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Abstract. In 2007, Gaborit et al. proposed the stream cipher SYND as
an improvement of the pseudo random number generator due to Fischer
and Stern. This work shows how to improve considerably the efficiency
the SYND cipher without using the so-called regular encoding and with-
out compromising the security of the modified SYND stream cipher.
Our proposal, called XSYND, uses a generic state transformation which
is reducible to the Regular Syndrome Decoding problem (RSD), but has
better computational characteristics than the regular encoding. A first
implementation shows that XSYND runs much faster than SYND for
a comparative security level (being more than three times faster for a
security level of 128 bits, and more than 6 times faster for 400-bit secu-
rity), though it is still only half as fast as AES in counter mode. Parallel
computation may yet improve the speed of our proposal, and we leave it
as future research to improve the efficiency of our implementation.

Keywords: Stream ciphers, Provable security, Syndrome Decoding

1 Introduction

A stream cipher is a secret key cryptosystem that employs a symmetric secret
key for producing an arbitrary long pseudo random sequence, called keystream.
This keystream is then combined with the plaintext, typically by means of the
bitwise XOR, to produce the ciphertext. Stream ciphers are necessary in many
real-life applications, especially the wireless communication standards such as
IEEE 802.11b [2] and Bluetooth [3]. Therefore, stream ciphers are usually re-
quired to be fast and implementable on constrained hardware.
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It is easy to design a stream cipher. The challenge here is to make it theo-
retically secure and at the same time very efficient. A variety of efficient stream
ciphers have been proposed, but most of them were proven to be insecure as
reported during the eSTREAM project [1]. It is thus desirable to have provably
secure stream ciphers, whose security is grounded on hard problems. The first
constructions in this direction are [14, 13] whose security is based on the hard-
ness of factoring problem. Another proposal was developed by Kaliski [24], its
security relies on the intractability of the discrete logarithm problem. Assuming
the hardness of solving RSA problem, Alexi et al. [4] proposed a pseudo-random
number generator (PRNG). The one-way function hard-core bit construction by
Goldreich et al. [19] has also led to the construction of the efficient PRNG, called
BMGL [32], which was developed by H̊astad and Näslund using Rijndael.

Although proving the hardness of all mentioned problems is an important
open problem, they are all known to be easy on quantum attacks as shown
in [31]. It is therefore advantageous to design stream ciphers whose security re-
lies on other assumptions, and which are more promising even in the age of
quantum computers. The first construction addressing this challenge is due to
Impagliazzo et al. [23], based on the subset sum problem. Later, Fisher and
Stern [16] proposed a PRNG whose security relies on the syndrome decoding
(SD) problem [10]. Recently, further provably secure constructions have been
proposed. The first one, called QUAD, due to Berbain et al. [9] under assump-
tion that solving a multivariate quadratic system is hard (MQ-problem). The
second one, named SYND, proposed by Gaborit et al. [18], is an improved vari-
ant of [16]. The security of SYND is also reducible to the SD problem. Recently,
Meziani et al. [27] proposed the 2SC stream cipher based on the same prob-
lem, following the sponge construction. This cipher is much more efficient than
SYND [18] in terms of performance and has small key/IV size, but it suffers
from the drawback of having big matrices.

Our contribution. In this paper we propose an efficient variant of the SYND
stream cipher [18], called XSYND, this new construction is reducible to the SD
problem. This cipher is faster than all existing code-based stream ciphers [18,
27] and requires comparatively little storage capacity, making it attractive for
practical implementations. We also propose parameters for fast keystream gen-
eration for different security levels.

Outline of the paper. Section 2 provides a background of coding theory. Section 3
describes the SYND stream cipher. A detailed description of the XSYND stream
cipher is presented in Section 4, its security is discussed in Section 5. In Section 6
secure parameters and experimental results for XSYND are presented. Section 7
concludes this paper.
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2 Coding Theory Background

This section provides a short introduction to error-correcting codes and recall
some hard problems in this area.
In general, a linear code C is a k-dimensional subspace of an n-dimensional
vector space over a finite field Fq, where k and n are positive integers with k < n
and q a prime power. Elements of Fn

q are called words and elements of C are
called codewords. The integer r = n − k is called the co-dimension of C. The
weight of a word x, denoted by w = wt(x), is the number of non-zero entries
in x, and the Hamming distance between two words x and y is wt(x− y) . The
minimum distance d of a code is the smallest distance between any two distinct
codewords. A generator matrix G of C is a matrix whose rows form a basis of
C, .i.e., C = {x ⋅ G : x ∈ F

k
q}. A parity check matrix H of C is defined by

C = {x ∈ F
n
q : H ⋅ xT = 0} and generates the dual space of the code C.

A linear code C is called a cyclic code if any cyclic shift of a codeword is another
codeword. That is, x0, ⋅ ⋅ ⋅ , xn ∈ C implies xn, x0, ⋅ ⋅ ⋅ , xn−1 ∈ C. In this case, the
parity check matrix of C can be only described by its first row. Furthermore, C
is called a quasi cyclic code if its parity check matrix is composed of a number
of cyclic submatrices. In practice, such codes are very good from the decoding
capacity point of view and behave like random codes with small requirement on
the length as shown in [17].Throughout this paper we consider q = 2.

Definition 1 (Regular word). A regular word of length n and weight w is a
word consisting of w blocks of length n/w, each with a single non-zero entry.

In code-based cryptography, the security of most of the cryptographic primitives
is related to the hardness of the following problems.

Definition 2 (Binary Syndrome Decoding (SD) problem). Given a bi-
nary r× n matrix H, a binary vector y ∈ F

r
2, and an integer w > 0, find a word

x ∈ F
n
2 of weight wt(x) = w, such that H ⋅ xT = y.

This problem is proven NP-complete in [10]. A particular case of this problem is
the Regular Syndrome Decoding (RSD) problem, which has been proved to be
NP-complete in [5]. It can be stated as follows.

Definition 3 (Regular Syndrome Decoding (RSD) Problem). Given a
binary r × n matrix H, a binary vector y ∈ F

r
2 ,and an integer w > 0, find a

regular word x ∈ F
n
2 of weight wt(x) = w, such that H ⋅ xT = y.

Through this paper, we will denote RSD(n, r, w) to indicate an instance of RSD
problem with parameters (n, r, w). Before ending this section, we recall the def-
inition of a hardcore bit (or hardcore predicate).

Definition 4 (Hardcore bit). Let f be a one-way function. Let ℎ : {0, 1}∗ →
{0, 1} be a polynomial-time computable function. We say that ℎ is a hardcore bit
for f if for all PPT adversary A there exists one negligible function �, such that

Pr[A(f(x)) = ℎ(x)] ≤
1

2
+ �(n), ∀n

where the probability is over x chosen randomly and the coin tosses of A.
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3 The SYND stream cipher

This section gives a short description of the original SYND design. SYND is a
synchronous stream cipher with security reduction proposed in 2007 by Gaborit
et. al [18]. SYND is a improved variant of Fisher-Stern’s PRNG [16] with two
improvements: the use of quasi-cyclic codes, which reduces the storage capacity
and the introduction of regular words used in [5], which speeds up the keystream
generation of the system. This PRNG can be seen as a finite automaton, S,
determined by a set of inner states with lengths ranging from 256 to 1024 bits.
SYND accepts keys of length 128 to 512 bits and produces a keystream twice as
large as the key size in each round.
More precisely, let n, w, and r be three positive integers such that the ratio
n/w is a power of two and r = w log2(n/w). The key stream generation of
SYND works in three steps using three different one-to-one functions called Ini,
Upd, and Out, respectively (See Figure 1). The Ini function takes a secret key
K concatenated with an initial vector IV, both of length r/2 bits, and returns
an initial state e0 = Ini(K∣IV), which starts the key stream generation process,
where (a∣b) denotes the concatenation of bit strings a and b. The Ini function
is a three-Feistel transformation based on Upd and Out, and given by:

Ini(x) = y ⊕ Out(x⊕ Upd(y)); y = x⊕ Upd(y), ∀x = (K, IV) ∈ F
r/2
2 × F

r/2
2 ,

where Upd and Out functions are defined by

Upd(x) = A ⋅ �(x); Out(x) = B ⋅ �(x), ∀x ∈ F
r
2.

Here, A and B are random binary matrices which describe the same bi-
nary quasi-cyclic (QC) code of length n, correcting up to w errors. The mapping
x 7→ �(x) is an encoding algorithm which transforms an r-bit string into a regular
word of length n and weight w. Starting from e0, in each time unit i, S out-
puts a key bit zi = Out(ei) and changes the inner state as follows: ei+1 = Upd(ei).

After generating the key bit stream z0, z1, ⋅ ⋅ ⋅ , a cleartext bit streamm0,m1, ⋅ ⋅ ⋅
is encrypted into a cyphertext stream c0, c1, ⋅ ⋅ ⋅ by the bitwise XOR operator as
ci = zi⊕mi. Knowing the secret state e0 the receiver can generate the keystream
z0, z1, ⋅ ⋅ ⋅ and therefore recover the cleartext bitstream by mi = zi ⊕ ci.

Thus, the evaluation of Upd and Out for state x is done by first encoding x
into a regular word �(x) of length n and weight w, and then multiplying the
resulting word by a random r × n binary matrix. This process can be regarded
as XORing w columns from the underlying random matrix with one another
(these r-bit long columns correspond to the non-zero positions of the regular
word �(x)). This idea was first introduced in the FSB hash family [5] in order
to speed up the hashing process. In the next section, we show how to speed up
SYND by eliminating the encoding x 7→ �(x), while at the same time preserving
the security properties of the underlying scheme.
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Fig. 1. A graphical illustration of the SYND stream cipher

4 Our proposal: XSYND

This section describes an eXtended SYND algorithm (XSYND), which adds two
main features to the original SYND structure. In what follows, we use the nota-
tions of the previous section.

Firstly, we modify the Ini function such that it requires only two, rather than
three function evaluations, without loss of security. We denote the new function
by XIni and depict it in Fig. 2. Note that this modification does not affect the
recovery of the secret K or the initial vector IV. In fact, it is straightforward to
prove that, given an initial state e0 output by XIni, if an adversary can extract
K and IV from e0, it can also easily solve an instance RSD(n, r, w). The new
function XIni function is defined by:

XIni(x) = y ⊕ Out(y); y = x⊕ Upd(x); ∀x = (K, IV) ∈ F
r/2
2 × F

r/2
2 .

Fig. 2. The XIni function of XSYND

The second modification in XSYND is to avoid the regular encoding x 7→ �(x)
in Upd and Out by using the randomize-then-combine paradigm due to Bellare
et al. [6–8] as depicted in Figure 3. More precisely, given an input x consisting
of w blocks x1, . . . , xw , each block being b bits (where b is chosen at will), we
first feed each block through a random function f , obtaining an output yi. The
values y1, y2, ⋅ ⋅ ⋅ , yw are combined by bitwise XOR to generate the final output.
In XSYND, we use the following function f : let H be a random binary matrix of
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size wb×w ⋅ 2b, consisting of w submatrices H1 . . . Hw of size wb× 2b (we write

H = H1∣ . . . ∣Hw). If we write the submatrices as Hi = (ℎ
(0)
i , ℎ

(1)
i , . . . , ℎ

(2b−1)
i ),

where ℎ
(j)
i ∈ F

wb for j ∈ {0, 1, . . . , 2b − 1}, then we can define f by yi = ℎ
(j)
i if

and only if the decimal value of xi is equal to j. We have 2b possible value for
each yi, depending on the decimal value of the block xi. In this way, we redefine
the functions Upd and Out as follows (see also Fig. 4):

Upd(x) = a
(x1)
1 ⊕ a

(x2)
2 ⊕ ⋅ ⋅ ⋅ ⊕ a(xw)

w ; Out(x) = b
(x1)
1 ⊕ b

(x2)
2 ⊕ ⋅ ⋅ ⋅ ⊕ b(xw)

w ; ∀x ∈ F
wb
2 .

Here, a
(j)
i (resp. b

(j)
i ) is the jtℎ column of the itℎ submatrix Ai (resp. Bi) of

a random binary matrix A (resp. B), both of size wb× w2b.
Remark 1. It is worth noting that the same technique has been recently used by
Berstein et al. [12] to improve the efficiency of the FSB hash family [5].

Fig. 3. Randomize-then-combine paradigm

Fig. 4. The Update Function Upd of XSYND



Meziani et al. 7

5 Security of XSYND

5.1 Theoretical Security

In this section we present the theoretical security of our construction. The pre-
sentation is done in two steps. In the first step, we show that it is hard to find the
secret state x given Upd(x) and Out(x) as described in section 4. More precisely,
we show that inverting Upd(x) and Out(x) is reducible to the RSD problem. In
the second step, we prove that XSYND is a pseudo-random generator, meaning
that the key stream produced by XSYND is indistinguishable from truly random
sequences.

Step 1: We consider general transformations g defined as:

g(x) = a
(x1)
1 ⊕ a

(x2)
2 ⊕ ⋅ ⋅ ⋅ ⊕ a(xw)

w , ∀x = (x1, . . . , xw) ∈ F
wb
2 .

In this transformation, a
(j)
i for j = 0, . . . , 2b is the (j + 1)tℎ column of the

itℎ submatrix Ai of a random binary matrix A of size wb×w2b. Note that both
Upd(x) and Out(x) are particular instantiations of g, for random matrices A and
B (see previous section). Our argument in this section is as follows: we first
show that (1)for each x there exists a regular word z such that g(x) = A ⋅ zT ,
then prove that (2) learning x from y = g(x) is equivalent to finding a regular
word z such that A ⋅ zT = y (this is an instantiation of RSD(n, r, w) for r = wb
and n = w2b). Thus, under the RSD assumption, the modified XSYND protocol
security can be reduced to the hardness of RSD.

First consider (1). We write A = A1∣ . . . ∣Aw as in section 4, for wb × 2b

submatrices Ai. Each submatrix has columns a
(0)
i , . . . , a

(2b−1)
i . We note that any

regular word z is in fact a word of length n = w2b and weight w, whose decimal
entries z1, . . . , zw indicate the positions of its non-zero entries (and each zi is
a unique value between (i − 1)2b + 1 and i2b since the word is regular). Let
x = (x1, . . . , xw) be a state in decimal notation. We associate each x with a
value z whose decimal notation is (z1, . . . , zw) for zi = (xi + 1) + (i− 1)2b. The
reverse transformation of z to x is obtained as follows:

⎧
⎨
⎩

x1 ≡ z1 − 1 (mod 2b)
x2 ≡ z2 − 1 (mod 2b)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
xw ≡ zw − 1 (mod 2b)

It is easy to check that:

A ⋅ zT = a
(x1)
1 ⊕ a

(x2)
2 ⊕ ⋅ ⋅ ⋅ ⊕ a(xw)

w .
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Toy Example. Let us consider w = 3 and b = 2. Then the matrix A should
be (3 ⋅ 2)× (3 ⋅ 22) = 6× 12 and binary. Consider in this example the following
matrix A:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
(0)
1 a

(1)
1 a

(2)
1 a

(3)
1 a

(0)
2 a

(1)
2 a

(2)
2 a

(3)
2 a

(0)
3 a

(1)
3 a

(2)
3 a

(3)
3

1 0 1 0 1 0 1 0 1 0 0 1
0 1 1 0 0 0 1 0 1 1 1 0
1 0 0 0 0 1 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0 1 1 1
0 0 1 1 0 1 1 0 1 1 1 0
1 0 0 0 0 1 0 1 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let us consider a state x in decimal form, with x = (2, 1, 0). Compute z in
decimal form according to the formula zi = (xi+1)+(i−1)2b. Thus z1 = 3, z2 =
6, and z3 = 9. In binary notation, zi denotes the positions of z’s non-zero entries,
i.e. z = [0010∣0100∣1000]. We can now verify that for this z we have

g(x) = a
(2)
1 ⊕ a

(1)
2 ⊕ a

(0)
3 = [001111] = A ⋅ zT .

Now let us consider the security reduction of general transformations g to
the RSD problem, i.e. step (2) outlined above. We have shown that for each
input value x we can find a regular word z of weight w such that A ⋅ zT = g(x).
Assume that there exists an adversary that can invert g(x), i.e. given y = g(x),
the adversary outputs x. Then the same adversary computes z as above and
can thus, given a matrix A, and a value y = g(x) = A ⋅ zT , this adversary can
output the regular word z. This is exactly an instantiation of RSD(n, r, w) for
r = wb and n = w2b. In conclusion, we can reduce the security of XSYND to
the hardness of the RSD problem.

Step 2: In this step, we prove that XSYND is a pseudo-random generator.
Our proof is an adaption of that given for the Fischer-Stern’s PRNG [16]. We will
show that if there exists an algorithm that is able of distinguishing a random bit
string from the output of the mapping x → (Out(x), Upd(x)), then this algorithm
can be converted into a predicator that can predicts the inner product of an
input x and a random bit string chosen at random. Before doing so, we state
the following assumptions.

1. Indistinguishability: The binary matrices A and B (both of size r × n) are
computationally indistinguishable from uniform matrices of the same dimen-
sions.

2. Regular syndrome decoding (RSD): The family of mappings defined as gM (z) =
M ⋅ zT for an uniform 2r × n binary matrix M is one-way on the set of all
regular words of length n and weight w.

As shown in the last subsection, the mapping x → Upd(x) (resp. x → Out(x))
can be regarded as fu(z) = A ⋅ zT (resp. fo(z) = B ⋅ zT ), where A and B are
binary matrices, both of size r×n, and z is taken from the set of regular words.
Therefore, from now on, we will use fu (resp. fo) instead of Upd (resp. Out).
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From A and B we build a 2r×n block matrix M by stacking them vertically,
i.e.

M =

(
A
B

)

In this case, we can write the mapping x → (Out(x), Upd(x)) as gM (z) =
M ⋅zT = (fu(z), fo(z)). Consequently, in order to prove that XSYND is a pseudo-
random generator, it is sufficient to prove that the output of z → gM (z) is
pseudo random as proved in [16]. Our proof is based on the Goldreich-Levin
Theorem [19], which says that, for any one-way function, the inner product of
its argument and a randomly chosen bit string is a hardcore bit (or hardcore
predicate). Recall that the inner product of two bit strings a and b (of the same
size) is defined by

⟨a, b⟩ =
∑

i

aibi mod 2.

Theorem 1. (Goldreich-Levin theorem) Let f : F
�(n)
2 → F

�(n)
2 be a one-way

function. For every PPT algorithm A, for all polynomials p and all but finitely
many n’s,

Pr[A(f(x), �) = ⟨x, �⟩] ≤
1

2
+

1

p(n)

where the probability is taken over x uniformly chosen x and � ∈ F
�(n)
2 .

The theorem proving that XSYND is a pseudo-random generator is stated
as follows.

Theorem 2. Suppose n, r, and w are chosen such that the indistinguishabil-
ity and the regular syndrome decoding assumptions hold. Then the output dis-
tribution of XSYND is computationally indistinguishable from a truly random
distribution. That is, XSYND is a pseudo-random generator.

Proof. (by contradiction). Let us assume that an 2r-bit output of the mapping
gM (z) = M ⋅ zT is not pseudo-random, and there exists a distinguisher D, which
is capable to differentiate this output of from a 2r-bit random string �. More
precisely, D takes as input 2r × n binary random matrix M and a random
� ∈ {0, 1}2r as a candidate being equal to M ⋅ zT for some unknown regular
word z. In the event that M ⋅ zT = �, D outputs 1 with probability above
1
2 +

1
p(n) , for every polynomial p(n). Otherwise, when � is chosen uniformly from

{0, 1}2r, D outputs 1 with probability at most 1
2 . Formally, the distinguisher D

behaves as follows:

{
Pr[D(M,�) = 1] ≥ 1

2 + 1
p(n) , if � = M ⋅ zT , for some regular word z

Pr[D(M,�) = 1] < 1
2 , if � is taken uniformly from {0, 1}2r
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As next step, we will build an algorithm P, which uses the distinguisher D as
subroutine. This algorithm will predicts the inner product ⟨z, �⟩ with probability
at least 1

2 + 1
2p(n) , where z is an unknown regular word (an input of gM ) and

� a randomly chosen n-bit string. To this end, let write � = (�1, ⋅ ⋅ ⋅ , �n). In
addition, let � be the number of the positions j such that where zi = �j = 1, i.e.
the size of the intersection z ∩ � and � its parity, i.e. the inner product ⟨z, �⟩.
Then the algorithm P takes as input gM (z) and � and executes the following
steps:

∙ Select a random �′ ∈ {0, 1} as candidate to �
∙ Choose randomly � ∈ {0, 1}2r

∙ Build a new 2r × n binary matrix M̂ = (m̂1, ⋅ ⋅ ⋅ , m̂n) such that for every
j ∈ {1, ⋅ ⋅ ⋅ , n} it holds

m̂j =

{
mj + � if �j = 1,

mj if �j = 0

∙ Feed the distinguisher with M̂ and gM (z) + �′ ⋅ �
∙ If the distinguisher outputs 1, then output �′ = �. Otherwise, output the
opposite of �′.

Now, we show next that P predicts the inner product ⟨z, �⟩ with probability
above 1

2 + 1
2p(n) . We have to consider two events:

(1) E1:”� is guessed correctly”. Then the prognosticated value for the inner
product ⟨z, �⟩ is correct if the distinguisher outputs 1. The distribution seen

by the distinguisher on (M̂, gM (z) + �′ ⋅ �) is identical to the distribution on
input (M, gM (z)). By construction, this is the case with probability at least
1
2 + 1

p(n) .

(2) E2:”� is not guessed correctly”. The distinguisher receives uniformly dis-
tributed inputs because of the randomness of �. It then returns 1 with prob-
ability 1

2 .

Since Pr[E1] = Pr[E2] =
1
2 , we conclude that the overall probability of cor-

rectly predicting the inner product ⟨z, �⟩ is at least 1
2 + 1

2p(n) . This contradicts

the Theorem 1 because of the RSD assumption.
■

5.2 Practical Security

This section presents what are provably the most generic attacks against XSYND.
We will only address the hardness of inverting the mapping g defined in the previ-
ous section, since this is the main building block of XSYND design. If an attacker
can invert g, then she can recover the secret key and recover inner states.
In what follows, we denote by WFY (n,w, r) the work factor (i.e. number of binary
operations) required to solve the instance RSD(n,w, r) by using an algorithm
Y . Furthermore, in estimating the complexity of each attack against XSYND we
use r = wb with b = log2

(
n
w

)
.

There are essentially three types of known attacks that are applicable to XSYND:
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1. Linearization Attacks. There are two types of linearization attacks that
are relevant for XSYND, namely the Bellare-Micciancio (BM) attack [8]
against the XHASH function [8], and the attack due to Saarinen [30]. We
discuss these attacks below.

(a) The Bellare-Micciancio’s attack. This is a preimage attack proposed
by Bellare and Micciancio [8] against the so-called XHASH mapping. This
attack relies on finding a linear dependency among w r-bit vectors, where
w is the number of vectors XORred together and r, the length (in bits) of
the target value. This is likely to succeed if the value w is close to r. More
precisely, let l and k be two positive integers. Let f be a random function
with f : Fl

2 7→ F
r
2. Let [i] denote the binary representation of an integer i.

Based on f , the XHASH is defined as

XHASH(x) = f([1]∣x1)⊕ ⋅ ⋅ ⋅ ⊕ f([w]∣xw), with x = (x1, x2, . . . , xw).

The BM attack finds a preimage x of a given z = XHASH(x) ∈ F r
2 as fol-

lows. First, one finds w-bit string y = (y1, . . . , yw), with yi ∈ F2, such that
XHASH(xy) = z, where xy = xy1

1 . . . xyw
w . To achieve this, one first computes

2w values �k
i = f([i]∣xj

i ) for k ∈ {0, 1} and i ∈ {1, . . . , w}; the next step is to
try to solve the following system of equations over F2 using linear algebra:

{
yi ⊕ ȳi = 1, i ∈ {1, . . . , w},
⊕w

i=1�
0
i (j)yi ⊕ �1

i (j)ȳi = z(i), j ∈ {1, . . . , r}.

Here, �0
i (j) (resp. �

1
i (j) ) denotes the j

−tℎ bit of �0
i (resp. �1

i ) and ȳi = 1−yi
are the unknowns. This system has r + w equations in 2w unknowns and is
easy to solve when w = r+1. More generally, it was shown in [8] (Appendix
A, Lemma A.1) that for all y ∈ F

w
2 the probability to have XHASH(xy) ∕= z

is at most 2r−w. That is, the complexity of inverting XHASH is at least 2r−w;
in our notation,

WFBM(n,w, r) ≥ 2r−w = 2(b−1)w.

(b) The Saarinen’s attack. This attack is due to Saarinen [30] and it
was proposed against the FSB [5] hash function. The main idea behind this
attack is reducing the problem of finding collisions or preimages to that of
solving systems of equations. This attack is very efficient when r < 2w. We
briefly show how this attack works in our setting, where we must invert the
map g.

As shown in section 5.1, g(x) = A ⋅zT , where A is the random binary matrix
of size r× n, whose entries define g, and z is a regular word of length n and
weight w. We can in turn write A ⋅ zT out as follows:

y = ⊕w
i=1a(i−1) n

w
+xi+1, 0 ≤ xi ≤

n

w
, (1)
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where x = (x1, . . . , xw) and aj denotes the j−tℎ column of A. For simplicity,
assume that xi ∈ {0, 1}. In this case, we define a constant r-bit vector c and
an additional r × w binary matrix B as follows.

c = ⊕w
i=1a(i−1) n

w
+1, B = [b1 ⋅ ⋅ ⋅ bw] with bi = a(i−1) n

w
+1 ⊕ a(i−1) n

w
+2. (2)

It is easy to check that y = B ⋅ x+ c. As a consequence if r = w, then B is
square and we can find the preimage x from y as:

x = B−1 ⋅ (y ⊕ c), (3)

where B−1 denotes the inverse of B. Note that this inverse exists with prob-
ability without proof of

∏r
i=1(1 − 1/2i) ≈ 0.29 for r moderately large. The

expected complexity of this attack is the the workload of inverting B, which
is al most 0.29 ⋅ r3. It has been proved in [30] that the same complexity is
obtained even if r ≤ 2w.
In the opposite direction, Saarinen also extended his attack for the case when
w ≤ r/� for � > 1 and xi /∈ {0, 1}. In this case, the complexity is about
2r/(�+1)w. Moreover, the recent result[12] shows that if � = 2�, for � > 1,
this complexity becomes 2r/(� + 1)2w. As consequence we obtain:

WFSaarinen(n,w, r) ≥

{
2r/(�+ 1)w if w ≤ r/�
2r/(�+ 1)2w if w ≤ r/2�

which can be rewritten in our setting as:

WFSaarinen(n,w, r) ≥

{
( 2b

�+1 )
w if � ≤ b

( 2b

(�+1)2 )
w if � ≤ b/2

2. Generalized Birthday Attacks (GBA). This class of attacks attempt to
solve the following, so-called k-sum problem: given k random lists L1, L2, . . . , Lk

of r-bit strings selected uniformly and independently at random, find x1 ∈
L1, x2 ∈ L2, . . . , xk ∈ Lk such that ⊕k

i=1xi = 0. For k = 2, a solution can be
found in time 2r/2 using the standard birthday paradox. For k > 2 Wagner’s
algorithm [33] and its extended variants [5, 11, 28, 15] can be applied. When
k = 2j−1 and ∣Li∣ > 2r/j , Wagner’s algorithm can find at least one solution
in time 2r/j .

The main idea behind a GBA algorithm is depicted Fig. ??. We consider the
case k = 4. Let L1, . . . , L4 be four lists, each of length 2r/3. The algorithm
proceeds in two iterations. In the first iteration, we build two new lists L1,2

and L3,4. The list L1,2 contains all sums x1 ⊕ x2 with x1 ∈ L1 and x2 ∈ L2

such that the first r/3 bits of the sum are zero. Similarly, L3,4 contains all
sums x3⊕x4 with x3 ∈ L3 and x4 ∈ L4 such that the first r/3 bits of the sum
are zero. So the expected length of L1,2 is equal to 2−r/3 ⋅ ∣L1∣ ⋅ ∣L2∣ = 2r/3.
Similarly, the expected length of L3,4 is also 2r/3. In the second iteration
of the algorithm, we construct a new list L′

1 containing all pairs (x′

1, x
′

2) ∈
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L1,2 × L3,4 such that the first r/3 bits of the sum x′

1 ⊕ x′

2 are zero. Then
the probability that x′

1 ⊕ x′

2 equals zero is 2−2r/3. Therefore, the expected
number of matching sums is 2−2r/3 ⋅ ∣L1,2∣ ⋅ ∣L3,4∣ = 1. So we expected to
find a solution. This idea can be generalized for k = 2j−1 by repeating
the same procedure j − 2 times. In each iteration a, we construct lists, each
containing 2r/j elements that are zero on their first ar/j bits, until obtaining,
on average, one r-bit element with all entries equal to 0.
We estimate the security of XSYND against GBA attacks by using the GBA
algorithm from [15]. This algorithm attempts to find a set of indices I =
{1, 2, ⋅ ⋅ ⋅ , 2} satisfying ⊕i∈IHi = 0, where Hi are columns of the matrix H.

As shown in [15], the algorithm is applicable when
(

2bw
2(1−)w

)
≥ 2bw+(−1).

Under this condition, the cost of solving an instance RSD problem with
parameters (n, r, w) is given by:

WFGBA(n,w, r) ≥
(

wb
 − 1

)
2

wb


−1.

Note that the recent result in [29] shows that the time and memory efficiency
of GBA attacks can be improved, but only by a small factor. In Section 6 we
take this improvement into account when proposing parameters for XSYND.

3. Information Set Decoding (ISD). ISD is one of the most important
generic algorithm for decoding errors in an arbitrary linear code. An ISD
algorithm consists (in its simplest form) in finding a valid, so-called infor-
mation set, which is a subset of k error-free positions amongst the n positions
of each codeword. Here, k is the dimension and n the length of the code.
The validity of this set is checked by using Gaussian elimination on the r×n
parity check matrix H. If we denote by p(n, r, w) the probability of finding a
valid information set and by c(r) the cost of Gaussian elimination, then the
overall cost of ISD algorithms equals the ratio c(r)/p(n, r, w).

In the following, we estimate the cost of finding a solution to the regular
syndrome decoding (RSD) problem, i.e. we wish to invert the map g. Let
ns(n, r, w) be the expected number of solutions of RSD instance. This quan-
tity is:

ns(n, r, w) =

(
n
w

)w

2r
= 1,

because r = w log2(
n
w ). In addition, let pv(n, r, w) be the probability that

a given information set is valid for one given solution of RSD. As shown
in [5], p(n, r, w) can be approximated by: p(n, r, w) ≈ pv(n, r, w) ⋅ns(n, r, w).
Furthermore, as shown in [5], pv(n, r, w) is given by:

pv(n, r, w) =
( r

n

)w

=

(
log2(n/w)

n/w

)w

We thus conclude that the probability of selecting a valid set to invert RSD
is equal to: p(n, r, w) =

(
b
2b

)w
.
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Hence, the cost WFISD(n,w, r) of solving an instance of RSD with parameters
(n, r, w) is approximately:

WFISD(n,w, r) ≈ c(r) ⋅

(
2b

b

)w

. (4)

If we assume that the complexity of Gaussian elimination is r3, then WFISD(n,w, r)
becomes:

WFISD(n,w, r) ≈ (wb)3 ⋅

(
2b

b

)w

. (5)

In practice, we use the lower bound for ISD algorithms presented in [26] to
estimate the security of XSYND against ISD attacks and show our results
in Table 1 .

Remark 2. One could also use Time Memory trade-off attacks against stream
ciphers. This attack was first introduced in [21] as a generic method of attack-
ing block ciphers. To make this attack unfeasible, one must adjust the cipher
parameters as shown in [20, 22], i.e., the initial vector should be at least as large
as the key, and the state should be at least twice the key.

Table 1 briefly summarizes the expected complexity of the previous attacks
against XSYND.

Table 1. The estimated complexities of possible attacks against XSYND.

Attack The binary logarithm of the complexity: log2(WF(.)(n,w, r))

BM w(b− 1)

Sarinnen

{
w(b− log2(�+ 1)), if � ≤ b

w(b− 2 log2(�+ 1)), if � ≤ b/2

GBA wb/ + log2(wb/ − 1)− 1 for  ∈ ℕ

ISD w(b− log2(b)) + 3 log2(wb)
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6 Parameters and Experimental Results

Suitable parameters (n, r, w) for XSYND must provide both efficiency and high
security against all known attacks. Firstly, we account for Time Memory Trade-
Off attacks (see section 5.2) and choose (n, r, w) such that:

r = w log2(n/w) ≥ 2∣IV∣ and ∣IV∣ ≥ ∣K∣.

For XSYND we choose r = w log2(n/w) = 2∣IV∣ = 2∣K∣. We then fix b =
log2(n/w) = 8 and for each security level � we vary w to obtain both high per-
formance and a complexity of solving the RSD problem of at least 2�.

We have tested a large set of potential parameters for a number of security
levels. Table 2 presents the optimal parameter sets (n,w, r) resulted from running
our implementation for several security levels. Note that in our implementation,
we only use random binary codes without any particular structure. But it is
possible to find parameters providing the same security levels when the parity
check matrix is quasi-cyclic as in [18]. In this case, r has to be a prime and
2 is primitive root of the finite field F

∗

r in order to guarantee the randomness
property of QC-codes as demonstrated in [17].

Table 2. Proposed parameters for XSYND.

Security Level n r w Key/IV size Speed of XSYND
[bits] [cpb]

80 8192 256 32 128 14.92
120 12288 384 48 192 16.98
160 16384 512 64 256 35.40
200 20480 640 80 320 43.68
240 24576 768 96 384 55.42
280 28672 896 112 448 77.09

The results shown in Table 2 are for a pure C/C++ implementation with
additional use of C/C++-Intrinsics). The operating system was Debian 6.0.3,
the source has been compiled with gcc (Debian 4.4.5-8) 4.4.5. All results have
been gained on an AMD Phenom(tm) 9950 Quad-Core Processor, running at a
clock rate of 1300 MHz. Due to the row-major convention of C/C++, the two
matrices H1 resp. H2 have been used and stored in transposed form. In order to
compare the speed of XSYND with the claimed speed of SYND [18] and 2SC [27]
(Table 4), we have tested our implementation using the parameter sets suggested
in [18]. Our results presented in Table 3 show that, for comparable security lev-
els, XSYND runs faster than SYND [18] and 2SC cipher [27]. It is worth to stress
that the authors of 2SC [27] compared the performance of 2SC [27] to that of
SYND [18] based on their own implementations (of both schemes), because no
freely-available implementation of SYND exists.
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Compared to the (bitsliced and parallel) fastest software implementation of AES
in CTR mode proposed by Käsper et al. [25], XSYND runs about two times
slower. Indeed, this implementation is written in assembly using 128-bit XMM
registers and runs at 7.59 cycles/byte on a Intel Core 2 Q9550 and 6.92 cy-
cles/byte on Core i7 920. Note that our implementation could be sped up by
using parallel computations achieving much better results than what Tables 2
and 3 show. It is therefore interesting to implement this to see how much further
XSYND can be improved.

Table 3. Performance of XSYND vs. SYND using parameter sets proposed in [18].

Security Level n r w key/IV size speed of SYND speed of XSYND
[bits] [cpb] [cpb]

80 8192 256 32 128 27 14.92
128 8192 384 48 192 47 16.86
180 8192 512 64 256 53 35.18
400 8192 1024 128 512 83 55.69

Table 4. Parameters and performance of 2SC cipher given in [27].

Security Level n r w key/IV size speed of 2SC
[bits] [cpb]

100 1572864 384 24 144 37
160 2228224 544 34 208 47
250 3801088 928 58 352 72

7 Conclusion

In this paper we presented XSYND, an improved variant of SYND stream cipher,
without compromising its security. Our proposal uses a generic state transfor-
mation which is directly reducible to the regular syndrome decoding problem
(RSD), but has better computational characteristics than the regular encoding
introduced in the SYND system. A software implementation shows that our
proposal runs much faster than all code-based stream ciphers for different secu-
rity levels, but it is only half as fast as AES in counter mode without making
any parallel computation. Moreover, unlike to SYND, we show how the security
reduction of our proposal works.
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