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proposed the stream cipher SYND as an improvement of the pseudo random number generator due to Fischer and Stern. This work shows how to improve considerably the efficiency the SYND cipher without using the so-called regular encoding and without compromising the security of the modified SYND stream cipher. Our proposal, called XSYND, uses a generic state transformation which is reducible to the Regular Syndrome Decoding problem (RSD), but has better computational characteristics than the regular encoding. A first implementation shows that XSYND runs much faster than SYND for a comparative security level (being more than three times faster for a security level of 128 bits, and more than 6 times faster for 400-bit security), though it is still only half as fast as AES in counter mode. Parallel computation may yet improve the speed of our proposal, and we leave it as future research to improve the efficiency of our implementation.

Introduction

A stream cipher is a secret key cryptosystem that employs a symmetric secret key for producing an arbitrary long pseudo random sequence, called keystream. This keystream is then combined with the plaintext, typically by means of the bitwise XOR, to produce the ciphertext. Stream ciphers are necessary in many real-life applications, especially the wireless communication standards such as IEEE 802.11b [2] and Bluetooth [3]. Therefore, stream ciphers are usually required to be fast and implementable on constrained hardware.

It is easy to design a stream cipher. The challenge here is to make it theoretically secure and at the same time very efficient. A variety of efficient stream ciphers have been proposed, but most of them were proven to be insecure as reported during the eSTREAM project [1]. It is thus desirable to have provably secure stream ciphers, whose security is grounded on hard problems. The first constructions in this direction are [START_REF] Blum | How to generate cryptographically strong sequences of pseudo-random bits[END_REF][START_REF] Blum | A simple unpredictable pseudo random number generator[END_REF] whose security is based on the hardness of factoring problem. Another proposal was developed by Kaliski [START_REF] Kaliski | Elliptic Curves and Cryptography: A Pseudorandom Bit Generator and Other Tools[END_REF], its security relies on the intractability of the discrete logarithm problem. Assuming the hardness of solving RSA problem, Alexi et al. [START_REF] Alexi | RSA and Rabin functions: certain parts are as hard as the whole[END_REF] proposed a pseudo-random number generator (PRNG). The one-way function hard-core bit construction by Goldreich et al. [START_REF] Goldreich | A hard-core predicate for all one-way functions[END_REF] has also led to the construction of the efficient PRNG, called BMGL [START_REF] Håstad | BMGL: Synchronous key-stream generator with provable security[END_REF], which was developed by Håstad and Näslund using Rijndael.

Although proving the hardness of all mentioned problems is an important open problem, they are all known to be easy on quantum attacks as shown in [START_REF] Shor | Algorithms for Quantum Computation: Discrete Logarithms and Factoring[END_REF]. It is therefore advantageous to design stream ciphers whose security relies on other assumptions, and which are more promising even in the age of quantum computers. The first construction addressing this challenge is due to Impagliazzo et al. [START_REF] Impagliazzo | Efficient cryptographic schemes provably as secure as subset sum[END_REF], based on the subset sum problem. Later, Fisher and Stern [START_REF] Fischer | An efficient pseudo-random generator provably as secure as syndrome decoding[END_REF] proposed a PRNG whose security relies on the syndrome decoding (SD) problem [START_REF] Berlekamp | On the inherent intractability of certain coding problems[END_REF]. Recently, further provably secure constructions have been proposed. The first one, called QUAD, due to Berbain et al. [START_REF] Berbain | QUAD: A multivariate stream cipher with provable security[END_REF] under assumption that solving a multivariate quadratic system is hard (MQ-problem). The second one, named SYND, proposed by Gaborit et al. [START_REF] Ph | SYND : a very fast code-based cipher stream with a security reduction[END_REF], is an improved variant of [START_REF] Fischer | An efficient pseudo-random generator provably as secure as syndrome decoding[END_REF]. The security of SYND is also reducible to the SD problem. Recently, Meziani et al. [START_REF] Meziani | 2SC: An Efficient Code-Based Stream Cipher[END_REF] proposed the 2SC stream cipher based on the same problem, following the sponge construction. This cipher is much more efficient than SYND [START_REF] Ph | SYND : a very fast code-based cipher stream with a security reduction[END_REF] in terms of performance and has small key/IV size, but it suffers from the drawback of having big matrices.

Our contribution. In this paper we propose an efficient variant of the SYND stream cipher [START_REF] Ph | SYND : a very fast code-based cipher stream with a security reduction[END_REF], called XSYND, this new construction is reducible to the SD problem. This cipher is faster than all existing code-based stream ciphers [START_REF] Ph | SYND : a very fast code-based cipher stream with a security reduction[END_REF][START_REF] Meziani | 2SC: An Efficient Code-Based Stream Cipher[END_REF] and requires comparatively little storage capacity, making it attractive for practical implementations. We also propose parameters for fast keystream generation for different security levels.

Outline of the paper. Section 2 provides a background of coding theory. Section 3 describes the SYND stream cipher. A detailed description of the XSYND stream cipher is presented in Section 4, its security is discussed in Section 5. In Section 6 secure parameters and experimental results for XSYND are presented. Section 7 concludes this paper.

Coding Theory Background

This section provides a short introduction to error-correcting codes and recall some hard problems in this area. In general, a linear code is a -dimensional subspace of an -dimensional vector space over a finite field , where and are positive integers with < and a prime power. Elements of are called words and elements of are called codewords. The integer = -is called the co-dimension of . The weight of a word , denoted by = ( ), is the number of non-zero entries in , and the Hamming distance between two words and is ( -) . The minimum distance of a code is the smallest distance between any two distinct codewords. A generator matrix of is a matrix whose rows form a basis of , .i.e., = { ⋅ : ∈ }. A parity check matrix of is defined by = { ∈ : ⋅ = 0} and generates the dual space of the code . A linear code is called a cyclic code if any cyclic shift of a codeword is another codeword. That is, 0 , ⋅ ⋅ ⋅ , ∈ implies , 0 , ⋅ ⋅ ⋅ , -1 ∈ . In this case, the parity check matrix of can be only described by its first row. Furthermore, is called a quasi cyclic code if its parity check matrix is composed of a number of cyclic submatrices. In practice, such codes are very good from the decoding capacity point of view and behave like random codes with small requirement on the length as shown in [START_REF] Gaborit | Asymptotic improvement of the Gilbert-Varshamov bound for linear codes[END_REF].Throughout this paper we consider = 2.

Definition 1 (Regular word). A regular word of length and weight is a word consisting of blocks of length / , each with a single non-zero entry.

In code-based cryptography, the security of most of the cryptographic primitives is related to the hardness of the following problems.

Definition 2 (Binary Syndrome Decoding (SD) problem). Given a binary × matrix , a binary vector ∈ 2 , and an integer > 0, find a word ∈ 2 of weight ( ) = , such that ⋅ = .

This problem is proven NP-complete in [START_REF] Berlekamp | On the inherent intractability of certain coding problems[END_REF]. A particular case of this problem is the Regular Syndrome Decoding (RSD) problem, which has been proved to be NP-complete in [START_REF] Augot | A Family of Fast Syndrome Based Cryptographic Hash Functions[END_REF]. It can be stated as follows.

Definition 3 (Regular Syndrome Decoding (RSD) Problem). Given a binary × matrix , a binary vector ∈ 2 ,and an integer > 0, find a regular word ∈ 2 of weight ( ) = , such that ⋅ = .

Through this paper, we will denote RSD( , , ) to indicate an instance of RSD problem with parameters ( , , ). Before ending this section, we recall the definition of a hardcore bit (or hardcore predicate).

Definition 4 (Hardcore bit). Let be a one-way function. Let ℎ : {0, 1} * → {0, 1} be a polynomial-time computable function. We say that ℎ is a hardcore bit for if for all PPT adversary there exists one negligible function , such that

Pr[ ( ( )) = ℎ( )] ≤ 1 2 + ( ), ∀
where the probability is over chosen randomly and the coin tosses of .

The SYND stream cipher

This section gives a short description of the original SYND design. SYND is a synchronous stream cipher with security reduction proposed in 2007 by Gaborit et. al [START_REF] Ph | SYND : a very fast code-based cipher stream with a security reduction[END_REF]. SYND is a improved variant of Fisher-Stern's PRNG [START_REF] Fischer | An efficient pseudo-random generator provably as secure as syndrome decoding[END_REF] with two improvements: the use of quasi-cyclic codes, which reduces the storage capacity and the introduction of regular words used in [START_REF] Augot | A Family of Fast Syndrome Based Cryptographic Hash Functions[END_REF], which speeds up the keystream generation of the system. This PRNG can be seen as a finite automaton, , determined by a set of inner states with lengths ranging from 256 to 1024 bits. SYND accepts keys of length 128 to 512 bits and produces a keystream twice as large as the key size in each round. More precisely, let , , and be three positive integers such that the ratio / is a power of two and = log 2 ( / ). The key stream generation of SYND works in three steps using three different one-to-one functions called Ini, Upd, and Out, respectively (See Figure 1). The Ini function takes a secret key K concatenated with an initial vector IV, both of length /2 bits, and returns an initial state 0 = Ini(K|IV), which starts the key stream generation process, where ( | ) denotes the concatenation of bit strings and . The Ini function is a three-Feistel transformation based on Upd and Out, and given by:

Ini( ) = ⊕ Out( ⊕ Upd( )); = ⊕ Upd( ), ∀ = (K, IV) ∈ /2 2 × /2 2 ,
where Upd and Out functions are defined by

Upd( ) = ⋅ ( ); Out( ) = ⋅ ( ), ∀ ∈ 2 .
Here, and are random binary matrices which describe the same binary quasi-cyclic (QC) code of length , correcting up to errors. The mapping → ( ) is an encoding algorithm which transforms an -bit string into a regular word of length and weight . Starting from 0 , in each time unit , outputs a key bit = Out( ) and changes the inner state as follows: +1 = Upd( ).

After generating the key bit stream 0 , 1 , ⋅ ⋅ ⋅ , a cleartext bit stream 0 , 1 , ⋅ ⋅ ⋅ is encrypted into a cyphertext stream 0 , 1 , ⋅ ⋅ ⋅ by the bitwise XOR operator as = ⊕ . Knowing the secret state 0 the receiver can generate the keystream 0 , 1 , ⋅ ⋅ ⋅ and therefore recover the cleartext bitstream by = ⊕ .

Thus, the evaluation of Upd and Out for state is done by first encoding into a regular word ( ) of length and weight , and then multiplying the resulting word by a random × binary matrix. This process can be regarded as XORing columns from the underlying random matrix with one another (these -bit long columns correspond to the non-zero positions of the regular word ( )). This idea was first introduced in the FSB hash family [START_REF] Augot | A Family of Fast Syndrome Based Cryptographic Hash Functions[END_REF] in order to speed up the hashing process. In the next section, we show how to speed up SYND by eliminating the encoding → ( ), while at the same time preserving the security properties of the underlying scheme. Firstly, we modify the Ini function such that it requires only two, rather than three function evaluations, without loss of security. We denote the new function by XIni and depict it in Fig. 2. Note that this modification does not affect the recovery of the secret K or the initial vector IV. In fact, it is straightforward to prove that, given an initial state 0 output by XIni, if an adversary can extract K and IV from 0 , it can also easily solve an instance RSD( , , ). The new function XIni function is defined by: 

XIni( ) = ⊕ Out( ); = ⊕ Upd( ); ∀ = (K, IV) ∈ /2 2 × /2 2 .
= (ℎ (0) , ℎ (1) , . . . , ℎ (2 -1) ),
where ℎ ( ) ∈ for ∈ {0, 1, . . . , 2 -1}, then we can define by = ℎ ( ) if and only if the decimal value of is equal to . We have 2 possible value for each , depending on the decimal value of the block . In this way, we redefine the functions Upd and Out as follows (see also Fig. 4):

Upd( ) = ( 1 ) 1 ⊕ ( 2 ) 2 ⊕ ⋅ ⋅ ⋅ ⊕ ( ) ; Out( ) = ( 1 ) 1 ⊕ ( 2 ) 2 ⊕ ⋅ ⋅ ⋅ ⊕ ( ) ; ∀ ∈ 2 .
Here, ( ) (resp. ( ) ) is the ℎ column of the ℎ submatrix (resp. ) of a random binary matrix (resp. ), both of size × 2 . Remark 1. It is worth noting that the same technique has been recently used by Berstein et al. [START_REF] Bernstein | Really Fast Syndrome-Based hashing[END_REF] to improve the efficiency of the FSB hash family [START_REF] Augot | A Family of Fast Syndrome Based Cryptographic Hash Functions[END_REF]. In this section we present the theoretical security of our construction. The presentation is done in two steps. In the first step, we show that it is hard to find the secret state given Upd( ) and Out( ) as described in section 4. More precisely, we show that inverting Upd( ) and Out( ) is reducible to the RSD problem. In the second step, we prove that XSYND is a pseudo-random generator, meaning that the key stream produced by XSYND is indistinguishable from truly random sequences.

Step 1: We consider general transformations defined as:

( ) = ( 1 ) 1 ⊕ ( 2 ) 2 ⊕ ⋅ ⋅ ⋅ ⊕ ( ) , ∀ = ( 1 , . . . , ) ∈ 2 .
In this transformation, ( ) for = 0, . . . , 2 is the ( + 1) ℎ column of the ℎ submatrix of a random binary matrix A of size × 2 . Note that both Upd( ) and Out( ) are particular instantiations of , for random matrices and (see previous section). Our argument in this section is as follows: we first show that (1)for each there exists a regular word such that ( ) = ⋅ , then prove that (2) learning from = ( ) is equivalent to finding a regular word such that ⋅ = (this is an instantiation of RSD( , , ) for = and = 2 ). Thus, under the RSD assumption, the modified XSYND protocol security can be reduced to the hardness of RSD.

First consider (1). We write = 1 | . . . | as in section 4, for × 2 submatrices . Each submatrix has columns (0) , . . . , (2 -1) . We note that any regular word is in fact a word of length = 2 and weight , whose decimal entries 1 , . . . , indicate the positions of its non-zero entries (and each is a unique value between ( -1)2 + 1 and 2 since the word is regular). Let = ( 1 , . . . , ) be a state in decimal notation. We associate each with a value whose decimal notation is ( 1 , . . . , ) for = ( + 1) + ( -1)2 . The reverse transformation of to is obtained as follows:

⎧   ⎨   ⎩ 1 ≡ 1 -1 (mod 2 ) 2 ≡ 2 -1 (mod 2 ) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ≡ -1 (mod 2 )
It is easy to check that:

⋅ = ( 1 ) 1 ⊕ ( 2 ) 2 ⊕ ⋅ ⋅ ⋅ ⊕ ( ) .
Toy Example. Let us consider = 3 and = 2. Then the matrix should be (3 ⋅ 2) × (3 ⋅ 2 2 ) = 6 × 12 and binary. Consider in this example the following matrix :

= ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ (0) 1 (1) 1 (2) 1 (3) 1 (0) 2 (1) 2 (2) 2 (3) 2 (0) 3 (1) 3 (2) 3 (3) 3
1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 0

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
Let us consider a state in decimal form, with = (2, 1, 0). Compute in decimal form according to the formula = ( +1)+( -1)2 . Thus 1 = 3, 2 = 6, and 3 = 9. In binary notation, denotes the positions of z's non-zero entries, i.e. = [0010|0100|1000]. We can now verify that for this we have

( ) = (2) 1 ⊕ (1) 2 ⊕ (0) 3 = [001111] = ⋅ .
Now let us consider the security reduction of general transformations to the RSD problem, i.e. step (2) outlined above. We have shown that for each input value we can find a regular word of weight such that ⋅ = ( ). Assume that there exists an adversary that can invert ( ), i.e. given = ( ), the adversary outputs . Then the same adversary computes as above and can thus, given a matrix , and a value = ( ) = ⋅ , this adversary can output the regular word . This is exactly an instantiation of RSD( , , ) for = and = 2 . In conclusion, we can reduce the security of XSYND to the hardness of the RSD problem.

Step 2: In this step, we prove that XSYND is a pseudo-random generator. Our proof is an adaption of that given for the Fischer-Stern's PRNG [START_REF] Fischer | An efficient pseudo-random generator provably as secure as syndrome decoding[END_REF]. We will show that if there exists an algorithm that is able of distinguishing a random bit string from the output of the mapping → (Out( ), Upd( )), then this algorithm can be converted into a predicator that can predicts the inner product of an input and a random bit string chosen at random. Before doing so, we state the following assumptions.

1. Indistinguishability: The binary matrices and (both of size × ) are computationally indistinguishable from uniform matrices of the same dimensions.

Regular syndrome decoding (RSD):

The family of mappings defined as ( ) = ⋅ for an uniform 2 × binary matrix is one-way on the set of all regular words of length and weight .

As shown in the last subsection, the mapping → Upd( ) (resp. → Out( )) can be regarded as ( ) = ⋅ (resp. ( ) = ⋅ ), where and are binary matrices, both of size × , and is taken from the set of regular words. Therefore, from now on, we will use (resp. ) instead of Upd (resp. Out).

From and we build a 2 × block matrix by stacking them vertically, i.e.

= ( )

In this case, we can write the mapping → (Out( ), Upd( )) as ( ) = ⋅ = ( ( ), ( )). Consequently, in order to prove that XSYND is a pseudorandom generator, it is sufficient to prove that the output of → ( ) is pseudo random as proved in [START_REF] Fischer | An efficient pseudo-random generator provably as secure as syndrome decoding[END_REF]. Our proof is based on the Goldreich-Levin Theorem [START_REF] Goldreich | A hard-core predicate for all one-way functions[END_REF], which says that, for any one-way function, the inner product of its argument and a randomly chosen bit string is a hardcore bit (or hardcore predicate). Recall that the inner product of two bit strings and (of the same size) is defined by

⟨ , ⟩ = ∑ mod 2.
Theorem 1. (Goldreich-Levin theorem) Let :

( ) 2 → ( ) 2
be a one-way function. For every PPT algorithm , for all polynomials and all but finitely many n's,

Pr[ ( ( ), ) = ⟨ , ⟩] ≤ 1 2 + 1 ( )
where the probability is taken over uniformly chosen and ∈ ( ) 2

.

The theorem proving that XSYND is a pseudo-random generator is stated as follows.

Theorem 2. Suppose , , and are chosen such that the indistinguishability and the regular syndrome decoding assumptions hold. Then the output distribution of XSYND is computationally indistinguishable from a truly random distribution. That is, XSYND is a pseudo-random generator.

Proof. (by contradiction). Let us assume that an 2 -bit output of the mapping ( ) = ⋅ is not pseudo-random, and there exists a distinguisher , which is capable to differentiate this output of from a 2 -bit random string . More precisely, takes as input 2 × binary random matrix and a random ∈ {0, 1} 2 as a candidate being equal to ⋅ for some unknown regular word . In the event that ⋅ = , outputs 1 with probability above 1 2 + 1 ( ) , for every polynomial ( ). Otherwise, when is chosen uniformly from {0, 1} 2 , outputs 1 with probability at most 1 2 . Formally, the distinguisher behaves as follows:

{ Pr[ ( , ) = 1] ≥ 1 2 + 1 ( ) , if = ⋅ , for some regular word Pr[ ( , ) = 1] < 1 2 , if is taken uniformly from {0, 1} 2 
As next step, we will build an algorithm , which uses the distinguisher as subroutine. This algorithm will predicts the inner product ⟨ , ⟩ with probability at least 1 2 + 1 2 ( ) , where is an unknown regular word (an input of ) and a randomly chosen -bit string. To this end, let write = ( 1 , ⋅ ⋅ ⋅ , ). In addition, let be the number of the positions such that where = = 1, i.e. the size of the intersection ∩ and its parity, i.e. the inner product ⟨ , ⟩. Then the algorithm takes as input ( ) and and executes the following steps:

• Select a random ′ ∈ {0, 1} as candidate to • Choose randomly ∈ {0, 1} 2 • Build a new 2 × binary matrix ˆ = ( ˆ 1 , ⋅ ⋅ ⋅ , ˆ ) such that for every ∈ {1, ⋅ ⋅ ⋅ , } it holds ˆ = { + if = 1, if = 0
• Feed the distinguisher with ˆ and ( ) + ′ ⋅ • If the distinguisher outputs 1, then output ′ = . Otherwise, output the opposite of ′ . Now, we show next that predicts the inner product ⟨ , ⟩ with probability above 1 2 + 1 2 ( ) . We have to consider two events: (1) E 1 :" is guessed correctly". Then the prognosticated value for the inner product ⟨ , ⟩ is correct if the distinguisher outputs 1. The distribution seen by the distinguisher on ( ˆ , ( ) + ′ ⋅ ) is identical to the distribution on input ( , ( )). By construction, this is the case with probability at least

1 2 + 1 ( ) .
(2) E 2 :" is not guessed correctly". The distinguisher receives uniformly distributed inputs because of the randomness of . It then returns 1 with probability 1 2 . Since Pr[E 1 ] = Pr[E 2 ] = 1 2 , we conclude that the overall probability of correctly predicting the inner product ⟨ , ⟩ is at least 1 2 + 1 2 ( ) . This contradicts the Theorem 1 because of the RSD assumption. 

Practical Security

This section presents what are provably the most generic attacks against XSYND. We will only address the hardness of inverting the mapping defined in the previous section, since this is the main building block of XSYND design. If an attacker can invert , then she can recover the secret key and recover inner states. In what follows, we denote by WF ( , , ) the work factor (i.e. number of binary operations) required to solve the instance RSD( , , ) by using an algorithm . Furthermore, in estimating the complexity of each attack against XSYND we use = with = log 2 ( ) . There are essentially three types of known attacks that are applicable to XSYND:

1. Linearization Attacks. There are two types of linearization attacks that are relevant for XSYND, namely the Bellare-Micciancio (BM) attack [START_REF] Bellare | A new paradigm for collision-free hashing: incrementality at reduced cost[END_REF] against the XHASH function [START_REF] Bellare | A new paradigm for collision-free hashing: incrementality at reduced cost[END_REF], and the attack due to Saarinen [START_REF] Saarinen | Linearization attacks against syndrome based hashes[END_REF]. We discuss these attacks below.

(a) The Bellare-Micciancio's attack. This is a preimage attack proposed by Bellare and Micciancio [START_REF] Bellare | A new paradigm for collision-free hashing: incrementality at reduced cost[END_REF] against the so-called XHASH mapping. This attack relies on finding a linear dependency among -bit vectors, where is the number of vectors XORred together and , the length (in bits) of the target value. This is likely to succeed if the value is close to . More precisely, let and be two positive integers. Let be a random function with : 2 → 2 . Let [ ] denote the binary representation of an integer . Based on , the XHASH is defined as

XHASH( ) = ([1]| 1 ) ⊕ ⋅ ⋅ ⋅ ⊕ ([ ]| ), with = ( 1 , 2 , . . . , ).
The BM attack finds a preimage of a given = XHASH( ) ∈ 2 as follows. First, one finds -bit string = ( 1 , . . . , ), with ∈ 2 , such that XHASH( ) = , where = 1 1 . . . . To achieve this, one first computes 2 values = ([ ]| ) for ∈ {0, 1} and ∈ {1, . . . , }; the next step is to try to solve the following system of equations over 2 using linear algebra:

{ ⊕ ¯ = 1, ∈ {1, . . . , }, ⊕ =1 0 ( ) ⊕ 1 ( ) ¯ = ( ), ∈ {1, . . . , }.
Here, 0 ( ) (resp. 1 ( ) ) denotes the -ℎ bit of 0 (resp. 1 ) and ¯ = 1are the unknowns. This system has + equations in 2 unknowns and is easy to solve when = + 1. More generally, it was shown in [START_REF] Bellare | A new paradigm for collision-free hashing: incrementality at reduced cost[END_REF] (Appendix A, Lemma A.1) that for all ∈ 2 the probability to have XHASH( ) ∕ = is at most 2 -. That is, the complexity of inverting XHASH is at least 2 -; in our notation,

WF BM ( , , ) ≥ 2 -= 2 ( -1) .
(b) The Saarinen's attack. This attack is due to Saarinen [START_REF] Saarinen | Linearization attacks against syndrome based hashes[END_REF] and it was proposed against the FSB [START_REF] Augot | A Family of Fast Syndrome Based Cryptographic Hash Functions[END_REF] hash function. The main idea behind this attack is reducing the problem of finding collisions or preimages to that of solving systems of equations. This attack is very efficient when < 2 . We briefly show how this attack works in our setting, where we must invert the map .

As shown in section 5.1, ( ) = ⋅ , where is the random binary matrix of size × , whose entries define , and is a regular word of length and weight . We can in turn write ⋅ out as follows:

= ⊕ =1 ( -1) + +1 , 0 ≤ ≤ , (1) 
where = ( 1 , . . . , ) and denotes the -ℎ column of . For simplicity, assume that ∈ {0, 1}. In this case, we define a constant -bit vector and an additional × binary matrix as follows.

= ⊕ =1 ( -1) +1 , = [ 1 ⋅ ⋅ ⋅ ] with = ( -1) +1 ⊕ ( -1) +2 . (2) 
It is easy to check that = ⋅ + . As a consequence if = , then is square and we can find the preimage from as:

= -1 ⋅ ( ⊕ ), (3) 
where -1 denotes the inverse of . Note that this inverse exists with probability without proof of ∏ =1 (1 -1/2 ) ≈ 0.29 for moderately large. The expected complexity of this attack is the the workload of inverting , which is al most 0.29 ⋅ 3 . It has been proved in [START_REF] Saarinen | Linearization attacks against syndrome based hashes[END_REF] that the same complexity is obtained even if ≤ 2 . In the opposite direction, Saarinen also extended his attack for the case when ≤ / for > 1 and / ∈ {0, 1}. In this case, the complexity is about 2 /( + 1) . Moreover, the recent result [START_REF] Bernstein | Really Fast Syndrome-Based hashing[END_REF] shows that if = 2 , for > 1, this complexity becomes 2 /( + 1) 2 . As consequence we obtain:

WF Saarinen ( , , ) ≥ { 2 /( + 1) if ≤ / 2 /( + 1) 2 if ≤ /2
which can be rewritten in our setting as:

WF Saarinen ( , , ) ≥ { ( 2 +1 ) if ≤ ( 2 ( +1) 2 ) if ≤ /2 2.
Generalized Birthday Attacks (GBA). This class of attacks attempt to solve the following, so-called -sum problem: given random lists 1 , 2 , . . . , of -bit strings selected uniformly and independently at random, find 1 ∈ 1 , 2 ∈ 2 , . . . , ∈ such that ⊕ =1 = 0. For = 2, a solution can be found in time 2 /2 using the standard birthday paradox. For > 2 Wagner's algorithm [START_REF] Wagner | A generalized birthday problem[END_REF] and its extended variants [START_REF] Augot | A Family of Fast Syndrome Based Cryptographic Hash Functions[END_REF][START_REF] Bernstein | Better price-performance ratios for generalized birthday attacks[END_REF][START_REF] Minder | The extended k-tree algorithm[END_REF][START_REF] Finiasz | Security Bounds for the Design of Code-based Cryptosystems[END_REF] can be applied. When = 2 -1 and | | > 2 / , Wagner's algorithm can find at least one solution in time 2 / .

The main idea behind a GBA algorithm is depicted Fig. ??. We consider the case = 4. Let 1 , . . . , 4 be four lists, each of length 2 /3 . The algorithm proceeds in two iterations. In the first iteration, we build two new lists 1,2 and 3,4 . The list 1,2 contains all sums 1 ⊕ 2 with 1 ∈ 1 and 2 ∈ 2 such that the first /3 bits of the sum are zero. Similarly, 3,4 contains all sums 3 ⊕ 4 with 3 ∈ 3 and 4 ∈ 4 such that the first /3 bits of the sum are zero. So the expected length of 1,2 is equal to 2

-/3 ⋅ | 1 | ⋅ | 2 | = 2 /3 .
Similarly, the expected length of 3,4 is also 2 /3 . In the second iteration of the algorithm, we construct a new list ′ 1 containing all pairs ( ′ 1 , ′ 2 ) ∈ 1,2 × 3,4 such that the first /3 bits of the sum ′ 1 ⊕ ′ 2 are zero. Then the probability that ′ 1 ⊕ ′ 2 equals zero is 2 -2 /3 . Therefore, the expected number of matching sums is 2 -2 /3 ⋅ | 1,2 | ⋅ | 3,4 | = 1. So we expected to find a solution. This idea can be generalized for = 2 -1 by repeating the same procedure -2 times. In each iteration , we construct lists, each containing 2 / elements that are zero on their first / bits, until obtaining, on average, one -bit element with all entries equal to 0. We estimate the security of XSYND against GBA attacks by using the GBA algorithm from [START_REF] Finiasz | Security Bounds for the Design of Code-based Cryptosystems[END_REF]. This algorithm attempts to find a set of indices = {1, 2, ⋅ ⋅ ⋅ , 2 } satisfying ⊕ ∈ = 0, where are columns of the matrix . As shown in [START_REF] Finiasz | Security Bounds for the Design of Code-based Cryptosystems[END_REF], the algorithm is applicable when

( 2 2 (1-) ) ≥ 2 + ( -1
) . Under this condition, the cost of solving an instance RSD problem with parameters ( , , ) is given by:

WF GBA ( , , ) ≥ ( -1 ) 2 -1 .
Note that the recent result in [START_REF] Niebuhr | Improving the efficiency of Generalized Birthday Attacks against certain structured cryptosystems[END_REF] shows that the time and memory efficiency of GBA attacks can be improved, but only by a small factor. In Section 6 we take this improvement into account when proposing parameters for XSYND.

3. Information Set Decoding (ISD). ISD is one of the most important generic algorithm for decoding errors in an arbitrary linear code. An ISD algorithm consists (in its simplest form) in finding a valid, so-called information set, which is a subset of error-free positions amongst the positions of each codeword. Here, is the dimension and the length of the code. The validity of this set is checked by using Gaussian elimination on the × parity check matrix . If we denote by ( , , ) the probability of finding a valid information set and by ( ) the cost of Gaussian elimination, then the overall cost of ISD algorithms equals the ratio ( )/ ( , , ).

In the following, we estimate the cost of finding a solution to the regular syndrome decoding (RSD) problem, i.e. we wish to invert the map . Let ( , , ) be the expected number of solutions of RSD instance. This quantity is:

( , , ) = ( )

2

= 1, because = log 2 ( ). In addition, let ( , , ) be the probability that a given information set is valid for one given solution of RSD. As shown in [START_REF] Augot | A Family of Fast Syndrome Based Cryptographic Hash Functions[END_REF], ( , , ) can be approximated by: ( , , ) ≈ ( , , ) ⋅ ( , , ). Furthermore, as shown in [START_REF] Augot | A Family of Fast Syndrome Based Cryptographic Hash Functions[END_REF], ( , , ) is given by:

( , , ) = ( ) = ( log 2 ( / ) / )
We thus conclude that the probability of selecting a valid set to invert RSD is equal to: ( , , ) =

.

Hence, the cost WF ISD ( , , ) of solving an instance of RSD with parameters ( , , ) is approximately:

WF ISD ( , , ) ≈ ( ) ⋅ ( 2 ) . (4) 
If we assume that the complexity of Gaussian elimination is 3 , then WF ISD ( , , ) becomes:

WF ISD ( , , ) ≈ ( ) 3 ⋅ ( 2 ) . (5) 
In practice, we use the lower bound for ISD algorithms presented in [START_REF] May | Decoding Random Linear Codes in ˜ (2 0.054 )[END_REF] to estimate the security of XSYND against ISD attacks and show our results in Table 1 .

Remark 2. One could also use Time Memory trade-off attacks against stream ciphers. This attack was first introduced in [START_REF] Hellman | A cryptanalytic time-memory trade-off[END_REF] as a generic method of attacking block ciphers. To make this attack unfeasible, one must adjust the cipher parameters as shown in [START_REF] Dj | Cryptanalysis of alleged A5 stream cipher[END_REF][START_REF] Hong | Rediscovery of time memory tradeoffs[END_REF], i.e., the initial vector should be at least as large as the key, and the state should be at least twice the key.

Table 1 briefly summarizes the expected complexity of the previous attacks against XSYND. 

Attack

The binary logarithm of the complexity: log 2 (WF (.) ( , , ))

BM ( -1) Sarinnen { ( -log 2 ( + 1)), if ≤ ( -2 log 2 ( + 1)), if ≤ /2 GBA / + log 2 ( / -1) -1 for ∈ ℕ ISD ( -log 2 ( )) + 3 log 2 ( ) 6 

Parameters and Experimental Results

Suitable parameters ( , , ) for XSYND must provide both efficiency and high security against all known attacks. Firstly, we account for Time Memory Trade-Off attacks (see section 5.2) and choose ( , , ) such that:

= log 2 ( / ) ≥ 2|IV| and |IV| ≥ |K|.

For XSYND we choose = log 2 ( / ) = 2|IV| = 2|K|. We then fix = log 2 ( / ) = 8 and for each security level we vary w to obtain both high performance and a complexity of solving the RSD problem of at least 2 .

We have tested a large set of potential parameters for a number of security levels. Table 2 presents the optimal parameter sets ( , , ) resulted from running our implementation for several security levels. Note that in our implementation, we only use random binary codes without any particular structure. But it is possible to find parameters providing the same security levels when the parity check matrix is quasi-cyclic as in [START_REF] Ph | SYND : a very fast code-based cipher stream with a security reduction[END_REF]. In this case, has to be a prime and 2 is primitive root of the finite field * in order to guarantee the randomness property of QC-codes as demonstrated in [START_REF] Gaborit | Asymptotic improvement of the Gilbert-Varshamov bound for linear codes[END_REF]. The results shown in Table 2 are for a pure C/C++ implementation with additional use of C/C++-Intrinsics). The operating system was Debian 6.0.3, the source has been compiled with gcc (Debian 4.4.5-8) 4.4.5. All results have been gained on an AMD Phenom(tm) 9950 Quad-Core Processor, running at a clock rate of 1300 MHz. Due to the row-major convention of C/C++, the two matrices 1 resp. 2 have been used and stored in transposed form. In order to compare the speed of XSYND with the claimed speed of SYND [START_REF] Ph | SYND : a very fast code-based cipher stream with a security reduction[END_REF] and 2SC [START_REF] Meziani | 2SC: An Efficient Code-Based Stream Cipher[END_REF] (Table 4), we have tested our implementation using the parameter sets suggested in [START_REF] Ph | SYND : a very fast code-based cipher stream with a security reduction[END_REF]. Our results presented in Table 3 show that, for comparable security levels, XSYND runs faster than SYND [START_REF] Ph | SYND : a very fast code-based cipher stream with a security reduction[END_REF] and 2SC cipher [START_REF] Meziani | 2SC: An Efficient Code-Based Stream Cipher[END_REF]. It is worth to stress that the authors of 2SC [START_REF] Meziani | 2SC: An Efficient Code-Based Stream Cipher[END_REF] compared the performance of 2SC [START_REF] Meziani | 2SC: An Efficient Code-Based Stream Cipher[END_REF] to that of SYND [START_REF] Ph | SYND : a very fast code-based cipher stream with a security reduction[END_REF] based on their own implementations (of both schemes), because no freely-available implementation of SYND exists.

Compared to the (bitsliced and parallel) fastest software implementation of AES in CTR mode proposed by Käsper et al. [START_REF] Käsper | Faster and timing-attack resistant AES-GCM[END_REF], XSYND runs about two times slower. Indeed, this implementation is written in assembly using 128-bit XMM registers and runs at 7.59 cycles/byte on a Intel Core 2 Q9550 and 6.92 cycles/byte on Core i7 920. Note that our implementation could be sped up by using parallel computations achieving much better results than what Tables 2 and3 show. It is therefore interesting to implement this to see how much further XSYND can be improved. 

Conclusion

In this paper we presented XSYND, an improved variant of SYND stream cipher, without compromising its security. Our proposal uses a generic state transformation which is directly reducible to the regular syndrome decoding problem (RSD), but has better computational characteristics than the regular encoding introduced in the SYND system. A software implementation shows that our proposal runs much faster than all code-based stream ciphers for different security levels, but it is only half as fast as AES in counter mode without making any parallel computation. Moreover, unlike to SYND, we show how the security reduction of our proposal works.
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 1 Fig. 1. A graphical illustration of the SYND stream cipher

Fig. 2 .

 2 Fig. 2. The XIni function of XSYNDThe second modification in XSYND is to avoid the regular encoding → ( ) in Upd and Out by using the randomize-then-combine paradigm due to Bellare et al.[START_REF] Bellare | Incremental cryptography: The case of hashing and signing[END_REF][START_REF] Bellare | Incremental cryptography and application to virus protection[END_REF][START_REF] Bellare | A new paradigm for collision-free hashing: incrementality at reduced cost[END_REF] as depicted in Figure3. More precisely, given an input consisting of blocks 1 , . . . ,, each block being bits (where b is chosen at will), we first feed each block through a random function , obtaining an output . The values 1 , 2 , ⋅ ⋅ ⋅ , are combined by bitwise XOR to generate the final output. In XSYND, we use the following function : let be a random binary matrix of
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 3 Fig. 3. Randomize-then-combine paradigm

Fig. 4 .

 4 Fig. 4. The Update Function Upd of XSYND
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Table 1 .

 1 The estimated complexities of possible attacks against XSYND.

Table 2 .

 2 Proposed parameters for XSYND.

	Security Level		Key/IV size Speed of XSYND
			[bits]	[cpb]
	80	8192 256 32	128	14.92
	120	12288 384 48	192	16.98
	160	16384 512 64	256	35.40
	200	20480 640 80	320	43.68
	240	24576 768 96	384	55.42
	280	28672 896 112	448	77.09

Table 3 .

 3 Performance of XSYND vs. SYND using parameter sets proposed in[START_REF] Ph | SYND : a very fast code-based cipher stream with a security reduction[END_REF].

	Security Level		key/IV size speed of SYND speed of XSYND
			[bits]	[cpb]	[cpb]
	80	8192 256 32	128	27	14.92
	128	8192 384 48	192	47	16.86
	180	8192 512 64	256	53	35.18
	400	8192 1024 128	512	83	55.69

Table 4 .

 4 Parameters and performance of 2SC cipher given in[START_REF] Meziani | 2SC: An Efficient Code-Based Stream Cipher[END_REF].

	Security Level		key/IV size speed of 2SC
			[bits]	[cpb]
	100	1572864 384 24	144	37
	160	2228224 544 34	208	47
	250	3801088 928 58	352	72