison to photometric invariance, compari-
connected clusters in L*a*b* space. son with color names (CN), semantic interpretation (human

: color names are connected in Lab space), and comparison

3.1. DITC algorithm with human perception (e.g. MacAdam Ellipses). There-

The DITC algorithm provides an algorithm to cluster fore we propose to adapt the DITC algorithm to ensure that
features into a smaller set of clusters, where each clustethe clusters are connected in L*a*b* space. As a second
contains a number of features from the original set. The adaptation we enforce smoothness of the clusters which pre-
clustering is performed in such a way as to minimize the vents them from overfitting to the data. Both objectives can
decrease of mutual information (see Bjjof the new more  be translated into an additional energy term which can be
compact representation. The total drop of mutual informa- added to the objective function of Eg.



Objective function

Let w; be the cluster number assigned to ward and
W, is the cluster to whichw, is assigned, then the cost of
choosing a certain cluster assignment according té Bq.
equal to

0.4

Flower102

Bird200

Pascal2007
Flower102+Bird200
Flower102+Pascal2007
Bird200+Pascal2007

035

03 -

0.25

o (we) =KL (p(Clw),p(CIWw,)) . (8) 02 |
In this standard objective function, the relation of the seor o1 \\
is not taken into account, and the final clustér§ can — 01 ¢
and most likely will — contain words which are not con- 005 |
nected in color space. We enforce connectivity by introduc- 0 S
0 5 10 15 20 25 30 35 40

ing a cost for not being connected to the principle compo- Numberof iterations

nent of the cluster. The principle componéjtof a cluster Figure 2. Evolution of the objective functions for some image sets
W; is defined as the connected component with the h|ghestum,| convergence.

prior mass (the component for which the sum of the priors

of its words is largest). Words which are not connected to

the principle component of the cluster will have an addi- bins of L*a*b* histogram) and the vertices connect neigh-
tional cost for taking on this cluster assignment. We iden- boring nodes. After the optimal assignment is found,

tify words connected to the principle component}b;/and the algorithm returns to step one until convergence.

they are computed with a morphological dilation with a 26-

3.3. Convergence
connected structuring element g

Our optimization of the objective function of B is
Pg/' =P;®b. (9) obtained by iteratively applying the two steps above. How-

. o . ever, when we dilate all clusters (to define the connected
This t_ype qf dilation IS 1”5“‘263' *because We use equi- bins), it could theoretically happen, that for some bins
q_uar_1t|zedlb|ns on a uniform L*ab* color space. After this —, jc, change label, the bin to which they were connected
dilation ; contains all words connected to the principle 45, changes label. This could lead to unconnected com-
component of clustey. We add/ a penalty term to all the ponents, and would activate the cost defined inlEcand
color bins which are not part 6#; according to lead to an increasing objective function. This could be ad-

dressed by changing labels one bin at a time, but this would
U7 (we) = ac - (1= f* (wr)) 10 be computationally very costly. Practically, we run the-ite
Where  ft(w,) = 1 it w, P! (10) ations until no chqnge in the Iat_)elir?g occurs. Eor the three
wi datasets (and their three combinations) used in this paper,
With a sufficiently high choice of the constam¢ , this en- we verified that the final color descriptors were connected.
ergy will eliminate non-connected assignments, and resultFigure 2 shows the evolution of the objective function for
in a final clustering of the features into connected clusters the six runs until convergence.

To enforce our second objective of smoothness of the3 4. Photometric Invariance of Learned Clusters
color representation we introduce a pairwise cost accgrdin

to Instead of imposing photometric invariance, as is gen-
Wb (Wy, W) = 0if ws=w; (11) erally done, we follow an information theoretic approach
o ap otherwise which maximizes the discriminative power of the final rep-

resentation. The underlying idea being that clusteringrcol
bins based on their discriminative power would automati-
cally learn a certain degree of photometric invariance elHer

Now consider a certain labeling for all words =
{w1,wa, ..., w,, } then the cost of this labeling can be writ-

ten to be : . :
we verify that this has happened by analyzing the cluster as-
E(w) = Z (f (wy) + ¢ ( Z Y (We, Wy) signments for two images.
t (s,t)ee We learn a 11-dimensional discriminative color descrip-
(12) tor for the Flower data set. Next, we apply the descriptor
wheree is the set of all connected wordsandt. on two images of the data set. The results are depicted in

The two step algorithm has to be slightly adapted to min- Figure 3. Here, we replace the color of each pixel by the
imize this objective function. Step one remains unchangedaverage color of all the pixels assigned to the same cluster.
and computes the cluster means. In step two we aim toWe can see that clusters are constructed so that they allow
find w* which minimizes Eql12. This can be done with  to discriminate flowers from background and leaves while
a graph cut algorithm where the nodes are the words (orproviding some robustness across some photometric varia-
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Figure 3. Examples of cluster assignment on two images from the

Flower dataset.

tions. For example, note that the pixels under the shadows
caused by the wrinkles on the yellow petals are assigned
to the same cluster and the stamen part of the red flower

is mapped to one cluster in spite of the photometric vari- Figure 4. Example images from the four data sets used in this pa-

ations m the_plxels. Also, _th_e dar_k pixels that Intrqduce per. From top to bottom: PASCAL 2007, Birds-200, Flowers-102,
most noises into photometric invariance representatien ar Dogs-120.

assigned to a separate cluster. The photometric invariance
can also be observed from the bottom row of Figvhere
we see that pixels with simildrue but varying intensity are  choose the desired dimensionality. We make the universal

e,

grouped together. color descriptors available for the settings with 11, 25 an
50 clusters.
4. Universal Color Descriptors In the experiments we will investigate universal color de-

scriptors, and compare them to specific color descriptors.
We will do so by training the universal color descriptor from

) : . __other data sets than the one currently considered. Univer-
ShQW the_umversallty of the human basic colqr names. With sality is expected to result in a drop of performance since
universality they refer to the fact that the basic color name the descriptor cannot adapt to the specificity of the dataset

tht'ﬁ h ar? used in .d!;erint t():ultures h?ve 6,: S|m|I_ar_|pan|t|;) fHowever, if the drop is small the advantages of a universal
of IN€ color space. the Arab azraq reters o a simiiar set o representation can outweigh the drop in performance.
colors as the English blue. In the context of descriptors, we

will use the term universality to refer to descriptors which 5. Experimental Result
are not specific to a single data set. Universality is onesfth ~- P Sufts

more attractive properties of the computational color reme | the next few subsections, we discuss experimental de-
[23][1]. As a consequence of universality, users are not taj|s and results. Atfirst, we briefly discuss the experirabnt
required to learn a new color representation for ever new setyp and the details of discriminative descriptor leaynin
dataset and can just apply the universal color representati Then we compare our proposed color descriptor with sev-
to their problem. eral photometric color descriptors on three image datasets
In the previous section, we showed how to learn discrim- Next, we focus on the universality aspect of our descriptor
inative color features. Applying the above algorithm to @ and compare universality with specificity. In our final ex-

SpeCifiC data set results in a color representation which iSperimentS, we combine our descriptor with Shape descrip_
data set SpeCifiC in the sense that it is Optimized to diserimi tion and compare results to the state of the art.

nate between the classes of that data set. The same setup

can be used to learn universal color vocabulary by join- 5.1. Experimental Setup
ing several training sets together to represent the reddwo ) i i ) ,
We learn such a description combining the training sets of In this section, we briefly discuss the experimental setup
Flower102. Bird200 and PASCAL 2007 data sets. An ad- Used for section§.2and5.3. For these two sections we

vantage over th? e?(iSting computational color namekip 1Example software and universal descriptor can be downloauh fr
that we are not limited to eleven color names and can freelyhttp://cat.uab.es/ joost/software.html

In a seminal work named 'Basic color terms: their uni-
versality and evolution’ the linguists Berlin and Kay] [




oot Method | Flower102| Bird200 | Pascal2007

rg 38.6% 4.3% 10.6%
ol HH 32.8% 3.5% 10.1%
CN 40.2% 7.7% 11.6%

DD(11) 43.7% 8.0% 12.2%
; DD(25) 47.0% 8.7% 12.6%
a0y Table 1. Comparison with photometric invariants.

to the clusters computed with our algorithm which enforces
connectivity and smoothness of the clusters. In Figure
; - we can clearly see that our method produces connected and

ST = - smooth clusters. Note that, non-connected green parts from

' '50_}0/50/&"" T 0*{#’” P eIt the first two clusters are associated to the green clusten whe
Figure 5. The clusters of the first and second row are computedoUr method is employed. DITC only concerns discrimina-
from the Flowerl102 training set, by the original DITC algorithm tive clustering and does not ensure connected clusterdiwhic
and the proposed method respectively. Note the compactnesds undesirable from a colorimetric point of view.

and smoothness of the color clusters computed by the proposed o )
method. 5.2. Discriminative Color Descriptors

00 L
100

100

50

The aim of this paper is to arrive at a better color de-

use a comparatively simpler framework to reduce the com-Scriptors for object recognition directly on the discririn
putational time, as our goal is to assess relative perfor-tive power of the final representations. We start by compar-
mance. For both sections, we choose three challenging imJng our discriminative descriptor(DD) to other pure color
age datasets, namely, Flower10Z][ Birds200 p5] and descriptors and the color name descripiti][ Note that in
PASCAL 2007 (see Figuré). For Flowers and Birds, the several comparisons color names were found to outperform
colors over the object classes are relatively constant.-How Various other pure color descriptorsj[ 14].

ever for PASCAL 2007, colors are likely to change sig- We consider two well known photometric invariants:
nificantly in between samples of the same class (considenormalized RGB (rg histogram) and a hue histogram (HH)
e.g. cars). In these experiments, we use a regular dens@nd the Color Names(CNYF] °. We compare them against
grid (16 x 16) with 50% overlap to extract patches from our descriptor with two settings, namely 11 and 25 clus-
the images. After description of the patches, we employ aters. Table 1 contains the experimental results. For each
K-means on a random subset of features from the trainingdataset we show the classification accuracy (or mean aver-
set to build the visual vocabulary. We use SVM with an age precision for PASCAL 2007). For the case of 11 dimen-
intersection kernel to obtain the classification score. The Sions (equal to the CN descriptor) our descriptor obtains im
training and test set selection is consistent with the eorre Proved results on Flower and Bird, but slightly lower result
sponding cited articles for each dataset. For secfighwe than color names on PASCAL 2007. We can see from the

use a different experimental setup which is discussed in thetable that our descriptor with 25 dimensions outperforms
beginning of that section. all the other descriptors used in the experiment. Note, that
For descriptor learning, for each dataset we convert all it is unclear how to increase the dimensionality of the color
the training images from sRGB to L*a*b and construct a name descriptor above the eleven basic color names.
3D histogram quantizing the L*a*b space by x 20 x 20, g 3 \jniversality versus Specificity
then we convolve these 3D histograms using a gaussian fil-
ter (sigma = 1). They are then used as 4000 dimensional ~ We discussed universality color descriptors because of
feature vectors. We adapt the DITC implementation from their ease of use in sectigh In general, there is a grow-
[7] and use the Graph Cut implementation frora]. [ As ing interest in across-dataset generalization of methods i
discussed in sectiorB.2, there are two parameters in our the community 21]. Here we use again the three datasets.
descriptor learning, namely, the dilation and smoothnessWe follow a leave-one-out approach, where we learn our
cost parameters. The dilation cost parameter should be idedescriptor on two datasets and test on the other. We also do
ally equal to infinity, so we use a large enough value for dataset specific experiments, where we learn on one dataset
that. Empirically we found that a smoothing cost parameter

. . . 2 ; i
ap = 108 obtained satisfying results on all data sets, and __ “'mplementation  provided by K. van der Sande at
. http://koen.me/research/colordescriptors
kept it constant.

) 3As a sanity check we performed a k-means based LAB descriptor.
We compare the clusters computed with standard DITC Results were found to be inferior




and test on the same. In each case, we learn 3 different clus: T'\r’i'f;';‘;g] Birg;—:oo F'O"ge;;'loz Pascal 2007 D°2965'9120
ter groups i,é: = [11,25,50] using our proposed method. Bicos [] 3.7 855 ] 5.7
We follow similar setup as section i.2to represent im- portmanteau{5] 22.4 73.3 - -
ages as bag-of-words. Color Attention [L6] - - 58.0
A : . MKL[19] - 72.8 - -

It is evident from figure6 that for largerk, the differ- LLC[17] - - - 145
ence between universality and specificity becomes smaller. < Fiscer bl - - glll-g -
Also note that, the best results obtained using our univer- ”gi;pgcggfj = — — —
sal descriptor, although not better than the .specific ones, ColorSIFT 204 776 57.4 _
outperform other state-of-the art color descriptors uged i | This paper (universal) ~ 26.3 79.4 61.7 26.5
experiments of sectiof.2 In conclusion, for larger di- This paper (specific)] _26.7 81.3 62.0 28.1

mensions the drob of performance due to universality is rel- Table 2. Comparison of state-of-the-art results with our approach.
porp y Note that our approach provides best results on two datasets. The

atively small, and users could prefer using it, rather than roq s in the upper part of the table are obtained from the cor-
having to train a new dataset specific descriptor. responding papers, the results in the bottom part of the table are

. L. . . obtained based on the same detected features.
5.4. Discriminative Descriptors vs State-of-the-Art

We compare our approach with the state-of-the-art ap-

proaches in the literature. The experiments are performedor learned on the PASCAL 2007 and Birds-200 dataset re-
on Birds-200, Flowers-102 and PASCAL 2007. Addition- syits in a slight drop in performance. On this dataset again,
ally, we also show the applicability of our approach on the our approach provides a comparable results to the state-of-
Challenging StanfOfd-DOgS 120 dataset. For our final ex- the-art approaches in literature, Fl' 19, ]_5] On the PAS-
periments, we followed the standard bag-of-words pipeline caL 2007 dataset, our framework with shape alone pro-
For feature deteCtiOﬂ, we use a combination of multi-scale vides a meanAP of 59.9. Add|ng color with Shape increases
grid with interest point detectors. For shape we use the SIFTthe meanAP to 62.0. The universal color descriptor results
descriptor. A visual Vocabulary of 4000 is constructed for in S||ght deterioration in performance with a meanAP of
shape representation. For color, we use a visual vocabug1.7. Again on this dataset, our final results are compa-
lary of 500 words. The vocabularies are constructed usingraple to state-of-the-art results in literatufes[ 22, 5, 27].
standard K-means and the histograms are constructed usinghe method of [6] uses color attention approach to com-
hard assignment. To represent an image we use the spapine with color and shape with a meanAP of 58.0. The best
tial pyramid representation as ind]. For classification, we  reported results of 64.4] is obtained using a different
use the non-linear SVM using the’ kernel P€]. We also  coding technique. Note that in this paper we use the stan-

compare our approach with the ColorSIFT descript@f3 [ dard vector quantization with hard assignment. However,
on the PASCAL VOC 2007, Birds-200 and Flowers-102 oyr color descriptor can be used in any encoding framework

datasets. We use CSIFT descriptor for the PASCAL VOC together with SIFT.
2007 dataset and OpponentSIFT for the other two datasets.

A visual vocabulary of 4500 is constructed for ColorsIFT _Finally, we have included the challenging Stanford Dogs

descriptors and an image is represented by spatial pyra_lzo dataset. This data set is interesting because dog furs
only exist in a reduced set of colors (mainly browns, black

mids.The results are summarized in Table ; . o
On the Birds-200 dataset shape alone provides a classi2Nd white). Here our approach provides a classification

fication performance of 15.3. Our final result is a combina- Zcore of 28.1 comr[])arer(]:l o 2f1.1 usmgk_sr:jellpe alo%e.d%n tT:S
tion of late fusion between discriminative color and shape, ataset, we use.t € shape eatur(_as Indly provided by the
shape alone and color alone. On this dataset our discrim_authors. The universal color descriptor (learned from PAS-

inative approach achieves the best classification score OFAL’ Birds and Flowers dataset) results in a drop in perfor-

26.7 outperforming the colorSIFT2f] based on the same mance to 26.5. From which we can see that fo_r particular
detected features. The universal color names result in a('n a color sense) data sets computing a Specific color rep-

slight drop in performance. The other approaches in Ta- resentation can still yield a Iqrge performance gain.. To tr_]e
ble 2 also use a combination of color and shape. The port- best of our knowledge the final score of 28.1 obtained in

manteau approach employ both color and shape to leamn éhls paper is the best performance achieved on this dataset

compact color-shape vocabulary. The tricos approéth [ In literature g, 3, 17].

uses segmentation technique whereas for image representacknowledgments This work has been supported by

tion shape and color with fisher vectors are employed. project TIN2009-14173 of Spanish Ministry of Science,
On the Flowers-102 dataset, a mean accuracy of 69.0 isSwedish Foundation for Strategic Research project Collab-

obtained. The incorporation of proposed color approach to-orative Unmanned Aerial Systems and Explora’ Doc Grant

gether with shape leads to 81.3. The universal color descrip of Region Rlbne-Alpes, France.



Classification Accuracy

%
=}
[

W Spec.

W Univ.

OCRrNWAE GOSN ®OS

Classification Accuracy

CN

DD-11

Flower102

DD-25 DD-30 CN

DD-11

Birds200

DD-25

| Spec. m Spec.

M Univ. W Univ.

Mean Average Precision

DD-50 CN

DD-11

Pascal 2007

DD-25 DD-50

Figure 6. Universality versus Specificity. The green bar (the left baach plot) is the state-of-the-art pure color descriptor (Color Names)

References

[1] R.Benavente, M. Vanrell, and R. Baldrich. Parametric fuzzy [16]

(2]
(3]

(4]

(5]

(6]

(7]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

sets for automatic color namindournal of the Optical So-
ciety of America25(10):2582—-2593, 2008.

B. Berlin and P. Kay.Basic color terms: their universality
and evolution Berkeley: University of California, 196%

Y. Chai, V. S. Lempitsky, and A. Zisserman. Bicos: A bi-
level co-segmentation method for image classification. In
CVPR pages 2579-2586, 2012.

Y. Chai, E. Rahtu, V. S. Lempitsky, L. J. V. Gool, and
A. Zisserman. Tricos: A tri-level class-discriminative co-
segmentation method for image classification. BEGCV,
2012.7

K. Chatfield, V. Lemtexpitsky, A. Vedaldi, and A. Zisserman.
The devil is in the details: an evaluation of recent feature
encoding methods. IBMVC, pages 76.1-76.12, 2011.

I. Dhillon, S. Mallela, and R. Kumar. A divisive information-
theoretic feature clustering algorithm for text classification.
JMLR, 3:1265-1287, 2002, 3

N. Elfiky, F. S. Khan, J. van de Weijer, and J. Gonzalez. Dis-
criminative compact pyramids for object and scene recogni-
tion. Pattern Recognitiopd5(4):1627-1636, April 201256

G. Finlayson and S. Hordley. Gamut constrained illumina-
tion estimation. International Journal of Computer Vision
67(1):93-109, 20061

B. Fulkerson, A. Vedaldi, and S. Soatto. Class segmentation
and object localization with superpixel neighborhoods. In
ICCV, October 20096

B. Funt and G. Finlayson. Color constant color indexing.
IEEE PAM|, 17(5):522-529, 1993

J. Geusebroek, R. van den Boomgaard, A. Smeulders, and
H. Geerts. Color invariancéEEE PAM|, 23(12):1338-1350,
2001.2

T. Gevers and A. Smeulders. Color based object recognition.
Pattern Recognition32:453-464, 19991, 2

T. Gevers and H. Stokman. Robust histogram construction
from colour invariants for object recognitiodEEE PAMI,
26(1):113-118, 20042

F. Khan, R. Anwer, J. van de Weijer, A. Bagdanov, M. Van-
rell, and A. Lopez. Color attributes for object detection. In
CVPR 2012.2,6

F. Khan, J. Van de Weijer, A. Bagdanov, and M. Vanrell.
Portmanteau vocabularies for multi-cue image representa-

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

tion. In Twenty-Fifth Annual Conference on Neural Infor-
mation Processing Systems (NIPS 2020111.3, 7

F. S. Khan, J. van de Weijer, and M. Vanrell. Modulating
shape features by color attention for object recognition.
ternational Journal of Computer Vision (1JC\98(1):49-64,
2012.1,2,6,7

A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei.
Novel dataset for fine-grained image categorizatiorFitat
Workshop on Fine-Grained Visual Categorization, CVPR
Colorado Springs, CO, June 2017.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. VPR pages 2169-2178, 2008.

M.-E. Nilsback and A. Zisserman. Automated flower classi-
fication over a large number of classesPiioceedings of the
Indian Conference on Computer Vision, Graphics and Image
ProcessingDec 2008.2, 6, 7

S. Shafer. Using color to seperate reflection components.
COLOR research and applicatipri0(4):210-218, Winter
1985.1,2

A. Torralba and A. Efros. Unbiased look at dataset bias. In
CVPR pages 1521-1528. IEEE, 2014..

K. E. A. van de Sande, T. Gevers, and C. G. M. Snoek.
Evaluating color descriptors for object and scene recogni-
tion. IEEE PAMI, 32(9):1582-1596, 2014, 7

J. van de Weijer, C. Schmid, J. Verbeek, and D. Larlus.
Learning color names for real-world applicationdEEE
Transactions on Image Processjng8(7):1512-1524, july
2009.1,5,6

E. Vazquez, R. Baldrich, J. van de Weijer, and M. Van-
rell. Describing reflectances for color segmentation robust to
shadows, highlights, and texturelEEE PAMI, 33(5):917—
930, 2011.3

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-
longie, and P. Perona. Caltech-UCSD Birds 200. Technical
Report CNS-TR-2010-001, California Institute of Technol-
ogy, 2010.6

] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local

[27]

features and kernels for classification of texture and object
catergories: A comprehensive studyCV, 73(2):213-218,
2007.7

X. Zhou, K. Yu, T. Zhang, and T. Huang. Image classifica-
tion using super-vector coding of local image descriptors. In
ECCV, 2010.7



