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Saint Etienne du Rouvray, France

E-mail: elena.silaeva@coria.fr

New Journal of Physics 14 (2012) 113026 (17pp)

Received 20 July 2012

Published 22 November 2012

Online at http://www.njp.org/

doi:10.1088/1367-2630/14/11/113026

Abstract. We study experimentally and theoretically the controlled field

evaporation of single atoms from a semiconductor surface by ultrafast laser-

assisted atom probe tomography. The conventional physical mechanisms of field

evaporation cannot explain the experimental results recently reported for such

materials. A new model is presented in which the positive dc field leads to band

bending with a high density of laser-generated holes near the surface of the

sample. The laser energy absorption by these holes and the subsequent energy

transfer to the lattice considerably increase the tip temperature. We show that

this heating plays an important role in the field ion emission process. In addition,

experiments are carried out for germanium and silicon tips to check the role of

the dc field in the absorption processes, as well as the heating of the tip and the

following evaporation. Good agreement between the predictions of our model

and the experimental data is found.

3 Author to whom any correspondence should be addressed.

Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

New Journal of Physics 14 (2012) 113026
1367-2630/12/113026+17$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:elena.silaeva@coria.fr
http://www.njp.org/
http://creativecommons.org/licenses/by-nc-sa/3.0
http://creativecommons.org/licenses/by-nc-sa/3.0


2

Contents

1. Introduction 2

2. Theoretical model 3

2.1. Effects of a dc electric field and femtosecond laser excitation . . . . . . . . . . 3

2.2. Surface temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Experimental results 11

4. Conclusion 15

Acknowledgment 16

References 16

1. Introduction

In laser-assisted atom probe tomography (La-APT), single atoms are emitted as ions from the

surface of a needle-shaped sample (a tip) one by one by the joint action of a high external dc

electric field of tens of V nm−1 and a femtosecond laser pulse. This process is known as laser-

assisted field evaporation [1–4].

For metallic tips, the conduction electrons absorb the photon energy of the laser at a very

small area located close to the tip apex due to the diffraction effect related to the subwavelength

dimensions of the tip [5]. These hot electrons relax their energy to the lattice and the tip

temperature increases. Hence, the surface atoms are evaporated by a thermally assisted process

providing a sufficiently high tip temperature [6, 7].

For semiconductor tips, the laser-assisted field evaporation mechanisms are still

unclear [8–10]. Experimental three-dimensional images with atomic resolution in silicon [11]

prove the surface nature of the laser-assisted field evaporation. However, in La-APT, the tip

temperature is set below 80 K. At such low temperature the charge density inside a pure

semiconductor is negligible and even defects, such as dopant atoms, are not fully ionized [12].

This means that the dc electric field can penetrate deep inside the sample over more than tens

of nm, so that the evaporation of atoms in the form of clusters or molecular ions is expected,

as was already observed for silicon by using electrical pulses [13]. Only at room temperature

for doped semiconductors can the field be screened due to the presence of free charges into the

bands as theoretically calculated by Tsong [14] and Ernst [15].

Clearly, in the case of La-APT analysis free charges can be generated by laser pulse, thus

allowing the screening of the dc electric field. However, how does this screening process take

place? To what extent and on what time scale? And, more importantly, does this process affect

the optical properties of the semiconductor?

It was recently reported by Bachhav et al [16] that when a silicon tip is illuminated by

an infrared fs laser pulse, the absorption is confined to the tip surface and the laser-assisted

field evaporation takes place preferentially from the illuminated side. However, because of a

rather small absorption coefficient of silicon in the infrared domain, a very small, homogeneous

absorption throughout the tip volume is expected.

In this paper, a new model is presented to explain the confinement of the absorption at

the tip surface. In addition, the La-APT experiments allow us to clearly demonstrate how this

confinement can be affected by the presence of a high dc electric field. Changing the laser

intensity, the initial temperature of the tip and the dc field applied to the tip, we experimentally
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determine the increase in tip temperature at the surface after the action of a single laser pulse.

These results are compared with the lattice temperature calculated numerically by taking into

account the laser-induced generation of free carriers and their relaxation to the lattice. Our model

is based on the drift-diffusion approach [17, 18] coupled with the classical two-temperature

model [19, 20] and takes into account the band-bending effect. In particular, the calculations

allow an evaluation of the laser-induced ionization, recombination effects and charge separation

at the tip surface due to the dc field.

We investigate germanium (Ge) and silicon (Si) as semiconductors that are widely used

in the microelectronic and photovoltaic domains. We have chosen to use infrared light (photon

energy Eph = 1.2 eV) to analyze a Ge tip and green light ( Eph = 2.4 eV) for a Si tip, in order

to have the same interband absorption coefficient αopt, which is equal to 104 cm−1 for Ge and

0.5 × 104 cm−1 for Si at 77 K [21].

The paper is organized as follows. In section 2, we present our model for the

laser–semiconductor interaction in the presence of a high dc electric field. First, we calculate the

dynamics of band-bending accompanied by laser-induced carrier excitation. Then the heating of

the tip is estimated to be a result of the laser energy absorption by the holes and energy transfer

to the lattice. In section 3, our experimental results are presented and compared with the model.

This leads to a new insight into the physics involved in the process. In section 4, our conclusions

are presented.

2. Theoretical model

2.1. Effects of a dc electric field and femtosecond laser excitation

In the presence of a high electric field, the surface band structure of a semiconductor–vacuum

interface is strongly distorted with the bands bent upward leading to high surface hole density

when the applied voltage is positive [14]. However, for low temperature and before the

application of the laser pulse, the free-charge density is negligible inside a pure semiconductor.

The band structure is of a dielectric type with a linear voltage drop across the sample and

a constant internal electric field [22]. The internal field is determined by the surface field in

vacuum and the dielectric constant of a semiconductor (εr = 16.2 for Ge and εr = 11.7 for Si).

In our model, we consider the dc field E0 inside Ge and Si in the range of 1–3 V nm−1, i.e.

around E0 = Eevap/εr. The dc electric field allowing evaporation Eevap is 29 and 33 V nm−1 for

Ge [23] and Si [24], respectively.

When a femtosecond laser pulse interacts with a semiconductor tip, it creates free carriers

(free electrons and holes). The evolution of the carrier density is strongly influenced by the

external dc electric field that, in turn, leads to the establishment of strong band bending at the

surface. In addition, under photo-generation of electrons and holes, the equilibrium Fermi level

is split into two quasi-Fermi levels.

To describe the transient response of the tip to the field during the interaction with the laser

pulse, we use the drift-diffusion approach [18, 19]. In the La-APT, the laser pulse is applied

perpendicularly to the main tip axis, i.e. the wave vector is perpendicular to the dc field direction

of symmetry. The optical absorption depth of Ge at λ = 1030 nm and of Si at λ = 515 nm is

>1 µm. Far away from the hemispherical apex of the tip, the tip can be considered as a cylinder

with ∼100 nm diameter, which is smaller than the optical absorption depth. Thus, the tip can

be approximately described by a 1D model along its axial direction. The model consists of the
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solution of the transport equations for carrier densities and the Poisson equation for the field

inside the semiconductor sample as follows:










































∂nh

∂t
−

∂

∂x

(

Dh

∂nh

∂x
+ µhnh E

)

= Sh − Rh,

∂ne

∂t
−

∂

∂x

(

De

∂ne

∂x
− µene E

)

= Se − Re,

∂ E

∂x
= −

e

εε0

(nh − ne),

(1)

where nh, ne and E are the space- and time-dependent hole density, electron density and electric

field, respectively, e is the absolute value of the electronic charge, and ε0 is the electric constant.

The source of carriers, Sc (subscript c stands for either hole or electron), accounts for the

interband absorption of the laser energy

Sc =
(1 − Ŵ)αopt I

Eph

, (2)

where Ŵ is the reflectivity of the sample and I is the intensity of the laser pulse. At the given

laser intensities and photon energies, multi-photon processes are negligible. For example, in Ge,

the two-photon absorption cross section β is less than 10 cm GW−1 at 1030 nm [25]. The given

intensity I is smaller than 1 GW cm−2, which leads to the two-photon absorption coefficient

β I < 10 cm−1 being much smaller than the linear absorption coefficient αopt = 104 cm−1.

The carrier losses in the bulk, Rc, are mainly due to the Auger recombination with

coefficients of the e–h–h process Ch = 7.8 × 10−32 cm6 s−1 and the h–e–e process Ce = 2.3 ×
10−31 cm6 s−1 for Si [26] and Ch = Ce = 1.1 × 10−31 cm6 s−1 for Ge [27]

Rh = Re = RA
h + RA

e ,

RA
h = Chn2

hne,

RA
e = Cen

2
enh.

(3)

In the transport equations, the carrier mobilities and diffusion coefficients are considered

for Fermi–Dirac statistics in order to take into account degeneracy effects at high carrier

densities [28]

µc = µ0
c

F0(ηc)

F1/2(ηc)
, Dc = µc

kbTc

e

F1/2(ηc)

F−1/2(ηc)
, (4)

where Fξ (ηc) denotes the ξ th-order Fermi integral, ηc is the reduced quasi-Fermi level [29] and

kB is the Boltzmann constant. Low-density values of electron and hole mobilities at 77 K are

given by µ0
e = µ0

h = 4 m2 (Vs)−1 for Ge [30, 31] and µ0
h = 0.92 m2 (Vs)−1 and µ0

e = 2 m2 (Vs)−1

for Si [32]. The value of ηc depends on the local carrier density nc and is calculated by the

procedure described in [20]. Both the diffusion coefficient and the reduced Fermi levels depend

on the carrier temperature Tc that changes during the interaction with the laser pulse. This is

simultaneously calculated from the two-temperature equations described in the next subsection.

Equations (1)–(4) are solved with a finite difference method [17] together with the

following initial conditions:

nh(x, t = 0) = ne(x, t = 0) = 0, E(x, t = 0) = E0, (5)
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and boundary conditions

E(x = 0, t) = E0,

Dh

∂nh

∂x
+ µhnh E

∣

∣

∣

x=0,t
= vsrnc,

De

∂ne

∂x
− µene E

∣

∣

∣

x=0,t
= vsrnc,

Dhe

∂nh

∂x
+ µhnh E

∣

∣

∣

x=L ,t
= De

∂ne

∂x
− µene E

∣

∣

∣

x=L ,t
= 0,

(6)

where L is the length of the considered sample and vsr is the surface recombination velocity.

The value of vsr depends on the density of surface states and for Ge and Si ranges from 102 to

106 cm s−1 [33–35]. The surface-recombination rate is limited by the surface minority carriers.

Thus, in equation (6) nc = ne if there are fewer electrons than holes and nc = nh in the opposite

case.

The boundary conditions (6) for electron and hole currents are chosen to maintain the

conservation of particles, i.e. no charge carriers leave either the left (x = 0) or the right boundary

(x = L). The left boundary condition for the dc field E (x = 0) is kept constant. In the numerical

solution, the sample is divided into layers (numerical cells) with variable thickness. The first

numerical cell at the sample surface is 10−10 m, increasing to the bulk. Because of the very high

field and, thus, carrier drift velocity the time step is required to be very small, 10−20 s, so the

calculations are time-consuming. Therefore, we focus our attention only on several picoseconds

after the beginning of the laser pulse.

We consider the Gaussian temporal profile with the pulse width (full-width at half-

maximum (FWHM)) τp = 500 fs, the peak intensity of 1 GW cm−2, laser wavelength λ =
1030 nm for Ge and λ = 515 nm for Si. The size of the sample is taken as L = 20 µm. It is

assumed that the lasing starts at t = 0, reaches the maximum intensity at t = 600 fs and ends at

t = 1200 fs.

In the presence of a positive external dc field, the photo-generated holes start drifting

toward the surface, whereas the electrons drift in the opposite direction. This effect leads to a

significant increase in the hole density at the surface with respect to its bulk value (figure 1(a)).

The separation of holes from electrons generates space charge that results in the screening of the

external field. During the laser pulse, the dc field gradually decreases in the bulk (figure 1(b)).

When the carrier distributions reach a quasi-equilibrium governed by the balance between drift

and diffusion currents, the field becomes completely screened (t ≃ 1 ps). By this time, the

valence band maximum at the surface is significantly higher than the hole quasi-Fermi level

in the bulk and the hole density reaches nh ≃ 2.7 × 1021 cm−3 for Ge for E0 = 1.5 V nm−1. For

Si, the charge movement and field screening evolve similarly with the maximum hole density

nh ≃ 3.2 × 1021 cm−3 for E0 = 2 V nm−1 (due to the similarity, the corresponding figures were

not shown). Therefore, these holes will significantly absorb the laser energy at the surface. The

free-carrier absorption is related to the change of the complex dielectric function 1εfcr, which

depends on the carrier density and laser wavelength according to the Drude model [36]

1εfcr = 1εfcr
e + 1εfcr

h ,

1εfcr
c = −

nce
2

ε0m∗
cω

2

1

1 + i(ωτD)−1
,

(7)
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Figure 1. Spatial profiles inside the Ge sample at different times for (a) hole

density (solid lines) and electron density (dashed lines) and (b) dc electric

field. x = 0 corresponds to the surface of the sample. Laser pulse parameters:

I = 1 GW cm−2, τp = 500 fs, the pulse peak at 600 fs. The external dc field at the

surface E0 = 1.5 V nm−1. The surface recombination velocity vsr = 106 cm s−1.

where τD is the carrier damping time and ω = 2πc/λ is the laser frequency. For Ge, the carrier

effective masses m∗
c are taken as m∗

h = 0.23me and m∗
e = 0.12me [34] and for Si m∗

h = m∗
e =

0.5me [33]. The free-carrier absorption coefficient is given by

αfcr
c =

4π

λ
√

2
([Re21εfcr

c + Im21εfcr
c ]1/2 − Re1εfcr

c )1/2. (8)

The value of αfcr
h is about 105 cm−1 for both Ge and Si at the surface when early during the laser

pulse the hole density reaches more than 1021 cm−3 due to the band bending. This value is almost

ten times higher than the interband absorption coefficients of Ge and Si at 80 K for infrared and

green light, respectively, showing that under a high electric field the optical properties of the

surface of the sample are changed following the dynamics of the spatial distribution of charges.

Note that we also take into account a change of the sample reflectivity Ŵ according to the

modified dielectric function (equation (7)).

The carrier damping time τD in equation (7) depends on many processes, such as

carrier–phonon collisions, carrier–carrier collisions, degeneracy of carrier distribution and

surface roughness scattering [37, 38]. It becomes very short at high carrier densities. The value

of about 1 fs is reported for optically excited silicon [18, 36]. At low densities, however, it can

be 100 times longer. We take τD = 1 fs as hole and electron damping time everywhere in the

sample, for simplicity. In the regions of low density of holes, i.e. bulk of the sample, the free-

carrier absorption is much lower than interband absorption and does not significantly contribute

to the total absorption. The density of the electrons and free-electron absorption is low in the

bulk, as well as at the surface.
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2.2. Surface temperature

The temperature of the surface of the tip is determined by the processes of tip heating and heat

dissipation in the bulk. The heating of the semiconductor material by the laser pulse is caused

by the transfer of energy from the carriers to the lattice through carrier–phonon coupling and

carrier recombination.

The excess energy Ec of a created electron–hole pair depends on the photon energy

and band gap of the material. It gives to carriers the initial kinetic energy and leads to the

elevated initial carrier temperature. The carriers thermalize then into Fermi–Dirac distribution

via carrier–carrier collisions on a femtosecond time scale. Hence, the total kinetic energy density

in the carrier system is given as [19]

Ecnc =
3

2
nckBTc

F3/2(ηc)

F1/2(ηc)
. (9)

The excess energy is divided between a hole and an electron according to their effective masses.

For Ge at infrared excitation and band gap Eg = 0.73 eV at 80 K the excess hole energy is

equal to Eh
m∗

h

m∗
h+m∗

e
(Eph − Eg) ∼ 0.31 eV. From equation (9), it follows that the initial hot-hole

temperature Th0 ≃ 2420 K. Similarly, the initial hot-electron temperature is Te0 ≃ 1250 K. For Si

at green light excitation (Eg = 1.15 eV) the excess energy is Eh = Eh0 ≃ 0.6 eV and the hot-hole

and hot-electron temperature is Th0 = Te0 ≃ 4640 K. The additional kinetic energy is provided

through free-carrier absorption to electrons and holes. During the Auger recombination process,

two carriers recombine and a third carrier takes a part of the total energy, corresponding to the

sum of kinetic energies and band gap. Thus, Auger recombination reduces the carrier number,

while increasing the carrier temperature.

Several effects can lead to different energies of electron and hole subsystems and, thus,

energy exchange between them. However, as shown in the previous subsection, in the bulk of

the sample the dc field is screened, thus an electron–hole pair behaves like one particle and only

its total energy is important. At the surface, the holes and electrons are separated and cannot

interact. This allows us to neglect the electron–hole energy exchange in the calculations.

We note that because of surface defects, the band gap of a semiconductor can be lower

at the surface than in the bulk [39], which can lead in turn to higher excess energy and higher

generation rate of the carriers at the surface. However, as shown above, the value of the hole

density at the surface is determined by the applied dc field and average density of the holes

inside the sample (figure 1(a)). The additional increase in carrier number in a small near-surface

region would not change this process significantly. Thus, we fix the band gap at the constant

along the sample.

Furthermore, we neglect the effect of carrier heating by the dc field. To acquire some energy

from the dc field, the carriers need to travel a sufficient distance. However, they are just slightly

and rapidly redistributed under the dc field here. When quasi-equilibrium is reached, the carriers

do not drift anymore. This fact also means that we can neglect the possible carrier energy loss

through the impact ionization process. For this process to have a higher rate than energy loss

through carrier–phonon coupling, the energy of a carrier has to be in excess of 1.5Eg [40]. In the

considered case, the excess energy of a carrier is below 1.5Eg. Also, the impact ionization rate

is diminished at the surface, where only holes are present.
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The temperature of the holes Th, electrons Te and lattice TL are then calculated separately

by using the following equations [20]:














































∂

∂t
(ChTh) = Sh

m∗
h

m∗
h + m∗

e

(Eph − Eg) + Eg RA
h + (1 − Ŵ)αfcr

h I −
Ch

τph

(Th − TL) +
∂

∂x
Kh

∂Th

∂x
,

∂

∂t
(CeTe) = Se

m∗
e

m∗
h + m∗

e

(Eph − Eg) + Eg RA
e + (1 − Ŵ)αfcr

e I −
Ce

τph

(Te − TL) +
∂

∂x
Ke

∂Te

∂x
,

∂

∂t
(CLTL) =

Ch

τph

(Th − TL) +
Ce

τph

(Te − TL) +
∂

∂x
KL

∂TL

∂x
.

(10)

The coefficient Cc describes the heat capacity of the carrier system and is given as [20]

Cc =
3

2
nckB

{

F3/2(ηc)

F1/2(ηc)
− ηc

[

1 −
F3/2(ηc)F−1/2(ηc)

F1/2(ηc)2

]}

. (11)

The thermal conductivity of carriers is taken as [20]

Kc =
k2

BncµcTc

e

(

6
F2(ηc)

F0(ηc)
− 4
F1(ηc)

2

F0(ηc)2

)

. (12)

The lattice heat capacity CL strongly depends on lattice temperature below 300 K [41], as well

as thermal conductivity KL that is reported in the literature for Ge and Si nanowires, whose

geometry is close to the APT tip geometry [42]. These dependences are taken into account in

the model.

The electron and hole energy coupling to the lattice is described by the carrier–phonon

energy relaxation time τph, determined by optical- and acoustic-phonon scattering. This process

is known to be different for electrons and holes in Ge and Si [43] and depends in a complicated

way on carrier density, carrier temperature and lattice temperature [44, 45]. Also, the peculiarity

of the given configuration with the electron–hole separation and a very thin layer of the high-

density hole gas can additionally influence the process of energy coupling. Because of such an

uncertainty in the exact value of τph, we approximate it to be constant and the same for the

electrons and holes, following the reported empirical values of 300 fs for Ge and 240 fs for

Si [18, 19, 34].

The initial and boundary conditions for the temperatures are as follows:

Th(x, t = 0) = Th0, Te(x, t = 0) = Te0,

TL(x, t = 0) = 80 K,
(13)

∂Th

∂x

∣

∣

∣

x=0,t
=

∂Te

∂x

∣

∣

∣

x=0,t
= 0,

KL

∂TL

∂x

∣

∣

∣

x=0,t
= −vsrncEg,

Th = Te = TL = 80 K at x = L .

(14)

Because there are no carriers before the application of the laser pulse, the initial condition for the

carrier temperature means that when the first carriers are created they have temperature equal

to Tc0. The boundary conditions for the carrier temperature are adiabatic at x = 0. The value
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Figure 2. Spatial distributions of lattice temperature for a Ge sample at

different times (a) with dc field E0 = 1.5 V nm−1 and (b) without dc field x = 0

corresponds to the surface of the sample. The surface recombination velocity is

vsr = 106 cm s−1. Laser pulse parameters: I = 1 GW cm−2, τp = 500 fs, the pulse

peak at 600 fs.

of TL at x = 0 depends on the surface-recombination rate. In this process, the energy Eg per

electron–hole pair is absorbed directly by the lattice via multi-phonon emission [33]. At x = L

the carrier and lattice temperature is kept at 80 K.

The self-consistent numerical solution of equations (10)–(12) together with equa-

tions (1)–(4) and boundary conditions (5), (6) (13) and(14) gives the change of the lattice

temperature in space and time. The surface recombination becomes negligible and temporal

evolution of the temperature is determined by the thermalization process between the hot holes

and the lattice, because of the field-induced charge separation and very low density of elec-

trons at the surface [46]. The lattice temperature is determined mostly by the density of holes,

their initial temperature and temperature increase due to the free-carrier absorption effect. Thus,

the tip temperature at the surface is higher than in the bulk due to the substantially higher sur-

face hole density (figure 2(a)). At 1 GW cm−2 laser intensity, the surface temperature reaches

TL ≃ 285 K for Ge at E0 = 1.5 V nm−1 and TL ≃ 270 K for Si at E0 = 2 V nm−1 (figure 3(a)).

For comparison, we performed the same calculations for Ge at zero dc field. In this case, the

thermalization of the hot carriers with lattice leads to a small increase in average temperature

along the whole sample because of the relatively low carrier density. The charge separation

does not take place in the absence of the field and surface heating is determined solely by the

surface recombination process (figure 2(b)). At 1 GW cm−2 laser pulse intensity and for the

lowest reported value of surface recombination velocity, the temperature rise at the surface is

3 K, whereas for the highest it is 63 K (figure 3(b)). In both cases the surface temperature rise

is substantially lower than that in the presence of the high dc field E0 = 1.5 V nm−1 and holes

accumulation (205 K). We also note that the tip heating and cooling is a much longer process in

the case of zero field.

Moreover, the surface peak temperature is calculated as a function of laser intensity for

different dc electric fields. The results are presented in figure 4. The surface temperature
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with a dc field E0 = 1.5 V m−1 for the Ge sample and E0 = 2 V nm−1 for Si; (b)

without a dc field for the Ge sample for different values of surface recombination

velocity vsr.
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Figure 4. Surface peak temperature of Ge (a) and Si (b) samples as a function

of laser pulse intensity at different values of dc field E0. Pulse width τp = 500 fs

and the surface recombination velocity vsr = 106 cm s−1.

increases with laser intensity due to the increase in both the absorbed energy by holes and

the hole density at the surface during the laser pulse. However, the hole density is limited by

the maximum band bending at the given field, determined by the stationary solution of the

Poisson equation [14]. When this maximum possible hole density is reached at the surface

early during the laser pulse, the additional increase of intensity does not lead to a significant
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Figure 5. The dc voltage as a function of the laser intensity at 2 × 10−3 detected

atoms per pulse for a tungsten tip. Full squares correspond to the data collected

for a base temperature of 80 K and open dots correspond to a base temperature

of 20 K.

increase of temperature. In addition, the heat capacity is higher at higher temperature; thus much

more energy is needed to additionally increase the sample temperature. This leads to the much

slower increase of surface temperature at higher laser intensities, showing a tendency towards

saturation. At lower dc field the maximum hole density at the surface is lower, leading to a

lower surface temperature. One can note that for the same dc field applied to Ge and Si samples

the maximum temperature of Si is lower. This can be attributed to the lower hole mobility and

higher thermal conductivity of Si with respect to Ge.

3. Experimental results

In our experiments, we use a 100 kHz pulsed ytterbium-doped laser (λ = 1030 nm) with 500 fs

pulse duration and a tunable energy of up to 10 µJ per pulse to illuminate the Ge tip. The sample

is placed in the ultra-high vacuum (<10−7 Pa) chamber of an La-APT with a flight path of

about 10 cm [3]. A position-sensitive detector [47] with improved multi-hit capabilities is used

to accurately measure the detection rate as a function of the dc field on the sample and the

laser intensity. The laser beam is slightly focused onto the tip with a spot diameter of 100 µm

at FWHM controlled by a CCD camera [3]. We use a nonlinear crystal to change the laser

wavelength to the green spectral region (λ = 515 nm) with a spot diameter of 40 µm to analyze

the Si tip. The samples are prepared in the form of a tip by the focused ion beam milling

technique [48].

The sample temperature is set equal to 80 K. Then, for a given value of the laser intensity,

the dc voltage applied to the tip is adjusted to evaporate 2 × 10−3 atoms per pulse. The same

procedure is repeated for each value of the laser intensity reported in figures 5 and 6. For a
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Figure 6. The dc voltage as a function of the laser intensity at 2 × 10−3 detected

atoms per pulse for (a) the Ge tip and (b) the Si tip. Full squares correspond to

the data collected for a base temperature of 80 K and open dots correspond to a

base temperature of 20 K.

thermally assisted evaporation, the evaporation rate follows an Arrhenius law [2]

ϕ = ν〈Nk〉 exp

(

−
Qn

kBT

)

, (15)

where ν is the surface vibration frequency, 〈Nk〉 is the number of kink site atoms within the field

of view of the detector, Qn is the activation barrier and T is the tip temperature at the surface.

The number of evaporated atoms per pulse is linearly related to the evaporation rate

N = ϕτevap, (16)

where τevap is the evaporation time for one pulse. The tip temperature depends on the laser

intensity as follows:

T = T0 + δ I (17)

with T0 the tip base temperature and δ a proportionality factor. The activation barrier is a

complex function of the field but in a first approximation it is linearly dependent on the dc

field [49]

Qn = Q ′
0

(

1 −
E

Eevap

)

(18)

with Q ′
0 a proportionality factor resulting from the linearization of Qn(E) with E . The field E

at the tip surface is controlled by the applied voltage V according to the relation

E =
V

κ Rtip

, (19)

where Rtip = (50 ± 5) nm is the tip apex radius of curvature and κ is a dimensionless factor that

varies with the exact geometry of the tip, which is found in the range of 2–8. In La-APT, the

voltage is adjusted to have dc field values in the range of 70–95% of Eevap.
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From equations (15)–(19), for a constant evaporation rate ϕ, the voltage applied to the

sample becomes a linear function of the laser intensity

V

Vevap

= 1 −
ln(ϕ) − ln(ν〈Nk〉)

Q ′
0

(δ I + T0). (20)

This linear behavior has already been reported for metals [50]. It is shown for a large range of

laser intensities in figure 5 for a tungsten tip.

In the case of germanium and silicon, however, this dependence is not linear and, for high

laser intensity, the laser contribution to the evaporation tends to saturate. As discussed in the

first section, this result is related to the decrease of the dc voltage. For the same value of the

laser intensity focused on the sample, in the case of lower voltage (and, thus, field) the lattice

temperature will be lower, as shown in figure 4. Therefore, to evaporate the sample, a much

higher intensity is required.

The change in base temperature from 80 to 20 K does not affect the behavior of dc voltage

as a function of the laser intensity as shown in figure 6. However, for a given laser intensity the dc

voltage, required to obtain a fixed number of evaporated atoms, is now higher. The difference in

dc voltage values measured at 80 and 20 K is almost constant for all the values of laser intensity,

because it is only related to the difference in the base temperature, which is constant and equal

to 60 K.

For a fixed dc voltage, furthermore, the same number of evaporated atoms is obtained

for two different values of the laser intensity: the higher value corresponds to the lower base

temperature of 20 K. The intensity difference 1I gives directly the value of the laser intensity

necessary for increasing the base temperature of the sample from 20 to 80 K. From the energy

conservation law,
∫ 80

20

CL(T ) dT = η1I, (21)

where the left side describes the energy stored in the system due to the increase of the base

temperature and the right side the absorbed laser energy. The η factor is related to the sample

absorption coefficient and provides information about the laser efficiency in the field evaporation

process. As shown in figure 5, the value of η is constant for all the values of the dc voltage for

the tungsten tip, as expected for metal samples, because 1I is constant. In fact, in the case of

metals the field is screened at the surface; therefore the dependence of the optical properties

on the field has never been reported. For germanium and silicon, however, when the dc voltage

decreases, the η factor decreases too. This shows that the laser efficiency in the evaporation

process strongly depends on the dc field applied to the sample for semiconductors. These results

are in agreement with the prediction of our model showing that the surface optical properties

of semiconductors change strongly under the high dc field. Thus, the increase of the lattice

temperature after the free-charge relaxation depends strongly on the dc field.

To demonstrate the dependence of the laser efficiency on the dc field, we keep constant the

dc voltage applied to the sample at V = 5.5 kV for Ge and V = 5 kV for Si and we increase

the laser intensity focused on the sample, in order to observe the evaporation rate behavior as

predicted by our theoretical model. The number of the evaporated atoms per pulse measured

for the two base temperatures of 20 and 80 K as a function of the laser intensity is reported

in figure 7. For a low evaporation rate (N < 10−3 atom per pulse) Si is known to be strongly

sensitive to the presence of residual hydrogen in the chamber [2]. In addition, at low laser

intensity, evaporation mechanisms different from the thermally assisted evaporation take place
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Figure 7. The number of detected atoms per pulse as a function of laser intensity

for (a) the Ge tip and (b) the Si tip. Full squares correspond to the data collected

for a base temperature of 80 K and open dots correspond to a base temperature

of 20 K.

in the case of Si [9, 51]. For this reason, the Si sample was analyzed at a higher evaporation rate

with respect to Ge.

In figure 7, we again observe that a higher laser intensity is required for evaporating the

sample at lower base temperature. Thus, we can calculate the η factor and observe that η is a

function of the evaporation rate. At a high evaporation rate, the η factor is smaller, corresponding

to a smaller efficiency of the laser in the evaporation process. As predicted by our model, the

decrease of the laser efficiency is related to the saturation of hole density at higher intensities

and the increase of the semiconductor heat capacity with temperature.

By using the values of η obtained from the data reported in figure 7, we can calculate the

temperature of the tip surface corresponding to the lattice temperature of our model

∫ TL

80

CL(T ) dT = ηI. (22)

The values of the temperature are reported in figure 8 as a function of the laser intensity.

The voltage used to obtain these results approximately corresponds to dc field between 1 and

1.5 V nm−1 inside Ge and between 1.5 and 2 V nm−1 inside Si. The electric field values are

estimated by using the charge state distribution derived by Kingham [52]. We can observe

that the values of the temperature obtained experimentally are in the same range as the values

theoretically calculated and reported in figure 4. We note that for the values of the intensity

used in our experiments, we can explore only the beginning of the saturation region. When the

evaporation rate is too high (N > 0.04 atom per pulse), our detection system requires a change

of the laser repetition rate. The evaporation rate becomes unstable at 100 kHz, which can affect

the thermalization of our sample and thus the experimental results.
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Figure 8. Temperature of the tip as a function of the laser intensity for a fixed

voltage V. (a) the Ge tip, V = 5.5 kV; (b) the Si tip, V = 5 kV.

4. Conclusion

We have studied the femtosecond laser-assisted field evaporation of germanium and silicon

tips at different values of the dc electric field and laser pulse energy. It has been shown

experimentally that the efficiency of the laser pulse depends on the dc field for the

semiconductor tip, in comparison with the metallic sample where this dependence is not

observed.

The developed theoretical model has demonstrated that the dc field leads to strong band-

bending and separation of the laser-generated electrons from the holes with the accumulation

of the latter carriers at the apex of the semiconductor tip. The density of the holes and their

temperature at the surface are high enough to sufficiently heat the lattice and provide the

experimentally observed evaporation rate. The temperature rise of the lattice obtained for a high

dc field is found to be significantly higher than in the absence of the field. This effect makes it

possible to successfully analyze semiconductor materials by the La-APT.

La-APT is also shown to be a promising experimental method for the study of laser–matter

interaction. In the considered case, it can serve as a tool for probing carrier density in the space-

charge layer of semiconductors and field-induced free-carrier absorption.

We note that sample geometry can affect the tip response to laser irradiation [7]. The results

presented here have shown, however, that the developed one-dimensional model gives a rather

good qualitative explanation of the experimental observations.

The analysis performed sheds light on puzzling questions concerning the mechanisms

of ion emission in La-APT of semiconductors and can be used to explain a wide variety of

experiments in this field. In addition, the results help us to elucidate the mechanism of ultrafast

laser interactions under many other similar conditions such as those in microelectronics and

atomic force microscopy.
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